共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Protein kinase C mediates platelet-derived growth factor-induced tyrosine phosphorylation of p42 总被引:26,自引:2,他引:26 下载免费PDF全文
One of the early events after stimulation of Swiss 3T3 cells with either platelet-derived growth factor (PDGF), 12-O-tetradecanoyl-phorbol-13-acetate (TPA), diacylglycerol, or several other mitogens is the near stoichiometric phosphorylation at tyrosine and serine of a scarce cytoplasmic protein (p42). TPA and diacylglycerol are known to directly stimulate the activity of a protein-serine/threonine kinase, protein kinase C (PKC). PDGF and several other mitogens stimulate tyrosine kinases directly and PKC indirectly. We have therefore examined the involvement of PKC in p42 tyrosine phosphorylation in Swiss 3T3 cells. Firstly, six agents which stimulated phosphorylation of p42 also stimulated phosphorylation of a known PKC substrate, an 80,000-Mr protein (p80). Secondly, in PKC-deficient cells (cells in which PKC activity was reduced to undetectable levels by prolonged exposure to TPA), PDGF-induced p42 phosphorylation was reduced three- to fourfold. Phosphoamino acid analysis of phosphorylated p42 from PDGF-stimulated PKC-deficient cells revealed primarily phosphoserine and only a trace of phosphotyrosine, suggesting that the reduction in PDGF-stimulated tyrosine phosphorylation of p42 resulting from PKC deficiency is greater than three- to fourfold. Finally, comparison of antiphosphotyrosine immunoprecipitates of PKC-deficient versus naive cells revealed that most other PDGF-induced tyrosine phosphorylation events were quite similar. These data suggest that mitogens such as PDGF, which directly stimulate phosphorylation of some proteins at tyrosine, induce p42 tyrosine phosphorylation via a cascade of events involving PKC. 相似文献
3.
Sphingosine kinase mediates vascular endothelial growth factor-induced activation of ras and mitogen-activated protein kinases 总被引:26,自引:0,他引:26 下载免费PDF全文
Vascular endothelial growth factor (VEGF) signaling is critical to the processes of angiogenesis and tumor growth. Here, evidence is presented for VEGF stimulation of sphingosine kinase (SPK) that affects not only endothelial cell signaling but also tumor cells expressing VEGF receptors. VEGF or phorbol 12-myristate 13-acetate treatment of the T24 bladder tumor cell line resulted in a time- and dose-dependent stimulation of SPK activity. In T24 cells, VEGF treatment reduced cellular sphingosine levels while raising that of sphingosine-1-phosphate. VEGF stimulation of T24 cells caused a slow and sustained accumulation of Ras-GTP and phosphorylated extracellular signal-regulated kinase (phospho-ERK) compared with that after EGF treatment. Small interfering RNA (siRNA) that targets SPK1, but not SPK2, blocks VEGF-induced accumulation of Ras-GTP and phospho-ERK in T24 cells. In contrast to EGF stimulation, VEGF stimulation of ERK1/2 phosphorylation was unaffected by dominant-negative Ras-N17. Raf kinase inhibition blocked both VEGF- and EGF-stimulated accumulation of phospho-ERK1/2. Inhibition of SPK by pharmacological inhibitors, a dominant-negative SPK mutant, or siRNA that targets SPK blocked VEGF, but not EGF, induction of phospho-ERK1/2. We conclude that VEGF induces DNA synthesis in a pathway which sequentially involves protein kinase C (PKC), SPK, Ras, Raf, and ERK1/2. These data highlight a novel mechanism by which SPK mediates signaling from PKC to Ras in a manner independent of Ras-guanine nucleotide exchange factor. 相似文献
4.
Protein kinase D-mediated phosphorylation and nuclear export of sphingosine kinase 2 总被引:1,自引:0,他引:1
Ding G Sonoda H Yu H Kajimoto T Goparaju SK Jahangeer S Okada T Nakamura S 《The Journal of biological chemistry》2007,282(37):27493-27502
Sphingosine kinase (SPHK) is a key enzyme producing important messenger sphingosine 1-phosphate and is implicated in cell proliferation and suppression of apoptosis. Because the extent of agonist-induced activation of SPHK is modest, signaling via SPHK may be regulated through its localization at specific intracellular sites. Although the SPHK1 isoform has been extensively studied and characterized, the regulation of expression and function of the other isoform, SPHK2, remain largely unexplored. Here we describe an important post-translational modification, namely, phosphorylation of SPHK2 catalyzed by protein kinase D (PKD), which regulates its localization. Upon stimulation of HeLa cells by tumor promoter phorbol 12-myristate 13-acetate, a serine residue in a novel and putative nuclear export signal, identified for the first time, in SPHK2 was phosphorylated followed by SPHK2 export from the nucleus. Constitutively active PKD phosphorylated this serine residue in the nuclear export signal both in vivo and in vitro. Moreover, down-regulation of PKDs through RNA interference resulted in the attenuation of both basal and phorbol 12-myristate 13-acetate-induced phosphorylation, which was followed by the accumulation of SPHK2 in the nucleus in a manner rescued by PKD over-expression. These results indicate that PKD is a physiologically relevant enzyme for SPHK2 phosphorylation, which leads to its nuclear export for subsequent cellular signaling. 相似文献
5.
Cheng N Brantley DM Liu H Lin Q Enriquez M Gale N Yancopoulos G Cerretti DP Daniel TO Chen J 《Molecular cancer research : MCR》2002,1(1):2-11
Angiogenesis is a multistep process involving a diverse array of molecular signals. Ligands for receptor tyrosine kinases (RTKs) have emerged as critical mediators of angiogenesis. Three families of ligands, vascular endothelial cell growth factors (VEGFs), angiopoietins, and ephrins, act via RTKs expressed in endothelial cells. Recent evidence indicates that VEGF cooperates with angiopoietins to regulate vascular remodeling and angiogenesis in both embryogenesis and tumor neovascularization. However, the relationship between VEGF and ephrins remains unclear. Here we show that interaction between EphA RTKs and ephrinA ligands is necessary for induction of maximal neovascularization by VEGF. EphA2 RTK is activated by VEGF through induction of ephrinA1 ligand. A soluble EphA2-Fc receptor inhibits VEGF-, but not basic fibroblast growth factor-induced endothelial cell survival, migration, sprouting, and corneal angiogenesis. As an independent, but complementary approach, EphA2 antisense oligonucleotides inhibited endothelial expression of EphA2 receptor and suppressed ephrinA1- and VEGF-induced cell migration. Taken together, these data indicate an essential role for EphA receptor activation in VEGF-dependent angiogenesis and suggest a potential new target for therapeutic intervention in pathogenic angiogenesis. 相似文献
6.
Protein kinases C and D mediate agonist-dependent cardiac hypertrophy through nuclear export of histone deacetylase 5 总被引:13,自引:0,他引:13 下载免费PDF全文
Vega RB Harrison BC Meadows E Roberts CR Papst PJ Olson EN McKinsey TA 《Molecular and cellular biology》2004,24(19):8374-8385
A variety of stress signals stimulate cardiac myocytes to undergo hypertrophy. Persistent cardiac hypertrophy is associated with elevated risk for the development of heart failure. Recently, we showed that class II histone deacetylases (HDACs) suppress cardiac hypertrophy and that stress signals neutralize this repressive function by triggering phosphorylation- and CRM1-dependent nuclear export of these chromatin-modifying enzymes. However, the identities of cardiac HDAC kinases have remained unclear. Here, we demonstrate that signaling by protein kinase C (PKC) is sufficient and, in some cases, necessary to drive nuclear export of class II HDAC5 in cardiomyocytes. Inhibition of PKC prevents nucleocytoplasmic shuttling of HDAC5 in response to a subset of hypertrophic agonists. Moreover, a nonphosphorylatable HDAC5 mutant is refractory to PKC signaling and blocks cardiomyocyte hypertrophy mediated by pharmacological activators of PKC. We also demonstrate that protein kinase D (PKD), a downstream effector of PKC, directly phosphorylates HDAC5 and stimulates its nuclear export. These findings reveal a novel function for the PKC/PKD axis in coupling extracellular cues to chromatin modifications that control cellular growth, and they suggest potential utility for small-molecule inhibitors of this pathway in the treatment of pathological cardiac gene expression. 相似文献
7.
8.
9.
10.
Effect of vascular endothelial growth factor-induced angiogenesis on TRAM flap harvesting after abdominoplasty 总被引:3,自引:0,他引:3
In this study, the effect of intramuscular injection of human vascular endothelial growth factor (hVEGF) on neovascularization following abdominoplasty was investigated. Twenty-four Sprague-Dawley rats were divided into four groups (n = 6). Two control groups and two experimental groups were established. Abdominoplasty was performed in all rats, with division of all the perforator vessels. In the control groups, normal saline was injected into the rectus abdominis muscle, and in the experimental groups, 100 microg of VEGF and normal saline were injected into the rectus muscle. A transverse rectus abdominis musculocutaneous (TRAM) flap was harvested on day 20 and day 40 in both the control and experimental groups. The range of viability of the TRAM flap was, respectively, 0 to 20 percent (mean, 6.7 percent) and 0 to 25 percent (mean, 14.2 percent) in both short-term and long-term control groups (no VEGF injected). The study (VEGF) group demonstrated a viability of 50 to 80 percent (mean, 70 percent) for the short-term group and 50 to 85 percent (mean, 72.5 percent) in the long-term group. No wound infection was documented, and there were no deaths during the study period. There was no statistically significant difference between the short-term and long-term divisions of the groups (p < 0.01); however, significant differences were observed between the control and experimental groups (p < 0.01). The authors concluded that VEGF injection after abdominoplasty improved the percentage of TRAM flap viability. This method of delay/revascularization could be used for the difficult problem of flap viability following abdominoplasty and for high-risk patients. 相似文献
11.
Protein kinase C mediates induced secretion of vascular endothelial growth factor by human glioma cells 总被引:6,自引:0,他引:6
Tsai JC Teng LJ Chen CT Hong TM Goldman CK Gillespie GY 《Biochemical and biophysical research communications》2003,309(4):952-960
To understand how vascular endothelial growth factor (VEGF) production is activated in malignant glioma cells, we employed protein tyrosine kinase (PTK) and protein kinase C (PKC) inhibitors to evaluate the extent to which these protein kinases were involved in signal transduction leading to VEGF production. PTK inhibitors blocked glioma proliferation and epidermal growth factor (EGF)-induced VEGF secretion, while H-7, a PKC inhibitor, inhibited both EGF-induced and baseline VEGF secretion. Phorbol 12-myristate 13-acetate (PMA), a non-specific activator of PKC, induced VEGF secretion by glioma cells, which was enhanced by calcium ionophore A23187, but completely blocked after prolonged treatment of cells with 1 microM PMA, by presumably depleting PKC. All inhibitors (genistein, AG18, AG213, H-7, prolonged PMA treatment) which inhibited EGF-induced VEGF secretion in glioma cells also inhibited cell proliferation at similar concentrations. However, PKC inhibition only blocked 50% of the VEGF secretion induced by growth factors (EGF, platelet-derived growth factor-BB, or basic fibroblast growth factor). This reserve capacity could be ascribed to a PKC-independent effect, or to PKC isoenzymes not down-regulated by PMA. These findings extend our previous assertion that VEGF secretion is tightly coupled with proliferation by suggesting that activation of convergent growth factor signaling pathways will lead to increased glioma VEGF secretion. Understanding of signal transduction of growth factor-induced VEGF secretion should provide a rational basis for the development of novel strategies for therapy. 相似文献
12.
In human vascular endothelial cells, both growth factor-induced DNA synthesis and retinoblastoma gene product (RB) phosphorylation are absolutely dependent on extracellular Ca2+, and are potently inhibited by an active calmodulin antagonist, W-7, but not an inactive analogue, W-12. A reduction in the extracellular Ca2+ or an addition of W-7 as late as 8 h after growth factor stimulation still inhibits both RB phosphorylation and DNA synthesis to the full extent. However, once RB phosphorylation occurs 12-16 h after addition of the growth factors, it is not reversed by subsequent Ca2+ reduction or W-7. These results suggest the existence of a Ca2+/calmodulin-dependent process relatively late in the mitogenic signalling cascade, at a step proximal to RB phosphorylation reaction itself. 相似文献
13.
The role of interleukin-4 (IL-4) in the inflammatory process has emerged recently. In this study, we investigated the effect of IL-4 on the angiogenic process in an in vitro experimental system. IL-4 significantly inhibited the proliferation of human umbilical vein endothelial cells (HUVEC) that was induced by the vascular endothelial growth factor (VEGF) and basic fibroblast growth factor (bFGF). VEGF- or bFGF-induced HUVEC chemotaxis was abrogated by the IL-4 treatment. In addition, the formation of tube-like structures by HUVEC in the presence of VEGF or bFGF was also severely down-regulated by IL-4. The inhibitory effects on the critical steps of angiogenesis were not observed with IL-6 that is abundantly found in the inflamed tissue. Our results suggest that IL-4 may play a regulatory role in normal physiology and provide the potential possibility for IL-4 as a therapeutic agent in the intervention of angiogenesis-related diseases. 相似文献
14.
Distinct angiogenic mediators are required for basic fibroblast growth factor- and vascular endothelial growth factor-induced angiogenesis: the role of cytoplasmic tyrosine kinase c-Abl in tumor angiogenesis 下载免费PDF全文
Signaling pathways engaged by angiogenic factors bFGF and VEGF in tumor angiogenesis are not fully understood. The current study identifies cytoplasmic tyrosine kinase c-Abl as a key factor differentially mediating bFGF- and VEGF-induced angiogenesis in microvascular endothelial cells. STI571, a c-Abl kinase inhibitor, only inhibited bFGF- but not VEGF-induced angiogenesis. bFGF induced membrane receptor cooperation between integrin beta(3) and FGF receptor, and triggered a downstream cascade including FAK, c-Abl, and MAPK. This signaling pathway is different from one utilized by VEGF that includes integrin beta(5), VEGF receptor-2, Src, FAK, and MAPK. Ectopic expression of wild-type c-Abl sensitized angiogenic response to bFGF, but kinase dead mutant c-Abl abolished this activity. Furthermore, the wild-type c-Abl enhanced angiogenesis in both Matrigel implantation and tumor xenograft models. These data provide novel insights into c-Abl's differential functions in mediating bFGF- and VEGF-induced angiogenesis. 相似文献
15.
The adherens junctional molecule, vascular endothelial cadherin (VE-cadherin), functions to maintain adherens junction stability and to suppress apoptosis of endothelial cells by forming a complex with vascular endothelial growth factor (VEGF) receptor 2 and members of the armadillo family of cytoplasmic proteins. In order to investigate the dynamics of the association of VE-cadherin with adherens junctions during the initial stages of angiogenesis, human umbilical cord endothelial cells (HUVECs) were stimulated with VEGF to undergo angiogenesis in type-I collagen three-dimensional culture. In confluent monolayers of HUVECs, VE-cadherin and its signaling partner, beta-catenin, as well as the paracellular transmembrane adhesion molecule platelet-endothelial cell adhesion molecule (PECAM-1), were all present in regions of cell-cell contact. Within 3 h of stimulation of angiogenesis, VE-cadherin and beta-catenin were lost from these regions. In contrast, the distribution pattern of PECAM-1 did not alter. After 6 h the majority of endothelial cells had migrated to form a network of capillary cords with cell-cell contacts that contained all three molecules. By metabolic labeling of HUVECs it was found that de novo synthesis of VE-cadherin was not essential for the formation of new adherens junctions. Coimmunoprecipitation and immunoblotting experiments showed that the VE-cadherin and beta-catenin remained associated after they were lost from adherens junctions. Detergent extraction of cells with Triton X-100 indicted that the majority of VE-cadherin and beta-catenin was Triton soluble, indicating that they are only weakly associated with the actin-based cytoskeleton. 相似文献
16.
Protein kinase C-beta mediates lipoprotein-induced generation of PAI-1 from vascular endothelial cells 总被引:1,自引:0,他引:1
Ren S Shatadal S Shen GX 《American journal of physiology. Endocrinology and metabolism》2000,278(4):E656-E662
Elevated levels of low-density lipoproteins (LDL) and lipoprotein(a) [Lp(a)] have been considered strong risk factors for atherosclerotic cardiovascular disease. Increased production of plasminogen activator inhibitor-1 (PAI-1) has been implicated in the development of thrombosis and atherosclerosis. Previous studies by our group and others demonstrated that oxidation enhances LDL- and Lp(a)-induced production of PAI-1 in human umbilical vein endothelial cells (HUVEC). The present study examined the involvement of protein kinase C (PKC) and its isoform in vascular endothelial cells (EC) induced by native or oxidized LDL and Lp(a). Treatment with Lp(a) or LDL transiently increased PKC activity at 15 min and 5.5 h after the start of lipoprotein treatment in EC. Copper-oxidized LDL and Lp(a) induced greater PKC activation in EC compared with comparable forms of those lipoproteins. Additions of 1 microM calphostin C, a PKC-specific inhibitor, at the beginning or > or =5 h, but not > or = 9 h, after the initiation of lipoprotein treatment, blocked native and oxidized LDL- or Lp(a)-induced increases in PKC activity and PAI-1 production. Treatment of LDL, Lp(a), or their oxidized forms was induced in translocation of PKC-beta1 from cytosol to membrane in HUVEC. Treatments with 60 nM 379196, a PKC-beta-specific inhibitor, effectively prevented PAI-1 production induced by LDL, Lp(a), or their oxidized forms in HUVEC and human coronary artery EC. The results suggest that activation of PKC-beta may mediate the production of PAI-1 in cultured arterial and venous EC induced by LDL, Lp(a), or their oxidized forms. 相似文献
17.
18.
Mezentsev A Seta F Dunn MW Ono N Falck JR Laniado-Schwartzman M 《The Journal of biological chemistry》2002,277(21):18670-18676
12(R)-Hydroxy-5,8,14-eicosatrienoic acid (HETrE) is a potent inflammatory and angiogenic eicosanoid in ocular and dermal tissues. Previous studies suggested that 12(R)-HETrE activates microvessel endothelial cells via a high affinity binding site; however, the cellular mechanisms underlying 12(R)-HETrE angiogenic activity are unexplored. Because the synthesis of 12(R)-HETrE is induced in response to hypoxic injury, we examined its interactions with vascular endothelial growth factor (VEGF) in rabbit limbal microvessel endothelial cells. Addition of 12(R)-HETrE (0.1 nm) to the cells increased VEGF mRNA levels with maximum 5-fold increase at 45 min. The increase in VEGF mRNA was followed by an increase in immunoreactive VEGF protein. 12(R)-HETrE (0.1 nm) rapidly activated the extracellular signal-regulated kinases (ERKs) ERK1 and ERK2. Moreover, preincubation of cells with PD98059, a selective inhibitor of MEK-1, inhibited 12(R)-HETrE-induced VEGF mRNA. Addition of VEGF antibody to cells grown in Matrigel-coated culture plates inhibited 12(R)-HETrE-induced capillary tube-like formation, suggesting that VEGF mediates, at least in part, the angiogenic response to 12(R)-HETrE. The results indicate that in microvessel endothelial cells, 12(R)-HETrE induces VEGF expression via activation of ERK1/2 and that VEGF mediates, at least in part, the angiogenic activity of 12(R)-HETrE. Given the fact that both VEGF and 12(R)-HETrE are produced in the cornea after hypoxic injury, their interaction may be an important determinant in the development of neovascularized tissues. 相似文献
19.
Piiper A Lutz MP Cramer H Elez R Kronenberger B Dikic I Müller-Esterl W Zeuzem S 《Biochemical and biophysical research communications》2003,301(4):848-854
An increase in the intracellular cAMP concentration induces tyrosine phosphorylation of the epidermal growth factor receptor (EGFR) followed by activation of extracellular signal-regulated kinases 1/2 (ERK1/2). In this report we demonstrate that these effects of cAMP are mediated via activation of protein kinase A (PKA). Chemical inhibition of PKA suppressed forskolin-induced EGFR tyrosine phosphorylation and ERK1/2 activation in PC12 cells. Furthermore, forskolin failed to induce significant tyrosine phosphorylation of the EGFR and ERK1/2 activation in PKA-defective PC12 cells. Forskolin-induced EGFR tyrosine phosphorylation was also observed in A431 cells and in membranes isolated from these cells. Phosphoamino acid analysis indicated that the recombinant catalytic subunit of PKA elicited phosphorylation of the EGFR on both tyrosine and serine but not threonine residues in A431 membranes. Together, our data indicate that activation of PKA mediates the effects of cAMP on the EGFR and ERK1/2. While PKA may directly phosphorylate the EGFR on serine residues, PKA-induced tyrosine phosphorylation of the EGFR occurs by an indirect mechanism. 相似文献