首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Tn916 and related conjugative transposons are clinically significant vectors for the transfer of antibiotic resistance among human pathogens, and they excise from their donor organisms using the transposon-encoded integrase ((Tn916)Int) and excisionase ((Tn916)Xis) proteins. In this study, we have investigated the role of the (Tn916)Xis protein in stimulating excisive recombination. The functional relevance of (Tn916)Xis binding sites on the arms of the transposon has been assessed in vivo using a transposon excision assay. Our results indicate that in Escherichia coli the stimulatory effect of the (Tn916)Xis protein is mediated by sequence-specific binding to either of its two binding sites on the left arm of the transposon. These sites lie in between the core and arm sites recognized by (Tn916)Int, suggesting that the (Tn916)Xis protein enhances excision in a manner similar to the excisionase protein of bacteriophage lambda, serving an architectural role in the stabilization of protein-nucleic acid structures required for strand synapsis. However, our finding that excision in E. coli is significantly enhanced by the host factor HU, but does not depend on the integration host factor or the factor for inversion stimulation, defines clear mechanistic differences between Tn916 and bacteriophage lambda recombination.  相似文献   

2.
DNA binding by the Xis protein of the conjugative transposon Tn916.   总被引:1,自引:0,他引:1       下载免费PDF全文
We purified the Xis protein of the conjugative transposon Tn916 and showed by nuclease protection experiments that Xis bound specifically to sites close to each end of Tn916. These specific binding sites are close to, and in the same relative orientation to, binding sites for the N-terminal domain of Tn916 integrase protein. These results suggest that Xis is involved in the formation of nucleoprotein structures at the ends of Tn916 that help to correctly align the ends so that excision can occur.  相似文献   

3.
4.
The roles of purified Int and Xis proteins of the conjugative transposon Tn 916 in excision of a deletion derivative of the closely related element Tn 1545 were investigated. At a low salt concentration (37.5 mM NaCl), Int alone was able to promote limited excision to produce a covalently closed circular form of the transposon, showing that Tn 916 Int can catalyze both DNA cleavage and strand exchange. This reaction was stimulated by Xis. At higher salt concentrations (150 mM NaCl), excision by Int alone was reduced to barely detectable levels and Xis was required for excision. The low salt, Xis-stimulated reaction was approximately 8-fold more efficient than the high salt, Xis-dependent reaction. These results reflect in vivo requirements for Int and Xis in excision.  相似文献   

5.
A method has been developed for the introduction of Tn5 into Escherichia coli plasmid chimeras containing Streptococcus faecalis DNA. Tn5 could be introduced via a lambda::Tn5 delivery vehicle. The system proved to be particularly efficient and facilitated insertions at numerous sites on DNA containing the 16-kilobase conjugative transposon Tn916. It was possible to introduce some of the resulting Tn916::Tn5 derivatives back into S. faecalis by using a recently developed protoplast transformation procedure. A presumed zygotic induction resulted in insertion of the Tn916 derivatives at multiple sites in the S. faecalis chromosome.  相似文献   

6.
In Lactococcus lactis excision of Tn916 is limited by the concentration of integrase and is increased by providing more excisionase. However, even with increased excision of Tn916 in L. lactis, no conjugative transfer is detectable. This suggests that L. lactis is deficient in a host factor(s) required for conjugative transposition.  相似文献   

7.
A method has been developed for the introduction of Tn5 into Escherichia coli plasmid chimeras containing Streptococcus faecalis DNA. Tn5 could be introduced via a lambda::Tn5 delivery vehicle. The system proved to be particularly efficient and facilitated insertions at numerous sites on DNA containing the 16-kilobase conjugative transposon Tn916. It was possible to introduce some of the resulting Tn916::Tn5 derivatives back into S. faecalis by using a recently developed protoplast transformation procedure. A presumed zygotic induction resulted in insertion of the Tn916 derivatives at multiple sites in the S. faecalis chromosome.  相似文献   

8.
Genetic organization of the bacterial conjugative transposon Tn916.   总被引:40,自引:18,他引:22       下载免费PDF全文
Tn916, which encodes resistance to tetracycline, is a 16.4-kilobase conjugative transposon originally identified on the chromosome of Streptococcus faecalis DS16. The transposon has been cloned in Escherichia coli on plasmid vectors, where it expresses tetracycline resistance; it can be reintroduced into S. faecalis via protoplast transformation. We have used a lambda::Tn5 bacteriophage delivery system to introduce Tn5 into numerous sites within Tn916. The Tn5 insertions had various effects on the behavior of Tn916. Some insertions eliminated conjugative transposition but not intracellular transposition, and others eliminated an excision step believed to be essential for both types of transposition. A few inserts had no effect on transposon behavior. Functions were mapped to specific regions on the transposon.  相似文献   

9.
Heterobivalent tyrosine recombinases play a prominent role in numerous bacteriophage and transposon recombination systems. Their enzymatic activities are frequently regulated at a structural level by excisionase factors, which alter the ability of the recombinase to assemble into higher-order recombinogenic nucleoprotein structures. The Tn916 conjugative transposon spreads antibiotic resistance in pathogenic bacteria and is mobilized by a heterobivalent recombinase (Tn916Int), whose activity is regulated by an excisionase factor (Tn916Xis). Unlike the well-characterized (lambda)Xis excisionase from bacteriophage lambda, Tn916Xis stimulates excision in vitro and in Escherichia coli only modestly. To gain insights into this functional difference, we have performed in vitro DNA-binding studies of Tn916Xis and Tn916Int, and we have solved the solution structure of Tn916Xis. We show that the heterobivalent Tn916Int protein is capable of bridging the DR2-type and core-type sites on the left arm of the tranpsoson. Consistent with the notion that Tn916Int is regulated only loosely, we find that Tn916Xis binding does not alter the stability of DR2-Tn916Int-core bridges or the ability of Tn916Int to recognize the arms of the transposon in vitro. Despite a high degree of divergence at the primary sequence level, we show that Tn916Xis and (lambda)Xis adopt related prokaryotic winged-helix structures. However, they differ at their C termini, with Tn916Xis replacing the flexible integrase contacting tail found in (lambda)Xis with a positively charged alpha-helix. This difference provides a structural explanation for why Tn916Xis does not interact cooperatively with its cognate integrase in vitro, and reveals how subtle changes in the winged-helix fold can modulate the functional properties of excisionase factors.  相似文献   

10.
Sequence analysis of termini of conjugative transposon Tn916.   总被引:20,自引:23,他引:20       下载免费PDF全文
Transposon Tn916 is a 16.4-kilobase, broad-host-range, conjugative transposon originally identified on the chromosome of Enterococcus (Streptococcus) faecalis DS16. Its termini have been sequenced along with the junction regions for two different insertions. The ends were found to contain imperfect inverted repeat sequences with identity at 20 of 26 nucleotides. Further in from the ends, imperfect directly repeated sequences were present, with 24 of 27 nucleotides matching. The transposon junction regions contained homologous segments but of a nature not consistent with a direct duplication of the target sequence. Within the right terminus was a potential outwardly reading promoter. Tn916 is believed to transpose via an excision-insertion mechanism; based on the analyses of the termini, as well as two target sequences (before insertion and after excision), a possible model is suggested.  相似文献   

11.
The conjugative transposon Tn916 encodes a protein called INT(Tn916) which, based on DNA sequence comparisons, is a member of the integrase family of site-specific recombinases. Integrase proteins such as INT(lambda), FLP, and XERC/D that promote site-specific recombination use characteristic, conserved amino acid residues to catalyze the cleavage and ligation of DNA substrates during recombination. The reaction proceeds by a two-step transesterification reaction requiring the formation of a covalent protein-DNA intermediate. Different requirements for homology between recombining DNA sites during integrase-mediated site-specific recombination and Tn916 transposition suggest that INT(Tn916) may use a reaction mechanism different from that used by other integrase recombinases. We show that purified INT(Tn916) mediates specific cleavage of duplex DNA substrates containing the Tn916 transposon ends and adjacent bacterial sequences. Staggered cleavages occur at both ends of the transposon, resulting in 5' hydroxyl protruding ends containing coupling sequences. These are sequences that are transferred with the transposon from donor to recipient during conjugative transposition. The nature of the cleavage products suggests that a covalent protein-DNA linkage occurs via a residue of INT(Tn916) and the 3'-phosphate group of the DNA. INT(Tn916) alone is capable of executing the strand cleavage step required for recombination during Tn916 transposition, and this reaction probably occurs by a mechanism similar to that of other integrase family site-specific recombinases.  相似文献   

12.
Enterococcus faecium DPC3675 is a derivative of E. faecium DPC1146 which contains a single copy of the conjugative transposon Tn916. Although the transposon is observed to be oriented in one direction in individual colonies, DNA extracted from cultures grown from these colonies contains the transposon in both orientations, as determined by PCR analysis and sequencing of the transposon/chromosome junctions. Therefore, Tn916 possesses a hitherto unreported ability to invert within a particular insertion site during growth in broth.  相似文献   

13.
The conjugative streptococcal transposon Tn916 was found to transfer naturally between a variety of gram-positive and gram-negative eubacteria. Enterococcus faecalis hosting the transposon could serve as a donor for Alcaligenes eutrophus, Citrobacter freundii, and Escherichia coli at frequencies of 10(-6) to 10(-8). No transfer was observed with several phototrophic species. Mating of an E. coli strain carrying Tn916 yielded transconjugants with Bacillus subtilis, Clostridium acetobutylicum, Enterococcus faecalis, and Streptococcus lactis subsp. diacetylactis at frequencies of 10(-4) to 10(-6). Acetobacterium woodii was the only gram-positive organism tested that did not accept the transposon from a gram-negative donor. The results prove the ability of conjugative transposable elements such as Tn916 for natural cross-species gene transfer, thus potentially contributing to bacterial evolution.  相似文献   

14.
M G Caparon  J R Scott 《Cell》1989,59(6):1027-1034
The covalently closed circular form of the conjugative transposon Tn916, which acts as an intermediate in transposition, is produced by a novel type of recombination. Excision of the element pairs noncomplementary base pairs, which flank the transposon in a heteroduplex, at the joint of a circular form. By a reversal of the excision process, the base pairs from the heteroduplex are inserted into the next target. We present a detailed molecular model for the movement of conjugative transposons that involves the initial formation of staggered nicks in the "coupling regions" that flank the inserted element. The different products of excision and insertion of Tn916 can be explained by this model.  相似文献   

15.
The origin of transfer (oriT) of the 18-kb conjugative transposon Tn916 has been localized to a 466-bp region which spans nucleotides 15215 to 15681 on the transposon map. The oriT lies within an intercistronic region between open reading frames ORF20 and ORF21 that contains six sets of inverted repeats ranging from 10 to 20 bp in size. The segment contains three sequences showing identity in 9 of 12 bp to the consensus nicking site (nic) of the IncP family of conjugative plasmids found in gram-negative bacteria. Overlapping one of these sequences is a region similar to the nic site of the F plasmid. Functionality was based on the ability of the oriT-containing sequence to provide a cis-acting mobilization of chimeras involving the shuttle vector pWM401 in response to activation in trans by an intact chromosome-borne transposon Tn916 delta E. Cloned segments of 466 or 376 nucleotides resulted in unselected cotransfer of the plasmid at levels of about 40% when selection was for Tn916 delta E, whereas a 110-bp segment resulted in cotransfer at a frequency of about 7%. Mobilization was specific in that gram-positive plasmids, such as pAD1 and pAM beta 1, and the gram-negative plasmids pOX38 (a derivative of F) and RP1 did not mobilize oriT-containing chimeras.  相似文献   

16.
17.
Purified integrase protein (Int) of the conjugative transposon Tn916 was shown, using nuclease protection experiments, to bind specifically to a site within the origin of conjugal transfer of the transposon, oriT. A sequence similar to the ends of the transposon that are bound by the C-terminal DNA-binding domain of Int was present in the protected region. However, Int binding to oriT required both the N- and C-terminal DNA-binding domains of Int, and the pattern of nuclease protection differed from that observed when Int binds to the transposon ends and flanking DNA. Binding of Int to oriT may be part of a mechanism to prevent premature conjugal transfer of Tn916 prior to excision from the donor DNA.  相似文献   

18.
The insertion sites of the conjugative transposon Tn916 in the anaerobic pathogen Clostridium difficile were determined using Illumina Solexa high-throughput DNA sequencing of Tn916 insertion libraries in two different clinical isolates: 630ΔE, an erythromycin-sensitive derivative of 630 (ribotype 012), and the ribotype 027 isolate R20291, which was responsible for a severe outbreak of C. difficile disease. A consensus 15-bp Tn916 insertion sequence was identified which was similar in both strains, although an extended consensus sequence was observed in R20291. A search of the C. difficile 630 genome showed that the Tn916 insertion motif was present 100,987 times, with approximately 63,000 of these motifs located in genes and 35,000 in intergenic regions. To test the usefulness of Tn916 as a mutagen, a functional screen allowed the isolation of a mutant. This mutant contained Tn916 inserted into a gene involved in flagellar biosynthesis.  相似文献   

19.
R Manganelli  S Ricci    G Pozzi 《Journal of bacteriology》1996,178(19):5813-5816
Conjugative transposons are genetic elements able to promote their own intracellular transposition and intercellular conjugal transfer. They move by an excision-integration system related to that of lambdoid phages, in which the first step is the excision of the transposon from the donor replicon to form a covalently closed circular intermediate which contains a heteroduplex joint. In this work, sequencing both strands of the circular intermediate heteroduplex joint, it was found that, as during lambda phage excision, Tn916 excises from the host DNA by 5'-protruding staggered endonucleolytic cleavages.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号