共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
As shown by cytofluorimetric technique, fluorescein anions formed in macrophages due to hydrolysis of fluorescein diacetate (FDA) release into the extracellular medium through the probenecid-inhibitable transport system of organic acids. Technical procedures have been elaborated to record separately the process of FDA hydrolysis characterising the activity of intracellular esterases, and the fluorescein anion transport representing secretion of organic acids by macrophages. It has been established that the tetrapeptide tuftsin stimulates the cell esterase activity without affecting the rate of fluorescein efflux. The peptide KPR (Lys-Pro-Arg) decreases both the esterase activity and the fluorescein anion efflux. 相似文献
3.
We determined differences in the Ca2+ signalling of K+ and Cl- conductances required for Regulatory Volume Decrease (RVD) in jejunal villus enterocytes passively swollen (0.5 or 0.95.isotonic) compared with swelling because of the absorption of D-glucose (D-Glc) or L-Alanine (L-Ala). Cell volume was measured using electronic cell sizing. In nominally Ca(2+)-free medium containing EGTA (100 microM) RVD after 0.5 or 0.95.isotonic challenge was prevented. L-Ala swelling and subsequent RVD was influenced in Ca(2+)-free medium. Villus cells were incubated with 10 microM of the acetomethoxy derivative of 1,2.bis (2-aminophenoxy) ethane N,N,N1,N1 tetracetic acid (BAPTA-AM) and RVD after 0.5.isotonic swelling or L-Ala swelling was prevented. Niguldipine (0.1 microM), nifedipine (5 microM), diltiazem (100 microM), Ni2+, and Co2+ (1 mM) all prevented hypotonic RVD but had no effect on RVD after L-Ala addition. Charybdotoxin (25 nM) a potent inhibitor of Ca(2+)-activated K+ channels, had no effect on hypotonic RVD but prevented RVD of villus cells swollen by D-Glc. We used the calmodulin antagonists, naphthalene sulfonamide derivatives W-7 and W-13, to assess calmodulin activation of K+ and Cl- conductance in these two models. L-Ala swelling and subsequent RVD was not influenced by 25 microM W-7; hypotonic RVD was prevented by 25 microM W-7 or 100 microM W-13. The W-13 inhibition of RVD was by-passed with 0.5 microM gramicidin. Our data show that hypotonic RVD requires extracellular Ca2+ and that the K+ conductance activated is not charybdotoxin sensitive but requires calmodulin.(ABSTRACT TRUNCATED AT 250 WORDS) 相似文献
4.
5.
6.
A heavy skeletal muscle sarcoplasmic reticulum (SR) fraction was actively loaded stepwise with calcium until Ca2(+)-induced Ca2+ release occurred. The total Ca2+ load, T1, at which release occurred is postulated to be regulated by an intraluminal, low-affinity receptor. After obtaining T1, the critical concentration of Ca2+ required extraluminally (T2) was determined. T1 averaged 58.6 +/- S.D., 6.9 nmol Ca2+/mg SR and T2 averaged 2.14 +/- S.D., 0.24 microM. Both T1 and T2 were increased by Mg2+ and decreased by caffeine. Ruthenium red increased T2 more than T1 while ryanodine had no effect on T1 but markedly increased T2. The results suggest that two Ca2+ regulatory sites may be functional for Ca2(+)-induced Ca2+ release from SR. 相似文献
7.
Biphasic Ca2+ response of adenylate cyclase. The role of calmodulin in its activation by Ca2+ ions 总被引:3,自引:0,他引:3
T J Resink S Stucki G Y Grigorian A Zschauer F R Bühler 《European journal of biochemistry》1986,154(2):451-456
The Ca2+-dependent regulation of human platelet membrane adenylate cyclase has been studied. This enzyme exhibited a biphasic response to Ca2+ within a narrow range of Ca2+ concentrations (0.1-1.0 microM). At low Ca2+ (0.08-0.3 microM) adenylate cyclase was stimulated (Ka = 0.10 microM), whereas at higher Ca2+ (greater than 0.3 microM) the enzyme was inhibited to 70-80% control (Ki = 0.8 microM). Membrane fractions, prepared by washing in the presence of LaCl3 to remove endogenous calmodulin (approximately equal to 70-80% depletion), exhibited no stimulation of adenylate cyclase by Ca2+ but did show the inhibitory phase (Ki = 0.4 microM). The activation phase could be restored to La3+-washed membranes by addition of calmodulin (Ka = 3.0 nM). Under these conditions it was apparent that calmodulin reduced the sensitivity of adenylate cyclase to Ca2+ (Ki = 0.8 microM). Prostaglandin E1 (PGE1) did not alter Ki or Ka values for Ca2+. Calmodulin did not alter the EC50 for PGE1 stimulation of adenylate cyclase but increased the Vmax (1.5-fold). The calmodulin antagonist trifluoperazine potently inhibited adenylate cyclase in native membranes (80%) and to a much lesser extent in La3+-washed membranes (15%). This inhibition was due to interaction of trifluoperazine with endogenous calmodulin since trifluoperazine competitively antagonized the stimulatory effect of calmodulin on adenylate cyclase in La3+-washed membranes. We propose that biphasic Ca2+ regulation of platelet adenylate cyclase functions to both dampen (low Ca2+) and facilitate (high Ca2+) the haemostatic function of platelets. 相似文献
8.
9.
10.
It has been shown that under the influence of superoxide anion (300 nM) and hydrogen peroxide (100 nM) on murine peritoneal macrophages, the depolarization of membrane takes place, and a change in the rate of fluorescein anion efflux from the cells occurs. Hydrogen peroxide (but not superoxide anions) causes a transient increase in the cytoplasmic Ca2+ concentration. These changes are regarded as early signs of macrophage activation. It is assumed that macrophage activation with reactive oxygen intermediates at such a low concentration might be interpreted as follows: a small portion of stimulated phagocytes activates the whole population with the aid of the products of their own oxidative burst. 相似文献
11.
The time-course of 45Ca2+ influx into yeast cells was measured under non-steady-state conditions obtained by preincubating the cells in a Ca2+-free medium containing glucose and buffer. Two components were distinguished: a saturable component which reached a steady-state after about 40 s of 45Ca2+ uptake and a linear increase in cellular 45Ca2+ starting after 60-90 s. Using differential extraction methods it was determined that after 20 s of uptake, 45Ca2+ was localized in the cytoplasmic pool and in bound form with no 45Ca2+ in the vacuole. After 3 min most of the cellular 45Ca2+ was concentrated in the vacuole and in bound form. The initial rate of 45Ca2+ uptake under non-steady-state conditions thus measured 45Ca2+ transport across the plasma membrane without interference by vacuolar uptake. The effect of membrane potential (delta psi) on this transport was investigated in cells depleted of ATP. A high delta psi was produced by preincubating the cells with trifluoperazine (TFP) and subsequently washing the cells free from TFP. Substantial 45Ca2+ influx was measured in the absence of metabolic energy in cells with a high delta psi. Below a threshold value of -69.5 mV the logarithms of the initial rate of 45Ca2+ influx and of the steady-state level of the first component were linear with respect to delta psi. It is suggested that 45Ca2+ influx across the plasma membrane is mediated by channels which open when delta psi is below a threshold value. The results indicated that Ca2+ influx across the plasma membrane was driven electrophoretically by delta psi. 相似文献
12.
The chick chorioallantoic membrane is an epithelial tissue which actively transports large amounts of Ca2+ during embryonic development. In this paper Mn2+ uptake by the tissue was studied and compared to Ca2+ uptake in parallel experiments. The purpose of these experiments was to determine if Mn2+ could be used to gain more information about the Ca2+ transport system. It was found that Mn2+ uptake was reduced significantly under conditions that reduced Ca2+ uptake and that Mn2+, like Ca2+, was taken up preferentially by the ectodermal side of the tissue. Mn2+ uptake showed saturation kinetics with a Km of 0.33 MM. Mn2+ uptake was also competitively inhibited by Ca2+, and Ca2+ uptake inhibited by Mn2+. Electron microprobe studies showed that Mn2+ was localized in the ectoderm of the tissue in the same way as Ca2+. It was concluded from these studies that significant amounts of Mn2+ were accumulated by the active Ca2+ transport mechanism and that Mn2+ could be useful paramagnetic probe of divalent cation transport in this tissue. 相似文献
13.
Mg2+ restores membrane potential in rat liver mitochondria deenergized by Ca2+ and phosphate movements 总被引:1,自引:0,他引:1
Cellular ornithine biosynthesis could be expected to play a significant role in putrescine formation and hence in growth. Two enzymes are involved in ornithine biosynthesis: arginase and transamidinase. These enzyme activities were studied in two human melanoma cell lines differing in their Km of diamine oxidase for putrescine and in their tumorigenicity in nude mice. Arginase activity accounts for the majority of ornithine formed in the highly tumorigenic cell line, while the majority of ornithine is derived from transamidinase action in the poorly tumorigenic cell line, with concomitant formation of methyl guanidine, a potent inhibitor of diamine oxidase. 相似文献
14.
V Shoshan-Barmatz N Ouziel D M Chipman 《The Journal of biological chemistry》1987,262(24):11559-11564
We have reexamined the "uncoupling" of Ca2+ transport from ATP hydrolysis, which has been reported to be caused by trypsin cleavage of the Ca2+-ATPase of sarcoplasmic reticulum (SR) vesicles at the second (slower) of two characteristic tryptic sites (Scott, T. L., and Shamoo, A. E. (1982) J. Membr. Biol. 64, 137-144). We find that the loss of Ca2+ accumulation capacity in SR vesicles is poorly correlated with this cleavage under several conditions. The loss is accompanied by increased Ca2+ permeability but not by changes in the properties of the ATPase or ATP-Pi exchange activities of the vesicles. Proteoliposomes containing purified Ca2+-ATPase which has been cleaved in part at the two tryptic sites are as well coupled and impermeable to Ca2+ as proteoliposomes containing intact Ca2+-ATPase. We conclude that the loss of Ca2+ accumulation capacity in SR vesicles on tryptic treatment is due to cleavage of a SR membrane component other than the Ca2+-ATPase, possibly a component of the gated channels which function in Ca2+ release from SR, which leads to a Ca2+ leak. The hydrolytic and coupled transport functions of the Ca2+-ATPase itself may well be unaffected by the two tryptic cleavages. 相似文献
15.
H A Pershadsingh E B Stubbs W D Noteboom M L Vorbeck A P Martin 《Biochimica et biophysica acta》1985,821(3):445-452
The involvement of Ca2+-activated K+ channels in the regulation of the plasma membrane potential and electrogenic uptake of glycine in SP 2/0-AG14 lymphocytes was investigated using the potentiometric indicator 3,3'-diethylthiodicarbocyanine iodide. The resting membrane potential was estimated to be -57 +/- 6 mV (n = 4), a value similar to that of normal lymphocytes. The magnitude of the membrane potential and the electrogenic uptake of glycine were dependent on the extracellular K+ concentration, [K+]o, and were significantly enhanced by exogenous calcium. The apparent Vmax of Na+-dependent glycine uptake was doubled in the presence of calcium, whereas the K0.5 was not affected. Ouabain had no influence on the membrane potential under the conditions employed. Additional criteria used to demonstrate the presence of Ca2+-activated K+ channels included the following: (1) addition of EGTA to calcium supplemented cells elicited a rapid depolarization of the membrane potential that was dependent on [K+]o; (2) the calmodulin antagonist, trifluoperazine, depolarized the membrane potential in a dose-dependent and saturable manner with an IC50 of 9.4 microM; and (3) cells treated with the Ca2+-activated K+ channel antagonist, quinine, demonstrated an elevated membrane potential and depressed electrogenic glycine uptake. Results from the present study provide evidence for Ca2+-activated K+ channels in SP 2/0-AG14 lymphocytes, and that their involvement regulates the plasma membrane potential and thereby the electrogenic uptake of Na+-dependent amino acids. 相似文献
16.
Liver mitochondrial pyrophosphate concentration is increased by Ca2+ and regulates the intramitochondrial volume and adenine nucleotide content. 下载免费PDF全文
1. The matrix pyrophosphate (PPi) content of isolated energized rat liver mitochondria incubated in the presence of ATP, Mg2+, Pi and respiratory substrate was about 100 pmol/mg of protein. 2. After incubation with sub-micromolar [Ca2+], this was increased by as much as 300%. There was a correlation between the effects of Ca2+ on PPi and on the increase in matrix volume reported previously [Halestrap, Quinlan, Whipps & Armston (1986) Biochem. J. 236, 779-787]. Half-maximal effects were seen at 0.3 microM-Ca2+. 3. Coincident with these effects, the total adenine nucleotide content increased in a carboxyatractyloside-sensitive manner. 4. Incubation with 0.2-0.5 mM-butyrate induced similar but smaller effects on mitochondrial swelling and matrix PPi and total adenine nucleotide content. Addition of butyrate after Ca2+, or vice versa, caused Ca2+-induced mitochondrial swelling to stop or reverse, while matrix PPi increased 30-fold. 5. Addition of atractyloside or the omission of ATP from incubations greatly enhanced swelling induced by Ca2+ without increasing matrix PPi. 6. Swelling of mitochondria incubated under de-energized conditions in iso-osmotic KSCN was progressively enhanced by the addition of increasing concentrations of PPi (1-20 mM) or valinomycin. 7. In iso-osmotic potassium pyrophosphate swelling was slow initially, but accelerated with time. This acceleration was inhibited by ADP, whereas carboxyatractyloside induced rapid swelling. Swelling in other iso-osmotic PPi salts showed that the rate of entry decreased in the order NH4+ greater than K+ greater than Na+ greater than Li+, whereas choline, tetramethylammonium and Tris did not enter. It is suggested that the adenine nucleotide translocase transports small univalent cations when PPi is bound and that PPi can also be transported when the transporter is in the conformation induced by carboxyatractyloside. 8. It is concluded that Ca2+ and butyrate cause swelling of energized mitochondria through this effect of PPi on K+ permeability of the mitochondrial inner membrane. 9. Freeze-clamped livers from rats treated with glucagon or phenylephrine show 30-50% increases in tissue PPi. It is proposed that Ca2+-mediated increases in mitochondrial PPi are responsible for the increase in matrix volume and total adenine nucleotide content observed after hormone treatment. 相似文献
17.
Bodrova ME Brailovskaya IV Efron GI Starkov AA Mokhova EN 《Biochemistry. Biokhimii?a》2003,68(4):391-398
At low Ca2+ concentrations the pore of the inner mitochondrial membrane can open in substates with lower permeability (Hunter, D. R., and Haworth, R. A. (1979) Arch. Biochem. Biophys., 195, 468-477). Recently, we showed that Ca2+ loading of mitochondria augments the cyclosporin A-dependent decrease in transmembrane potential () across the inner mitochondrial membrane caused by 10 M myristic acid but does not affect the stimulation of respiration by this fatty acid. We have proposed that in our experiments the pore opened in a substate with lower permeability rather than in the classic state (Bodrova, M. E., et al. (2000) IUBMB Life, 50, 189-194). Here we show that under conditions lowering the probability of classic pore opening in Ca2+-loaded mitochondria myristic acid induces the cyclosporin A-sensitive decrease and mitochondrial swelling more effectively than uncoupler SF6847 does, though their protonophoric activities are equal. In the absence of Pi and presence of succinate and rotenone (with or without glutamate) cyclosporin A either reversed or only stopped decrease induced by 5 M myristic acid and 5 M Ca2+. In the last case nigericin, when added after cyclosporin A, reversed the decrease, and the following addition of EGTA produced only a weak (if any) increase. In Pi-containing medium (in the presence of glutamate and malate) cyclosporin A reversed the decrease. These data show that the cyclosporin A-sensitive decrease in by low concentrations of fatty acids and Ca2+ cannot be explained by specific uncoupling effect of fatty acid. We propose that: 1) low concentrations of Ca2+ and fatty acid induce the pore opening in a substate with a selective cation permeability, and the cyclosporin A-sensitive decrease results from a conversion of to pH gradient due to the electrogenic cation transport in mitochondria; 2) the ADP/ATP-antiporter is involved in this process; 3) higher efficiency of fatty acid compared to SF6847 in the Ca2+-dependent pore opening seems to be due to its interaction with the nucleotide-binding site of the ADP/ATP-antiporter and higher affinity of fatty acids to cations. 相似文献
18.
The molecular mechanism of the regulation of Ca2+ pump ATPase by phospholamban in cardiac sarcoplasmic reticulum was examined using synthetic peptides of phospholamban and purified Ca2+ pump ATPase from cardiac sarcoplasmic reticulum. The phospholamban monomer of 52 amino acid residues contains two distinct domains, the cytoplasmic (amino acids 1-30) and the transmembrane (amino acids 31-52) domains. The peptide corresponding to the amino acids 1-31 of phospholamban (PLN 1-31) decreased the Vmax of the Ca(2+)-dependent ATPase activity in dose-dependent manner, while it had no effect on the affinity of the ATPase for Ca2+ (KCa). On the other hand, the peptide corresponding to the amino acids 28-47 of phospholamban (PLN 28-47) increased the KCa from 0.52 to 1.33 microM without significant change in the Vmax value when reconstituted into vesicles with the ATPase. Essentially the same results as PLN 28-47 were obtained with the peptide corresponding to the amino acids 8-47 of phospholamban (PLN 8-47). The inhibitory effects of PLN 1-31 and PLN 8-47 on the ATPase were reversed by cAMP-dependent phosphorylation of the peptides (Ser16). These results indicate that phospholamban suppresses Ca2+ pump ATPase at two different sites, the cytoplasmic domain for Vmax and the transmembrane domain for KCa, and that cAMP-dependent phosphorylation de-suppresses these inhibitory effects on the ATPase. 相似文献
19.
Alkalinization stimulates the purified plasma-membrane Ca2+ pump by increasing its Ca2+ affinity. 下载免费PDF全文
L Missiaen G Droogmans H De Smedt F Wuytack L Raeymaekers R Casteels 《The Biochemical journal》1989,262(1):361-364
The finding that negatively charged phospholipids activate the plasma-membrane (Ca2+ + Mg2+)-ATPase and that polycations counteract this stimulation suggest that negative charges in the environment of the ATPase protein could be important for its function. The aim of the present work was to investigate whether changing the charges on the ATPase protein itself by modifying the pH within the physiological range affects the activity of the purified plasma-membrane Ca2+ pump from stomach smooth muscle. Increasing the pH from 6.9 to 7.4 and using 1,2-bis(o-aminophenoxy)ethane-N,N,N',N'-tetra-acetic acid (BAPTA) as a Ca2+ buffer, doubled the ATPase activity at 0.3 microM-Ca2+ in the presence of 100% phosphatidylcholine (PC) or after substituting 20% of the PC by negatively charged phospholipids PtdIns, PtdIns4P, phosphatidylserine and phosphatidic acid. This stimulatory effect was due to an increased affinity of the enzyme for Ca2+, while the Vmax. remained unaffected. In the case of PtdIns(4,5)P2, a stimulatory effect upon alkalinization was only observed at a PtdIns(4,5)P2 concentration of 10%. When a concentration of 20% was used, alkalinization decreased the Vmax. and no stimulatory effect on the ATPase at 0.3 microM-Ca2+ could be observed. Alkalinization not only stimulated the purified Ca2+ pump, but it also increased the activity of the enzyme in a plasma-membrane-enriched fraction from stomach smooth muscle by a factor of 2.06. The ionophore A23187-induced Ca2+ uptake in closed inside-out vesicles also increased by a factor of 2.54 if the pH was changed from 6.9 to 7.4. This finding indicates that the effect of pH is most likely to be exerted at the cytoplasmic site of the Ca2+ pump protein. 相似文献
20.
Thioridazine inhibits the activity of the synaptic plasma membrane Ca(2+)-ATPase from pig brain and slightly decreases the rate of Ca(2+) accumulation by synaptic plasma membrane vesicles in the absence of phosphate. However, in the presence of phosphate, thioridazine increases the rate of Ca(2+) accumulation into synaptic plasma membrane vesicles. Phosphate anions diffuse through the membrane and form calcium phosphate crystals, reducing the free Ca(2+) concentration inside the vesicles and the rate of Ca(2+) leak. The higher levels of Ca(2+) accumulation obtained in the presence of thioridazine could be explained by a reduction of the rate of slippage on the plasma membrane ATPase. 相似文献