首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
深圳市意可曼科技有限公司在山东邹城举办可完全生物降解材料项目投产庆典,这标志着意可曼生物科技有限公司拥有完全自主知识产权、通过基因工程菌种构造法进行生物发酵合成生物高分子材料聚羟基烷酸酯(PHAs)的技术正式实现批量化生产。该项目的产品品级包括注塑级PHAs、吹膜级PHAs、吹瓶级PHAs、板片级PHAs、可发性PHAs、纺丝/无纺布级PHAs、生物弹性体、3-羟基丁酸酯等,可广泛应用于农业、环境、生化、微电、能源、医用等领域。  相似文献   

2.
聚羟基脂肪酸酯(Polyhydroxyalkanoates,PHAs)是一种具有优质生物相容性的可降解生物基材料,其理化性质优越,具备替代石油基塑料的潜力.P(3HB-co-LA)是PHAs的一种,融合了聚乳酸(Polylactic acid,PLA)和聚3-轻基丁酸(poly(3-hydroxybutyrate),P...  相似文献   

3.
利用废弃物发酵法生产聚羟基烷酸PHAs   总被引:1,自引:0,他引:1  
聚羟基烷酸(PHAs)是一种可降解聚合物,与石化塑料相比它具有生物降解性及生物相容性等优点,在不久的将来必然有广阔的应用前景。生产PHAs的主要方法是发酵法,在过去的几十年里传统的深层发酵法生产PHAs的工艺已经得到深入的研究,近些年固态发酵法生产PHAs也吸引了越来越多研究者的关注。  相似文献   

4.
聚羟基脂肪酸脂(PHAs)作为一种具高生物降解性和易加工性的细胞内储能物质,有希望代替石油基塑料,在全球生物塑料市场受到越来越多的关注。木质素作为地球上最为丰富的天然可再生芳香聚合物,可作为底物通过微生物降解转化为苯酚等单环芳香化合物,然后芳香化合物进一步转化,最终合成PHAs。综述了木质素降解转化合成PHAs的微生物及其相关途径,阐述了目前存在的问题和困难。深入探讨了提高木质素降解转化合成PHAs的生产效率及产物性能的研究进展。同时提出了木质素转化合成PHAs面临的挑战以及对未来发展的展望。  相似文献   

5.
【目的】聚羟基脂肪酸酯(polyhydroxyalkanoates,PHAs)是一种生物可降解的天然高分子聚酯,本研究的目的是从广东省某啤酒厂废弃的活性污泥中分离筛选PHAs产生菌。【方法】首先,从活性污泥中分离PHAs产生菌。分离方法分3步:(1)富集培养PHAs产生菌;(2)通过苏丹黑B染色法进行初筛;(3)挑选PHAs产量较高的菌株,然后对细胞内提取产物进行分析,最后通过生理生化试验和16SrRNA基因序列分析法对该菌株进行鉴定。【结果】从广东省某啤酒厂的活性污泥样品中筛选获得PHAs产生菌HG-B-1,被鉴定为嗜麦芽寡养单胞菌(Stenotrophomonas maltophlia)。细胞染色分析、胞内提取物的红外光谱分析表明HG-B-1胞内贮藏物为PHAs。该菌株在以蔗糖为碳源、牛肉膏为氮源的发酵培养基中,37℃振荡培养24h,PHAs产量可达细胞干重的23.4%。【结论】本文从广东省某啤酒厂的活性污泥中筛选得到PHAs产生菌,获得了一株新型的PHAs产生菌,为进一步研究和开发新型的PHAs产生菌提供了菌源和基础资料。  相似文献   

6.
聚残基脂肪酸醋(Polyhydroxyalkanoates,PHAs)是一类由择基脂肪酸单体通过酯化聚合得到的高分子化合物,因具有传统石油基塑料类似的力学特征、100%生物降解性和生物相容性而被认为是最有潜力的绿色环保材料之一.受限于其高昂的生产成本,PHAs作为绿色环保材料的应用推广困难.文中分别从细胞形态调控、代谢...  相似文献   

7.
聚羟基烷酸酯(PHAs)是一类以胞内颗粒形式存在的能被完全生物降解的贮能物质.本研究利用生物信息学的方法初步分析了离子束诱变选育出的突变工程菌pCBH4高产PHAs分子机制.为了分析高产PHAs特性,实验首先提取pCBH4突变菌株含有合成PHAs基因的质粒并转化受体菌DH5α,然后根据原始序列设计引物,从突变株pCBH4中扩增出phaA,phaB和phaC基因并对其进行了序列分析.结果表明:转化菌表现出高产PHAs特性;phaA基因在序列末端有7处碱基发生改变,这一变化导致5个氨基酸发生了改变;phaC基因也发生了类似的变化.从这些结果可以推断pCBH4突变株高产PHAs不是由于工程菌基因组遗传变异所致,可能是phaA和phaC基因突变的结果.  相似文献   

8.
通过平板分离和傅立叶红外光谱检测技术分析了PHAs合成菌在7个红树林土壤生境中的分布,结果表明:红树林土壤中PHAs合成菌数量在103~106cfu/g湿土之间,占异养菌总数的1.5‰~318.6‰;不同红树林土壤中PHAs合成菌分布差异明显,回归分析显示在10%的置信水平下,样品中PHAs合成菌数在一定范围内与土壤中有效钾、全磷呈显著相关;在全磷含量高的深圳和福建样品中,高PHAs合成能力的菌株数显著高于其它样品,进一步表明PHAs合成菌可能与环境污染程度有关。  相似文献   

9.
微生物体内积累的聚羟基脂肪酸酯(PHAs)是一种可降解的生物塑料,利用微生物合成绿色环保的PHAs替代石化塑料可减少白色污染。嗜盐菌合成PHA可省略繁琐的灭菌和无菌条件培养的苛刻条件,较其他微生物更具有经济效益和竞争性。结合目前国内外嗜盐菌合成PHA的研究进展,对嗜盐菌合成的PHA进行分类,并对由嗜盐菌合成PHA的影响因素进行总结分析。同时,对嗜盐菌合成PHA的发展前景进行了展望。  相似文献   

10.
细菌聚羟基脂肪酸酯(polyhydroxyalkanoates,PHAs)是存在于许多细菌细胞内的聚合物,是一种新型的生物材料,在生态研究中可作为营养指标。回顾有关PHAs的研究方法的同时介绍用PT-IR技术从细胞水平快速定性和定量分析细菌PHAs。  相似文献   

11.
Polyhydroxyalkanoates (PHAs) are a class of biopolyesters that are synthesized intracellularly by microorganisms, mainly by different genera of eubacteria. These biopolymers have diverse physical and chemical properties that also classify them as biodegradable in nature and make them compatible to living systems. In the last two decades or so, PHAs have emerged as potential useful materials in the medical field for different applications owing to their unique properties. The lower acidity and bioactivity of PHAs confer them with minimal risk compared to other biopolymers such as poly-lactic acid (PLA) and poly-glycolic acid (PGA). Therefore, the versatility of PHAs in terms of their non-toxic degradation products, biocompatibility, desired surface modifications, wide range of physical and chemical properties, cellular growth support, and attachment without carcinogenic effects have enabled their use as in vivo implants such as sutures, adhesion barriers, and valves to guide tissue repair and in regeneration devices such as cardiovascular patches, articular cartilage repair scaffolds, bone graft substitutes, and nerve guides. Here, we briefly describe some of the most recent innovative research involving the use of PHAs in medical applications. Microbial production of PHAs also provides the opportunity to develop PHAs with more unique monomer compositions economically through metabolic engineering approaches. At present, it is generally established that the PHA monomer composition and surface modifications influence cell responses.PHA synthesis by bacteria does not require the use of a catalyst (used in the synthesis of other polymers), which further promotes the biocompatibility of PHA-derived polymers.  相似文献   

12.
Biomedical Applications of Polyhydroxyalkanoates   总被引:1,自引:0,他引:1  
Polyhydroxyalkanoates (PHA) are produced by a large number of microbes under stress conditions such as high carbon (C) availability and limitations of nutrients such as nitrogen, potassium, phosphorus, magnesium, and oxygen. Here, microbes store C as granules of PHAs—energy reservoir. PHAs have properties, which are quite similar to those of synthetic plastics. The unique properties, which make them desirable materials for biomedical applications is their biodegradability, biocompatibility, and non-toxicity. PHAs have been found suitable for various medical applications: biocontrol agents, drug carriers, biodegradable implants, tissue engineering, memory enhancers, and anticancer agents.  相似文献   

13.
Polyhydroxyalkanoates (PHAs) as an alternative to synthetic plastics have been gaining increasing attention. Being natural in their origin, PHAs are completely biodegradable and eco-friendly. However, consistent efforts to exploit this biopolymer over the last few decades have not been able to pull PHAs out of their nascent stage, inspite of being the favorite of the commercial world. The major limitations are: (1) the high production cost, which is due to the high cost of the feed and (2) poor thermal and mechanical properties of polyhydroxybutyrate (PHB), the most commonly produced PHAs. PHAs have the physicochemical properties which are quite comparable to petroleum based plastics, but PHB being homopolymers are quite brittle, less elastic and have thermal properties which are not suitable for processing them into sturdy products. These properties, including melting point (Tm), glass transition temperature (Tg), elastic modulus, tensile strength, elongation etc. can be improved by varying the monomeric composition and molecular weight. These enhanced characteristics can be achieved by modifications in the types of substrates, feeding strategies, culture conditions and/or genetic manipulations.  相似文献   

14.
To prepare medium-chain-length poly-3-hydroxyalkanoates (PHAs) with altered physical properties, we generated recombinant Escherichia coli strains that synthesized PHAs with altered monomer compositions. Experiments with different substrates (fatty acids with different chain lengths) or different E. coli hosts failed to produce PHAs with altered physical properties. Therefore, we engineered a new potential PHA synthetic pathway, in which ketoacyl-coenzyme A (CoA) intermediates derived from the beta-oxidation cycle are accumulated and led to the PHA polymerase precursor R-3-hydroxyalkanoates in E. coli hosts. By introducing the poly-3-hydroxybutyrate acetoacetyl-CoA reductase (PhbB) from Ralstonia eutropha and blocking the ketoacyl-CoA degradation step of the beta-oxidation, the ketoacyl-CoA intermediate was accumulated and reduced to the PHA precursor. Introduction of the phbB gene not only caused significant changes in the monomer composition but also caused changes of the physical properties of the PHA, such as increase of polymer size and loss of the melting point. The present study demonstrates that pathway engineering can be a useful approach for producing PHAs with engineered physical properties.  相似文献   

15.
Bacterial polyhydroxyalkanoates   总被引:34,自引:0,他引:34  
Polyhydroxyalkanoates (PHAs) are polyesters of hydroxyalkanoates (HAs) synthesized by numerous bacteria as intracellular carbon and energy storage compounds and accumulated as granules in the cytoplasm of cells. More than 80 HAs have been detected as constituents of PHAs, which allows these thermoplastic materials to have various mechanical properties resembling hard crystalline polymer or elastic rubber depending on the incorporated monomer units. Even though PHAs have been recognized as good candidates for biodegradable plastics, their high price compared with conventional plastics has limited their use in a wide range of applications. A number of bacteria including Alcaligenes eutrophus, Alcaligenes latus, Azotobacter vinelandii, methylotrophs, pseudomonads, and recombinant Escherichia coli have been employed for the production of PHAs, and the productivity of greater than 2 g PHA/L/h has been achieved. Recent advances in understanding metabolism, molecular biology, and genetics of the PHA-synthesizing bacteria and cloning of more than 20 different PHA biosynthesis genes allowed construction of various recombinant strains that were able to synthesize polyesters having different monomer units and/or to accumulate much more polymers. Also, genetically engineered plants harboring the bacterial PHA biosynthesis genes are being developed for the economical production of PHAs. Improvements in fermentation/separation technology and the development of bacterial strains or plants that more efficiently synthesize PHAs will bring the costs down to make PHAs competitive with the conventional plastics. (c) 1996 John Wiley & Sons, Inc.  相似文献   

16.
This paper describes the development of medical applications for polyhydroxyalkanoates (PHAs), a class of natural polymers with a wide range of thermoplastic properties. Methods are described for preparing PHAs with high purity, modifying these materials to change their surface and degradation properties, and methods for fabricating them into different forms, including tissue engineering scaffolds. Preliminary reports characterizing their in vivo behavior are given, as well as methods for using the natural polymers in tissue engineering applications.  相似文献   

17.
Polyhydroxyalkanoates (PHAs) are biodegradable polymers produced by microbes to overcome environmental stress. Commercial production of PHAs is limited by the high cost of production compared to conventional plastics. Another hindrance is the brittle nature and low strength of polyhydroxybutyrate (PHB), the most widely studied PHA. The needs are to produce PHAs, which have better elastomeric properties suitable for biomedical applications, preferably from inexpensive renewable sources to reduce cost. Certain unique properties of Bacillus subtilis such as lack of the toxic lipo-polysaccharides, expression of self-lysing genes on completion of PHA biosynthetic process – for easy and timely recovery, usage of biowastes as feed enable it to compete as potential candidate for commercial production of PHA.  相似文献   

18.
Polyhydroxyalkanoates (PHAs) are polyesters of hydroxyacids naturally synthesized in bacteria as a carbon reserve. PHAs have properties of biodegradable thermoplastics and elastomers and their synthesis in crop plants is seen as an attractive system for the sustained production of large amounts of polymers at low cost. A variety of PHAs having different physical properties have now been synthesized in a number of transgenic plants, including Arabidopsis thaliana, rape and corn. This has been accomplished through the creation of novel metabolic pathways either in the cytoplasm, plastid or peroxisome of plant cells. Beyond its impact in biotechnology, PHA production in plants can also be used to study some fundamental aspects of plant metabolism. Synthesis of PHA can be used both as an indicator and a modulator of the carbon flux to pathways competing for common substrates, such as acetyl-coenzyme A in fatty acid biosynthesis or 3-hydroxyacyl-coenzyme A in fatty acid degradation. Synthesis of PHAs in plant peroxisome has been used to demonstrate changes in the flux of fatty acids to the beta-oxidation cycle in transgenic plants and mutants affected in lipid biosynthesis, as well as to study the pathway of degradation of unusual fatty acids.  相似文献   

19.
微生物合成中链聚羟基烷酸酯研究进展   总被引:3,自引:0,他引:3  
严群  李寅  陈坚  堵国成   《生物工程学报》2001,17(5):485-490
某些微生物细胞在特定营养限制的条件下会产生聚羟基烷酸酯作为碳源储备。和短链聚羟基烷酸酯(PHB)一样 ,中链聚羟基烷酸酯由于具有更优良的性能、更高的附加值和更广泛的用途而受到人们的关注 ;此外 ,中链聚羟基烷酸酯还可以被人工合成为具有功能性侧链的半合成高聚物 ,并因此能够具有更好的弹性和更理想的结晶性能等优点 ,从而成为近年来对环境友好的生物可降解材料的研究重点。在能够合成中链聚羟基烷酸酯的微生物中 ,食油假单胞菌是最典型 ,也是研究得最多的一种。本文对由食油假单胞菌合成中链聚羟基烷酸酯的特点、代谢机制、发挥过程等内容进行了综述 ,并提出了这一研究领域未来可能的研究方向  相似文献   

20.
The Poly(hydroxyalkanoate) (PHA) chemical modifications represent an alternative route to introduce functional groups, which cannot be introduced by bioconversion. PHAs containing unsaturated chains were readily converted into polyesters containing a terminal hydroxyl group on the side chains. With the use of the borane-tetrahydrofuran complex, the pendant side chain alkenes were quantitatively transformed into hydroxyl functions. The conversion proceeded to completion without a significant decrease in molecular weight. The introduction of hydroxyl groups in the products was confirmed from Fourier transform infrared and 1H NMR analysis. The presence of repeating units containing pendant hydroxyl groups in the proportion 25 mol % caused an increase in hydrophilicity of these new PHAs because they were soluble in polar solvents such as ethanol. Besides, these reactive PHAs can be used to bind bio-active molecules or to prepare novel graft copolymers with desired properties.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号