首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Stabilization of an oxyanion transition state is important to catalysis of peptide bond hydrolysis in all proteases. For subtilisin BPN', a bacterial serine protease, structural data suggest that two hydrogen bonds stabilize the tetrahedral-like oxyanion intermediate: one from the main chain NH of Ser221 and another from the side chain NH2 of Asn155. Molecular dynamic studies (Rao, S., N., Singh, U., C. Bush, P. A., and Kollman, P. A. (1987) Nature 328, 551-554) have indicated the gamma-hydroxyl of Thr220 may be a third hydrogen bond donor even though it is 4A away in the static x-ray structure. We have probed the role of Thr220 by replacing it with serine, cysteine, valine, or alanine by site-directed mutagenesis. These substitutions were intended to alter the size and hydrogen bonding ability of residue 220. Removal of the gamma-hydroxyl group reduced the transition state stabilization energy (delta delta GT) by 1.8-2.1 kcal/mol depending upon the substitution. By comparison, removal of the gamma-methyl group in the Thr220 to serine mutation only decreased delta GT by 0.5 kcal/mol. The gamma-hydroxyl of Thr220 is most important for catalysis, not substrate binding, because virtually all of the effects were on kcat and not KM. The role of the Thr220 hydroxyl is functionally independent from the amide NH2 of Asn155 because the free energy effects of double alanine mutants at these two positions are additive. These data indicate that a distal hydrogen bond donor, namely the hydroxyl of Thr220, plays a functionally important role in stabilizing the oxyanion transition state in subtilisin which is independent of Asn155.  相似文献   

2.
T Nowak  M J Lee 《Biochemistry》1977,16(7):1343-1350
The formation of multiple ligand complexes with muscle pyruvate kinase was measured in terms of dissociation constants and the standard free energies of formation were calculated. The binding of Mn2+ to the enzyme (KA = 55 +/- 5 X 10(-6) M; deltaF degrees = -5.75 +/- 0.05 kcal/mol) and to the enzyme saturated with phosphoenolpyruvate (conditional free energy) KA' = 0.8 +/- 0.4 X 10(-6) M; deltaF degrees = -8.22 +/- 0.34 kcal/mol) has been measured under identical conditions giving a free energy of coupling, delta(deltaF degrees) = -2.47 +/- 0.34 kcal/mol. Such a large negative free energy of coupling is diagnostic of a strong positively cooperative effect in ligand binding. The binding of the substrate phosphoenolpyruvate to free enzyme and the enzyme-Mn2+ complex was, by necessity, measured by different methods. The free energy of phosphoenolpyruvate binding to free enzyme (KS = 1.58 +/- 0.10 X 10(-4)M; deltaF degrees = -5.13 +/- 0.04 kcal/mol) and to the enzyme-Mn2+ complex (K3 = 0.75 +/- 0.10 X 10(-6)M; deltaF degrees = -8.26 +/- 0.07 kcal/mol) also gives a large negative free energy of coupling, delta(deltaF degrees) = -3.16 +/- 0.08 kcal/mol. Such a large negative value confirms reciprocal binding effects between the divalent cation and the substrate phosphoenolpyruvate. The binding of Mn2+ to the enzyme-ADP complex was also investigated and a free energy of coupling, delta(deltaF degrees) = -0.08 +/- 0.08 kcal/mol, was measured, indicative of little or no cooperativity in binding. The free energy of coupling with Mn2+ and pyruvate was measured as -1.52 +/- 0.14 kcal/mol, showing a significant amount of cooperativity in ligand binding but a substantially smaller effect than that observed for phosphoenolpyruvate binding. The magnitude of the coupling free energy may be related to the role of the divalent cation in the formation of the enzyme-substrate complexes. In the absence of the activating monovalent cation, the coupling free energies for phosphoenolpyruvate and pyruvate binding decrease by 40-60% and 25%, respectively, substantiating a role for the monovalent cation in the formation of enzyme-substrate complexes with phosphoenolpyruvate and with pyruvate.  相似文献   

3.
J K Hwang  A Warshel 《Biochemistry》1987,26(10):2669-2673
The catalytic free energy and binding free energies of the native and the Asn-155----Thr, Asn-155----Leu, and Asn-155----Ala mutants of subtilisin are calculated by the empirical valence bond method and a free energy perturbation method. Two simple procedures are used; one "mutates" the substrate, and the other "mutates" the enzyme. The calculated changes in free energies (delta delta G not equal to cat and delta delta Gbind) between the mutant and native enzymes are within 1 kcal/mol of the corresponding observed values. This indicates that we are approaching a quantitative structure-function correlation. The calculated changes in catalytic free energies are almost entirely due to the electrostatic interaction between the enzyme-water system and the charges of the reacting system. This supports the idea that the electrostatic free energy associated with the changes of charges of the reacting system is the key factor in enzyme catalysis.  相似文献   

4.
Sandermann H 《FEBS letters》2002,514(2-3):340-342
The free energy of lipid/protein interaction in biological membranes is still unknown although extensive partitioning and modelling studies have revealed many partial energetic increments. Multiple site binding kinetics are now applied to four well-studied functional membrane proteins, and mean free energy values (+/-S.D.) of -4.23+/-0.49 kcal/mol for single lipid binding sites and of -89.7+/-35.4 kcal/mol for complete lipid substitution are obtained. These high free energy values point to an important bioenergetic role of lipid/protein interaction in membrane functions.  相似文献   

5.
We found that the histidine chemical modification of tyrosinase conspicuously inactivated enzyme activity. The substrate reactions with diethylpyridinecarbamate showed slow-binding inhibition kinetics (K(I) = 0.24 +/- 0.03 mM). Bromoacetate, as another histidine modifier, was also applied in order to study inhibition kinetics. The bromoacetate directly induced the exposures of hydrophobic surfaces following by complete inactivation via ligand binding. For further insights, we predicted the 3D structure of tyrosinase and simulated the docking between tyrosinase and diethylpyridinecarbamate. The docking simulation was shown to the significant binding energy scores (-3.77 kcal/mol by AutoDock4 and -25.26 kcal/mol by Dock6). The computational prediction was informative to elucidate the role of free histidine residues at the active site, which are related to substrate accessibility during tyrosinase catalysis.  相似文献   

6.
Shih Ih  Been MD 《The EMBO journal》2001,20(17):4884-4891
Hepatitis delta virus (HDV) ribozymes employ multiple catalytic strategies to achieve overall rate enhancement of RNA cleavage. These strategies include general acid-base catalysis by a cytosine side chain and involvement of divalent metal ions. Here we used a trans-acting form of the antigenomic ribozyme to examine the contribution of the 5' sequence in the substrate to HDV ribozyme catalysis. The cleavage rate constants increased for substrates with 5' sequence alterations that reduced ground-state binding to the ribozyme. Quantitatively, a plot of activation free energy of chemical conversion versus Gibb's free energy of substrate binding revealed a linear relationship with a slope of -1. This relationship is consistent with a model in which components of the substrate immediately 5' to the cleavage site in the HDV ribozyme-substrate complex destabilize ground-state binding. The intrinsic binding energy derived from the ground-state destabilization could contribute up to 2 kcal/mol toward the total 8.5 kcal/mol reduction in activation free energy for RNA cleavage catalyzed by the HDV ribozyme.  相似文献   

7.
Subtilisin BPN' was chemically converted to thiolsubtilisin and the interaction of this modified enzyme with Streptomyces subtilisin inhibitor (SSI) was examined. SSI competitively inhibited the esterolytic activity of thiolsubtilisin toward p-nitrophenyl acetate with a K1 value of 1.3 X 10(-5) M at pH 7.5 Spectrophotometric analysis of the interaction between SSI and the modified enzyme yielded a Kd value of 4 X 10(-5) M at pH 9.7. These values are about 10(5)-fold greater than the Kd value (less than 10(-9) M at pH 7.5) for the native enzyme. This indicates that the small change in the active site structure of subtilisin (Ser221 to Cys221) leads to a considerable decrease in the binding affinity (by about 6-7 kcal/mol) to SSI.  相似文献   

8.
It has been shown that the P1 site (the center of the reactive site) of protease inhibitors corresponds to the specificity of the cognate protease, and consequently specificity of Streptomyces subtilisin inhibitor (SSI) can be altered by substitution of a single amino acid at the P1 site. In this paper, to investigate whether similar correlation between inhibitory activity of mutated SSI and substrate preference of protease is observed for subtilisin BPN', which has broad substrate specificity, a complete set of mutants of SSI at the reaction site P1 (position 73) was constructed by cassette and site-directed mutagenesis and their inhibitory activities toward subtilisin BPN' were measured. Mutated SSIs which have a polar (Ser, Thr, Gln, Asn), basic (Lys, Arg), or aromatic amino acid (Tyr, Phe, Trp, His), or Ala or Leu, at the P1 site showed almost the same strong inhibitory activity toward subtilisin as the wild type (Met) SSI. However, the inhibitory activity of SSI variants with an acidic (Glu, Asp), or a beta-branched aliphatic amino acid (Val, Ile), or Gly or Pro, at P1 was decreased. The values of the inhibitor constant (Ki) of mutated SSIs toward subtilisin BPN' were consistent with the substrate preference of subtilisin BPN'. A linear correlation was observed between log(1/Ki) of mutated SSIs and log(1/Km) of synthetic substrates. These results demonstrate that the inhibitory activities of P1 site mutants of SSI are linearly related to the substrate preference of subtilisin BPN', and indicate that the binding mode of the inhibitors with the protease may be similar to that of substrates, as in the case of trypsin and chymotrypsin.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

9.
The kinetic specificities of BPN' and Carlsberg subtilisins [EC 3.4.21.14] were examined with various nucleus-substituted derivatives of Nalpha-acetylated aromatic amino acid methyl esters for mapping their hydrophobic binding sites in comparison with that of alpha-chymotrypsin. The Carlsberg enzyme was generally much more reactive than the BPN' enzyme due to the larger kcat value. The fact that the two sutilisins hydrolyzed Ac-Tyr(PABz)-OMe, which is a derivative of tyrosine bearing a planar trans-p-phenylazobenzoyl group at the OH-function, with the smallest Km value showed that these enzymes possess a more extended aromatic binding site than has so far been demonstrated. Ac-Phe(4-NO2)-OMe was remarkable in being hydrolyzed with a particularly large kcat value (5,500 +/- 700 s-1 at pH 7.8 for Carlsberg subtilisin). Ac-Phe(4-NO2)-OMe and Ac-Tyr-OMe were distinguished by Carlsberg subtilisin in terms of kcat but not by BPN' subtilisin, suggesting that the specificity site of the former is more sensitive to a small change in size of substituent than that of the latter. Ac-Trp(NCps)-OMe and Ac-Trp(NCps)-OH were bound to the enzyme's active site but in a competitive manner. A difference in the standard free energies of binding between the two enzymes may indicate that the hydrophobic cleft of Carlsberg subtilisin is somewhat deeper and/or narrower than that of BPN' subtilisin.  相似文献   

10.
Energetic basis of molecular recognition in a DNA aptamer   总被引:1,自引:0,他引:1  
The thermal stability and ligand binding properties of the L-argininamide-binding DNA aptamer (5'-GATCGAAACGTAGCGCCTTCGATC-3') were studied by spectroscopic and calorimetric methods. Differential calorimetric studies showed that the uncomplexed aptamer melted in a two-state reaction with a melting temperature T(m)=50.2+/-0.2 degrees C and a folding enthalpy DeltaH(0)(fold)=-49.0+/-2.1 kcal mol(-1). These values agree with values of T(m)=49.6 degrees C and DeltaH(0)(fold)=-51.2 kcal mol(-1) predicted for a simple hairpin structure. Melting of the uncomplexed aptamer was dependent upon salt concentration, but independent of strand concentration. The T(m) of aptamer melting was found to increase as L-argininamide concentrations increased. Analysis of circular dichroism titration data using a single-site binding model resulted in the determination of a binding free energy DeltaG(0)(bind)=-5.1 kcal mol(-1). Isothermal titration calorimetry studies revealed an exothermic binding reaction with DeltaH(0)(bind)=-8.7 kcal mol(-1). Combination of enthalpy and free energy produce an unfavorable entropy of -TDeltaS(0)=+3.6 kcal mol(-1). A molar heat capacity change of -116 cal mol(-1) K(-1) was determined from calorimetric measurements at four temperatures over the range of 15-40 degrees C. Molecular dynamics simulations were used to explore the structures of the unligated and ligated aptamer structures. From the calculated changes in solvent accessible surface areas of these structures a molar heat capacity change of -125 cal mol(-1) K(-1) was calculated, a value in excellent agreement with the experimental value. The thermodynamic signature, along with the coupled CD spectral changes, suggest that the binding of L-argininamide to its DNA aptamer is an induced-fit process in which the binding of the ligand is thermodynamically coupled to a conformational ordering of the nucleic acid.  相似文献   

11.
Six individual amino acid substitutions at separate positions in the tertiary structure of subtilisin BPN' (EC 3.4.21.14) were found to increase the stability of this enzyme, as judged by differential scanning calorimetry and decreased rates of thermal inactivation. These stabilizing changes, N218S, G169A, Y217K, M50F, Q206C, and N76D, were discovered through the use of five different investigative approaches: (1) random mutagenesis; (2) design of buried hydrophobic side groups; (3) design of electrostatic interactions at Ca2+ binding sites; (4) sequence homology consensus; and (5) serendipity. Individually, the six amino acid substitutions increase the delta G of unfolding between 0.3 and 1.3 kcal/mol at 58.5 degrees C. The combination of these six individual stabilizing mutations together into one subtilisin BPN' molecule was found to result in approximately independent and additive increases in the delta G of unfolding to give a net increase of 3.8 kcal/mol (58.5 degrees C). Thermodynamic stability was also shown to be related to resistance to irreversible inactivation, which included elevated temperatures (65 degrees C) or extreme alkalinity (pH 12.0). Under these denaturing conditions, the rate of inactivation of the combination variant is approximately 300 times slower than that of the wild-type subtilisin BPN'. A comparison of the 1.8-A-resolution crystal structures of mutant and wild-type enzymes revealed only independent and localized structural changes around the site of the amino acid side group substitutions.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

12.
Molecular dynamics (MD) simulations and the molecular mechanics Poisson-Boltzmann surface area (MM-PBSA) method were applied to study the interaction of the natural-product cyclopentapeptide chitinase inhibitors argifin and argadin with chitinase B (ChiB) from Serratia marcescens. Argadin inhibited ChiB with an inhibition constant (K(i)) value of 20 nM, which was three orders of magnitude greater than that of argifin (K(i)=33,000 nM). The MM-PBSA free-energy analysis provided absolute binding free energies of -6.98 and -11.16 kcal/mol for the argifin and argadin complexes, respectively. These estimates were in good agreement with the free energies derived from the experimental K(i) values (-6.36 and -10.92 kcal/mol for the argifin and argadin complexes, respectively). The energetic analysis revealed that the van der Waals and nonpolar solvation energies drove the binding of both argifin and argadin. We found that the binding of argadin gained approximately 12 kcal/mol more van der Waals energy than that of argifin, which was mainly responsible for the difference in binding free energy between argifin and argadin. In particular, W220 and W403 of ChiB were found to contribute to the more favorable van der Waals interaction with argadin. We also designed argifin derivatives with better binding affinity, in which a constituent amino-acid residue of argifin was mutated to one with a bulky side chain. The derivative in which D-Ala of argifin was replaced with D-Trp appeared to possess a binding affinity that was equally potent to that of argadin.  相似文献   

13.
D J Weber  A K Meeker  A S Mildvan 《Biochemistry》1991,30(25):6103-6114
The mechanism of the phosphodiesterase reaction catalyzed by staphylococcal nuclease is believed to involve concerted general acid-base catalysis by Arg-87 and Glu-43. The mutual interactions of Arg-87 and Glu-43 were investigated by comparing kinetic and thermodynamic properties of the single mutant enzymes E43S (Glu-43 to Ser) and R87G (Arg-87 to Gly) with those of the double mutant, E43S + R87G, in which both the basic and acidic functions have been inactivated. Denaturation studies with guanidinium chloride, CD, and 600-MHz 1D and 2D proton NMR spectra, indicate all enzyme forms to be predominantly folded in absence of the denaturant and reveal small antagonistic effects of the E43S and R87G mutations on the stability and structure of the wild-type enzyme. The free energies of binding of the divalent cation activator Ca2+, the inhibitor Mn2+, and the substrate analogue 3',5'-pdTp show simple additive effects of the two mutations in the double mutant, indicating that Arg-87 and Glu-43 act independently to facilitate the binding of divalent cations and of 3',5'-pdTP by the wild-type enzyme. The free energies of binding of the substrate, 5'-pdTdA, both in binary E-S and in active ternary E-Ca(2+)-S complexes, show synergistic effects of the two mutations, suggesting that Arg-87 and Glu-43 interact anticooperatively in binding the substrate, possibly straining the substrate by 1.6 kcal/mol in the wild-type enzyme. The large free energy barriers to Vmax introduced by the R87G mutation (delta G1 = 6.5 kcal/mol) and by the E43S mutation (delta G2 = 5.0 kcal/mol) are partially additive in the double mutant (delta G1+2 = 8.1 kcal/mol). These partially additive effects on Vmax are most simply explained by a cooperative component to transition state binding by Arg-87 and Glu-43 of -3.4 kcal/mol. The combination of anticooperative, cooperative, and noncooperative effects of Arg-87 and Glu-43 together lower the kinetic barrier to catalysis by 8.1 kcal/mol.  相似文献   

14.
The effect of pH and temperature on the apparent association equilibrium constant (Ka) for the binding of the recombinant proteinase inhibitor eglin c from leech Hirudo medicinalis to human leukocyte elastase (EC 3.4.21.37), bovine alpha-chymotrypsin (EC 3.4.21.1) and subtilisin Carlsberg (EC 3.4.21.14) has been investigated. On lowering the pH from 9.5 to 4.5, values of Ka for eglin c binding to the serine proteinases considered decrease thus reflecting the acid-pK shift of the invariant histidyl catalytic residue (His57 in human leukocyte elastase and bovine alpha-chymotrypsin, and His64 in subtilisin Carlsberg) from congruent to 6.9, in the free enzymes, to congruent to 5.1, in the enzyme:inhibitor adducts. At pH 8.0, values of the apparent thermodynamic parameters for eglin c binding are: human leukocyte elastase - Ka = 1.0 x 10(10) M-1, delta G phi = -13.4 kcal/mol, delta H phi = +1.8 kcal/mol, and delta S phi = +52 entropy units; bovine alpha-chymotrypsin -Ka = 5.0 x 10(9) M-1, delta G phi = -13.0 kcal/mol, delta H phi = +2.0 kcal/mol, and delta S phi = +51 entropy units; and subtilisin Carlsberg - Ka = 6.6 x 10(9) M-1, delta G phi = -13.1 kcal/mol, delta H phi = +2.0 kcal/mol, and delta S phi = +51 entropy units (values of Ka, delta G phi and delta S phi were obtained at 21 degrees C; values of delta H phi were temperature independent over the range explored, i.e. between 10 degrees C and 40 degrees C; 1 kcal = 4184J).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

15.
The binding of cI-repressor to a series of mutant operators containing OR1 of the right operator of bacteriophage lambda was investigated. Sites OR2 and/or OR3 were inactivated by either point or deletion mutations. The free energy of binding repressor to OR1 in the wildtype operator, delta G1, is -13.7 +/- 0.3 kcal/mol. delta G1 determined for an OR2- operator created by a single point mutation in OR2 is -13.6 +/- 0.2 kcal/mol. In contrast, delta G1 for the binding of repressor to a cloned synthetic OR1 operator containing only 24 bp of lambda sequence is -12.2 +/- 0.1 kcal/mol. When sequence 5' to OR1 is present, the binding affinity increases to -13.0 +/- 0.1 kcal/mol. In addition, the proximity of OR1 to a fragment-end decreases delta G1 from -13.7 to -12.3 +/- 0.1 kcal/mol. These results suggest that the DNA sequence outside the 17 bp OR1 binding-site contributes to the specific binding of cI-repressor.  相似文献   

16.
Rabbit anti-dinitrophenyl antibody from a serum pool was obtained as five fractions of purified specific antibody by a limiting antigen precipitation method. Each fraction had a different binding affinity for epsilon-N-2,4-dinitrophenyl-L-lysine. The free energy changes for hapten binding to the five antibody fractions varied from -8.35 to -10.0 kcal/mol. An average deltaH of -13.9 kcal/mol was measured for the fractions with a batch calorimeter. The results indicate no significant correlation between enthalpy changes and free energy changes. However, a statistically significant correlation between the free energy changes and the entropy changes was found. The enthalpy of the anti-dinitrophenyl antibody interaction with multivalent dinitrophenyl human serum albumin was determined. These are the first enthalpy measurements of an antibody antigen reaction in which the intrinsic binding enthalpy between the antibody and the determinant group is known. The deltaH for the antigen binding reaction was -10.1 kcal/mol which is 3.8 kcal/mol less exothermic than the deltaH for the hapten binding reaction. The interactions that could lead to such a difference in enthalpy are discussed.  相似文献   

17.
GP catalyzes the phosphorylation of glycogen to Glc-1-P. Because of its fundamental role in the metabolism of glycogen, GP has been the target for a systematic structure-assisted design of inhibitory compounds, which could be of value in the therapeutic treatment of type 2 diabetes mellitus. The most potent catalytic-site inhibitor of GP identified to date is spirohydantoin of glucopyranose (hydan). In this work, we employ MD free energy simulations to calculate the relative binding affinities for GP of hydan and two spirohydantoin analogues, methyl-hydan and n-hydan, in which a hydrogen atom is replaced by a methyl- or amino group, respectively. The results are compared with the experimental relative affinities of these ligands, estimated by kinetic measurements of the ligand inhibition constants. The calculated binding affinity for methyl-hydan (relative to hydan) is 3.75 +/- 1.4 kcal/mol, in excellent agreement with the experimental value (3.6 +/- 0.2 kcal/mol). For n-hydan, the calculated value is 1.0 +/- 1.1 kcal/mol, somewhat smaller than the experimental result (2.3 +/- 0.1 kcal/mol). A free energy decomposition analysis shows that hydan makes optimum interactions with protein residues and specific water molecules in the catalytic site. In the other two ligands, structural perturbations of the active site by the additional methyl- or amino group reduce the corresponding binding affinities. The computed binding free energies are sensitive to the preference of a specific water molecule for two well-defined positions in the catalytic site. The behavior of this water is analyzed in detail, and the free energy profile for the translocation of the water between the two positions is evaluated. The results provide insights into the role of water molecules in modulating ligand binding affinities. A comparison of the interactions between a set of ligands and their surrounding groups in X-ray structures is often used in the interpretation of binding free energy differences and in guiding the design of new ligands. For the systems in this work, such an approach fails to estimate the order of relative binding strengths, in contrast to the rigorous free energy treatment.  相似文献   

18.
Harris DL  Park JY  Gruenke L  Waskell L 《Proteins》2004,55(4):895-914
The molecular origins of temperature-dependent ligand-binding affinities and ligand-induced heme spin state conversion have been investigated using free energy analysis and DFT calculations for substrates and inhibitors of cytochrome P450 2B4 (CYP2B4), employing models of CYP2B4 based on CYP2C5(3LVdH)/CYP2C9 crystal structures, and the results compared with experiment. DFT calculations indicate that large heme-ligand interactions (ca. -15 kcal/mol) are required for inducing a high to low spin heme transition, which is correlated with large molecular electrostatic potentials (approximately -45 kcal/mol) at the ligand heteroatom. While type II ligands often contain oxygen and nitrogen heteroatoms that ligate heme iron, DFT results indicate that BP and MF heme complexes, with weak substrate-heme interactions (ca. -2 kcal/mol), and modest MEPS minima (>-35 kcal/mol) are high spin. In contrast, heme complexes of the CYP2B4 inhibitor, 4PI, the product of benzphetamine metabolism, DMBP, and water are low spin, have substantial heme-ligand interaction energies (<-15 kcal/mol) and deep MEPS minima (<-45 kcal/mol) near their heteroatoms. MMPBSA analysis of MD trajectories were made to estimate binding free energies of these ligands at the heme binding site of CYP2B4. In order to initially assess the realism of this approach, the binding free energy of 4PI inhibitor was computed and found to be a reasonable agreement with experiment: -7.7 kcal/mol [-7.2 kcal/mol (experiment)]. BP was determined to be a good substrate [-6.3 kcal/mol (with heme-ligand water), -7.3 kcal/mol (without ligand water)/-5.8 kcal/mol (experiment)], whereas the binding of MF was negligible, with only marginal binding binding free energy of -1.7 kcal/mol with 2-MF bound [-3.8 kcal/mol (experiment)], both with and without retained heme-ligand water. Analysis of the free energy components reveal that hydrophobic/nonpolar contributions account for approximately 90% of the total binding free energy of these substrates and are the source of their differential and temperature-dependent CYP2B4 binding. The results indicate the underlying origins of the experimentally observed differential binding affinities of BP and MF, and indicate the plausibility of the use of models derived from moderate sequence identity templates in conjunction with approximate free energy methods in the estimation of ligand-P450 binding affinities.  相似文献   

19.
Zhang X  Bruice TC 《Biochemistry》2007,46(34):9743-9751
There are three reaction steps in the S-adenosylmethionine (AdoMet) methylation of lysine-NH2 catalyzed by a methyltransferase. They are (i) combination of enzyme.Lys-NH3+ with AdoMet, (ii) substrate ionization to provide enzyme.AdoMet.Lys-NH2, and (iii) methyl transfer providing enzyme.AdoHcy.Lys-N(Me)H2+ and the dissociation of AdoHcy. In this study of the viral histone methyltransferase (vSET), we find that substrate ionization of vSET.Lys27-NH3+, vSET.Lys27-N(Me)H2+, and vSET.Lys27-N(Me)2H+ takes place upon combination with AdoMet. The presence of a water channel allows dissociation of a proton to the solvent. There is no water channel in the absence of AdoMet. That the formation of a water channel is combined with AdoMet binding was first discovered in our investigation of Rubisco large subunit methyltransferase. Via a quantum mechanics/molecular mechanics (QM/MM) approach, the calculated free energy barrier (DeltaG++) of the first methyl transfer reaction catalyzed by vSET [Lys27-NH2 + AdoMet --> Lys27-N(Me)H2+ + AdoHcy] equals 22.5 +/- 4.3 kcal/mol, which is in excellent agreement with the free energy barrier (21.7 kcal/mol) calculated from the experimental rate constant (0.047 min-1). The calculated DeltaG++ of the second methyl transfer reaction [AdoMet + Lys27-N(Me)H --> AdoHcy + Lys27-N(Me)2H+] at the QM/MM level is 22.6 +/- 3.6 kcal/mol, which is in agreement with the value of 22.4 kcal/mol determined from the experimental rate constant (0.015 min-1). The third methylation [Lys27-N(Me)2 + AdoMet --> Lys27-N(Me)3+ + AdoHcy] is associated with a DeltaG++ of 23.1 +/- 4.0 kcal/mol, which is in agreement with the value of 23.0 kcal/mol determined from the experimental rate constant (0.005 min-1). Our computations establish that the first, second, and third methyl transfer steps catalyzed by vSET are linear SN2 reactions with the bond making being approximately 50% associative.  相似文献   

20.
Kinetic and equilibrium studies of the binding of modified beta-D-galactoside sugars to the lac repressor were carried out to generate thermodynamic data for protein-inducer interactions. The energetic contributions of the galactosyl hydroxyl groups to binding were assessed by using a series of methyl deoxyfluoro-beta-D-galactosides. The C-3 and C-6 hydroxyls contributed less than or equal to -2.3 and -1.7 +/- 0.3 kcal/mol to the binding free energy change, respectively, whereas the C-4 hydroxyl provided only a nominal contribution (-0.1 +/- 0.2 kcal/mol). Favorable contributions to the total binding free energy change were observed for replacement of O-methyl by S-methyl at the beta-anomeric position and for S-methyl by S-isopropyl. Negative delta H degrees values characteristic of protein-sugar complexes [Quiocho, F. A. (1986) Annu. Rev. Biochem. 55, 287-315] were observed for a series of beta-D-galactosides differing at the beta-glycosidic position. A decrease in delta H degrees of approximately 6 kcal/mol upon replacement of the O-methyl substituent by S-methyl indicates a substantial increase in van der Waals' interactions and/or hydrogen bonding in this region of the ligand binding site. The more favorable free energy change for the binding of the S-isopropyl vs S-methyl compound is due mainly to more positive entropic contributions, consistent with an increase in apolar interactions.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号