首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Parasite-host coevolution can have many different endpoints, not simply the commensalism of 'conventional wisdom'. Empirical studies and mathematical models are elucidating the conditions under which parasite-host systems can coevolve to intermediate and high levels of parasite virulence - and when they can coevolve to commensalism and mutualism.  相似文献   

2.
The evolution of social traits may not only depend on but also change the social structure of the population. In particular, the evolution of pairwise cooperation, such as biparental care, depends on the pair‐matching distribution of the population, and the latter often emerges as a collective outcome of individual pair‐bonding traits, which are also under selection. Here, we develop an analytical model and individual‐based simulations to study the coevolution of long‐term pair bonds and cooperation in parental care, where partners play a Snowdrift game in each breeding season. We illustrate that long‐term pair bonds may coevolve with cooperation when bonding cost is below a threshold. As long‐term pair bonds lead to assortative interactions through pair‐matching dynamics, they may promote the prevalence of cooperation. In addition to the pay‐off matrix of a single game, the evolutionarily stable equilibrium also depends on bonding cost and accidental divorce rate, and it is determined by a form of balancing selection because the benefit from pair‐bond maintenance diminishes as the frequency of cooperators increases. Our findings highlight the importance of ecological factors affecting social bonding cost and stability in understanding the coevolution of social behaviour and social structures, which may lead to the diversity of biological social systems.  相似文献   

3.
Correlated evolution of male and female morphologles in water striders   总被引:5,自引:0,他引:5  
Sexually antagonistic coevolution may be an important force in the evolution of sexual dimorphism. We undertake a comparative study of correlated evolution of male and female morphologies in a clade of 15 water strider species in the genus Gerris (Heteroptera: Gerridae). Earlier studies have shown that superfluous matings impose costs on females, including increased energetic expenditure and predation risk, and females therefore resist males with premating struggles. Males of some species possess grasping structures and females of some species exhibit distinct antigrasping structures, which are used to further the interests of each sex during these premating struggles. We use this understanding, combined with coevolutionary theory, to derive a series of a priori predictions concerning both the types of traits in the two sexes that are expected to coevolve and the coevolutionary dynamics of these traits expected under sexually antagonistic coevolution. We then assess the actual pattern of correlated evolution in this clade with new morphometric methods combined with standard comparative techniques. The results were in agreement with the a priori predictions. The level of armament (different abdominal structures in the two sexes) was closely correlated between the sexes across species. Males are well adapted to grasping females in species in which females are well adapted to thwart harassing males and vice versa. Furthermore, our comparative analyses supports the prediction that correlated evolution of armament in the two sexes should be both rapid and bidirectional.  相似文献   

4.
Gloor GB  Martin LC  Wahl LM  Dunn SD 《Biochemistry》2005,44(19):7156-7165
Information theory was used to identify nonconserved coevolving positions in multiple sequence alignments from a variety of protein families. Coevolving positions in these alignments fall into two general categories. One set is composed of positions that coevolve with only one or two other positions. These positions often display direct amino acid side-chain interactions with their coevolving partner. The other set comprises positions that coevolve with many others and are frequently located in regions critical for protein function, such as active sites and surfaces involved in intermolecular interactions and recognition. We find that coevolving positions are more likely to change protein function when mutated than are positions showing little coevolution. These results imply that information theory may be applied generally to find coevolving, nonconserved positions that are part of functional sites in uncharacterized protein families. We propose that these coevolving positions compose an important subset of the positions in an alignment, and may be as important to the structure and function of the protein family as are highly conserved positions.  相似文献   

5.
Much of evolution is about the coevolution of species with each other. In recent years, we have learned that coevolution is much more pervasive, dynamic, and relentless than we previously thought. There are four central points about coevolution that we should teach the next generation of students to help them understand the importance of the coevolutionary process in shaping the web of life. (1) Complex organisms require coevolved interactions to survive and reproduce. (2) Species-rich ecosystems are built on a base of coevolved interactions. (3) Coevolution takes multiple forms and generates a diversity of ecological outcomes. (4) Interactions coevolve as constantly changing geographic mosaics.  相似文献   

6.
Host‐parasite coevolution is predicted to have complex evolutionary consequences, potentially leading to the emergence of genetic and phenotypic diversity for both antagonists. However, little is known about variation in phenotypic responses to coevolution between different parasite strains exposed to the same experimental conditions. We infected Caenorhabditis elegans with one of two strains of Bacillus thuringiensis and either allowed the host and the parasite to experimentally coevolve (coevolution treatment) or allowed only the parasite to adapt to the host (one‐sided parasite adaptation). By isolating single parasite clones from evolved populations, we found phenotypic diversification of the ancestral strain into distinct clones, which varied in virulence toward ancestral hosts and competitive ability against other parasite genotypes. Parasite phenotypes differed remarkably not only between the two strains, but also between and within different replicate populations, indicating diversification of the clonal population caused by selection. This study highlights that the evolutionary selection pressure mediated by a multicellular host causes phenotypic diversification, but not necessarily with the same phenotypic outcome for different parasite strains.  相似文献   

7.
Adaptive evolution of phytoplankton cell size   总被引:1,自引:0,他引:1  
We present a simple nutrient-phytoplankton-zooplankton (NPZ) model that incorporates adaptive evolution and allometric relations to examine the patterns and consequences of adaptive changes in plankton body size. Assuming stable environmental conditions, the model makes the following predictions. First, phytoplankton should evolve toward small sizes typical of picoplankton. Second, in the absence of grazers, nutrient concentration is minimized as phytoplankton reach their fitness maximum. Third, increasing nutrient flux tends to increase phytoplankton cell size in the presence of phytoplankton-zooplankton coevolution but has no effect in the absence of zooplankton. Fourth, phytoplankton reach their fitness maximum in the absence of grazers, and the evolutionary nutrient-phytoplankton system has a stable equilibrium. In contrast, phytoplankton may approach their fitness minimum in the evolutionary NPZ system where phytoplankton and zooplankton are allowed to coevolve, which may result in oscillatory (unstable) dynamics of the evolutionary NPZ system, compared with the otherwise stable nonevolutionary NPZ system. These results suggest that evolutionary interactions between phytoplankton and zooplankton may have contributed to observed changes in phytoplankton sizes and associated biogeochemical cycles over geological time scales.  相似文献   

8.
We present a general host–parasite model that unifies previous theory by investigating the coevolution of virulence, resistance, and tolerance, with respect to multiple physiological, epidemiological, and environmental parameters. Four sets of new predictions emerge. First, compared to virulence coevolving with resistance or tolerance, three‐trait coevolution promotes more virulence and less tolerance, and broadens conditions under which pure defenses evolve. Second, the cost and efficiency of virulence and the epidemiological rates are the key factors of virulence coevolving with resistance and tolerance. Maximum virulence evolves for intermediate infection rate, at which coevolved levels of resistance and tolerance are both high. The influence of host and parasite background mortalities is strong on the evolution of defenses and weak on the coevolution of virulence. Third, evolutionary correlations between defenses can switch sign along single‐parameter gradients. The evolutionary trade‐off between resistance and tolerance may coevolve with virulence that either increases or decreases monotonically, depending on the underlying parameter gradient. Fourth, despite global attractiveness and stability of coevolutionary equilibria, not‐so‐rare and not‐so‐small mutations can beget large variation in virulence and defenses around equilibrium, in the form of transient “evolutionary spikes.” Implications for evolutionary management of infections are discussed and directions for future research are outlined.  相似文献   

9.
We analyze the evolutionary consequences of host resistance (the ability to decrease the probability of being infected by parasites) for the evolution of parasite virulence (the deleterious effect of a parasite on its host). When only single infections occur, host resistance does not affect the evolution of parasite virulence. However, when superinfections occur, resistance tends to decrease the evolutionarily stable (ES) level of parasite virulence. We first study a simple model in which the host does not coevolve with the parasite (i.e., the frequency of resistant hosts is independent of the parasite). We show that a higher proportion of resistant host decreases the ES level of parasite virulence. Higher levels of the efficiency of host resistance, however, do not always decrease the ES parasite virulence. The implications of these results for virulence management (evolutionary consequences of public health policies) are discussed. Second, we analyze the case where host resistance is allowed to coevolve with parasite virulence using the classical gene-for-gene (GFG) model of host-parasite interaction. It is shown that GFG coevolution leads to lower parasite virulence (in comparison with a fully susceptible host population). The model clarifies and relates the different components of the cost of parasitism: infectivity (ability to infect the host) and virulence (deleterious effect) in an evolutionary perspective.  相似文献   

10.
Coevolution of a ligand and its receptor is critical for maintaining their function in different species, but how ligand and its receptor coevolve is poorly understood. The axon guidance molecule Netrin and its receptor Frazzled (Fra) are useful to study the mechanisms of ligand–receptor coevolution. Here, we have applied codon substitution models to identify positive selection of the netrin and fra genes. The sites under positive selection in netrin and fra were detected in same lineage, such as nematode, dipteran, hymenopteran, hemichordate, and teleost. Several amino acid residues that are under positive selection were identified in the interaction domains. Here we provide evidence that positive selection is essential for the coevolution of Netrin and Fra during central nervous system evolution.  相似文献   

11.
Multiple laboratory studies have evolved hosts against a nonevolving pathogen to address questions about evolution of immune responses. However, an ecologically more relevant scenario is one where hosts and pathogens can coevolve. Such coevolution between the antagonists, depending on the mutual selection pressure and additive variance in the respective populations, can potentially lead to a different pattern of evolution in the hosts compared to a situation where the host evolves against a nonevolving pathogen. In the present study, we used Drosophila melanogaster as the host and Pseudomonas entomophila as the pathogen. We let the host populations either evolve against a nonevolving pathogen or coevolve with the same pathogen. We found that the coevolving hosts on average evolved higher survivorship against the coevolving pathogen and ancestral (nonevolving) pathogen relative to the hosts evolving against a nonevolving pathogen. The coevolving pathogens evolved greater ability to induce host mortality even in nonlocal (novel) hosts compared to infection by an ancestral (nonevolving) pathogen. Thus, our results clearly show that the evolved traits in the host and the pathogen under coevolution can be different from one‐sided adaptation. In addition, our results also show that the coevolving host–pathogen interactions can involve certain general mechanisms in the pathogen, leading to increased mortality induction in nonlocal or novel hosts.  相似文献   

12.
The identification of protein sites undergoing correlated evolution (coevolution) is of great interest due to the possibility that these pairs will tend to be adjacent in the three-dimensional structure. Identification of such pairs should provide useful information for understanding the evolutionary process, predicting the effects of site-directed substitution, and potentially for predicting protein structure. Here, we develop and apply a maximum likelihood method with the aim of improving detection of coevolution. Unlike previous methods which have had limited success, this method allows for correlations induced by phylogenetic relationships and for variation in rate of evolution along branches, and does not rely on accurate reconstruction of ancestral nodes. In order to reduce the complexity of coevolutionary relationships and identify the primary component of pairwise coevolution between two sites, we reduce the data to a two-state system at each site, regardless of the actual number of residues observed at that site. Simulations show that this strategy is good at identifying simple correlations and at recognizing cases in which the data are insufficient to distinguish between coevolution and spurious correlations. The new method was tested by using size and charge characteristics to group the residues at each site, and then evaluating coevolution in myoglobin sequences. Grouping based on physicochemical characteristics allows categorization of coevolving sites into positive and negative coevolution, depending on the correlation between equilibrium state frequencies. We detected a striking excess of negative coevolution (corresponding to charge) at sites brought into proximity by the periodicity of the alpha-helix, and there was also a tendency for sites with significant likelihood ratios to be close in the three-dimensional structure. Sites on the surface of the protein appear to coevolve both when they are close in the structure, and when they are distant, implying a role for folding and/or avoidance of quaternary structure in the coevolution process.  相似文献   

13.
Species interactions commonly coevolve as complex geographic mosaics of populations shaped by differences in local selection and gene flow. We use a haploid matching-alleles model for coevolution to evaluate how a pair of species coevolves when fitness interactions are reciprocal in some locations ("hot spots") but not in others ("cold spots"). Our analyses consider mutualistic and antagonistic interspecific interactions and a variety of gene flow patterns between hot and cold spots. We found that hot and cold spots together with gene flow influence coevolutionary dynamics in four important ways. First, hot spots need not be ubiquitous to have a global influence on evolution, although rare hot spots will not have a disproportionate impact unless selection is relatively strong there. Second, asymmetries in gene flow can influence local adaptation, sometimes creating stable equilibria at which species experience minimal fitness in hot spots and maximal fitness in cold spots, or vice versa. Third, asymmetries in gene flow are no more important than asymmetries in population regulation for determining the maintenance of local polymorphisms through coevolution. Fourth, intraspecific allele frequency differences among hot and cold spot populations evolve under some, but not all, conditions. That is, selection mosaics are indeed capable of producing spatially variable coevolutionary outcomes across the landscapes over which species interact. Altogether, our analyses indicate that coevolutionary trajectories can be strongly shaped by the geographic distribution of coevolutionary hot and cold spots, and by the pattern of gene flow among populations.  相似文献   

14.
The population biology of coevolution   总被引:2,自引:0,他引:2  
New populational approaches to the study of coevolution among species are confronting two major problems: the geographic scale at which coevolution proceeds, and the long-standing issue of how species may coevolve with more than one other species. By incorporating the ecological structure of life histories and populations into analyses of the coevolutionary process, these studies are indicating that coevolutionary change is much more ecologically dynamic than indicated by earlier work. Rather than simply a slow, stately process shaping species over long periods of time, parts of the coevolutionary process may proceed rapidly (sometimes observable in less than a decade), continually molding and remolding populations and communities locally and over broad geographic scales.  相似文献   

15.
I argue that nonequilibrium allele frequency dynamics due to coevolution can drive the evolution of specialized host races in parasites capable of host choice-for example, herbivorous insects or parasitoids. The proposed mechanism does not require genetic trade-offs in performance on different host species. It is based on the premise that the ability of the parasite to overcome the resistance of different host species is to a large degree genetically independent-that is, controlled by different loci. The intuitive rationale is that the genetic lineage of a parasite that evolves host preference becomes more consistently exposed to selection for performance on its preferred host. Such a choosy lineage can thus coevolve faster in response to evolving host defenses than a generalist lineage distributed among several host species. Given genetic variation in host preference, an initially generalist parasite population evolves toward specialized host races, each choosing one host species. This idea is supported by a series of multilocus models of coevolution between a parasite and two host species, in which the parasite virulence on each host is affected by a different set of loci and an additional locus or two loci control host choice.  相似文献   

16.
Antagonistic coevolution between hosts and parasites is a key process in the genesis and maintenance of biological diversity. Whereas coevolutionary dynamics show distinct patterns under favourable environmental conditions, the effects of more realistic, variable conditions are largely unknown. We investigated the impact of a fluctuating environment on antagonistic coevolution in experimental microcosms of Pseudomonas fluorescens SBW25 and lytic phage SBWΦ2. High‐frequency temperature fluctuations caused no deviations from typical coevolutionary arms race dynamics. However, coevolution was stalled during periods of high temperature under intermediate‐ and low‐frequency fluctuations, generating temporary coevolutionary cold spots. Temperature variation affected population density, providing evidence that eco‐evolutionary feedbacks act through variable bacteria–phage encounter rates. Our study shows that environmental fluctuations can drive antagonistic species interactions into and out of coevolutionary cold and hot spots. Whether coevolution persists or stalls depends on the frequency of change and the environmental optima of both interacting players.  相似文献   

17.
Zhi Liang  Meng Xu  Maikun Teng  Jiarui Wu 《FEBS letters》2010,584(19):4237-4240
We investigated what roles coevolution plays in shaping yeast protein interaction network (PIN). We found that the extent of coevolution between two proteins decreases rapidly as their interacting distance on the PIN increases, suggesting coevolutionary constraint is a short-distance force at the molecular level. We also found that protein-protein interactions (PPIs) with strong coevolution tend to be enriched in interconnected clusters, whereas PPIs with weak coevolution are more frequently present at inter-cluster region. The findings indicate the close relationship between coevolution and modular organization of PINs, and may provide insights into evolution and modularity of cellular networks.  相似文献   

18.
In contrast to male genitalia that typically exhibit patterns of rapid and divergent evolution among internally fertilizing animals, female genitalia have been less well studied and are generally thought to evolve slowly among closely-related species. As a result, few cases of male-female genital coevolution have been documented. In Drosophila, female copulatory structures have been claimed to be mostly invariant compared to male structures. Here, we re-examined male and female genitalia in the nine species of the D. melanogaster subgroup. We describe several new species-specific female genital structures that appear to coevolve with male genital structures, and provide evidence that the coevolving structures contact each other during copulation. Several female structures might be defensive shields against apparently harmful male structures, such as cercal teeth, phallic hooks and spines. Evidence for male-female morphological coevolution in Drosophila has previously been shown at the post-copulatory level (e.g., sperm length and sperm storage organ size), and our results provide support for male-female coevolution at the copulatory level.  相似文献   

19.
Many potentially mutualistic interactions are conditional, with selection that varies between mutualism and antagonism over space and time. We develop a genetic model of temporally variable coevolution that incorporates stochastic fluctuations between mutualism and antagonism. We use this model to determine conditions necessary for the coevolution of matching traits between a host and a conditional mutualist. Using an analytical approximation, we show that matching traits will coevolve when the geometric mean interaction is mutualistic. When this condition does not hold, polymorphism and trait mismatching are maintained, and coevolutionary cycles may result. Numerical simulations verify this prediction and suggest that it remains robust in the presence of temporal autocorrelation. These results are compared with those from spatial models with unrestricted movement. The comparisons demonstrate that gene flow is unnecessary for generating empirical patterns predicted by the geographic mosaic theory of coevolution.  相似文献   

20.
Antioxidants have a large potential to coevolve with life-histories because of their capacity to counteract the negative effects of free radicals on fitness. However, only a few studies have explored the association between antioxidant levels and life-history strategies comparing a large number of species. Here we used an extensive dataset of 125 species of birds to investigate the association between concentrations of antioxidants (carotenoids and vitamin E) in the liver, which is the main storage organ for fat-soluble antioxidants, and life-history and morphology. We found that high liver antioxidant concentrations were associated with life-history strategies characterized by "live slow, die old", in clear contrast to previous studies reporting a relationship between high plasma antioxidants and life-histories characterized by "live fast, die young". Thus, high carotenoid concentrations were present in species with large body, brain and egg sizes, high absolute metabolic rate and a resident lifestyle, while high vitamin E concentrations were present in species with large brain size and long life span and incubation period. Our results indicate that antioxidants and life-histories coevolve, and that this may be mediated by positive fitness consequences of the accumulation of liver antioxidants, as species with higher antioxidant levels live longer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号