首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
1. Tryptic cleavage of fish myosin subfragment-1 (S-1) revealed its similar substructure of heavy chain to that of rabbit S-1. 2. The structural stability of fish S-1 was studied by thermal denaturation method, and a rapid polymerization of inactivated fish S-1, detected by turbidity increase, was characteristic. 3. The light-chain release and tryptic susceptibility increase upon heating were significant with fish S-1.  相似文献   

2.
Binding of magnesium to myosin subfragment-1 ATPase   总被引:1,自引:0,他引:1  
Tyr 180 of chicken breast muscle alkali light chain A1 was nitrated with tetranitromethane. The nitroA1 was incorporated into chicken breast muscle subfragment-1 (S-1) by exchange with the intrinsic alkali light chain. In the presence of adenylylimidodiphosphate (AMPPNP) or ADP, the S-1 containing nitroA1 showed a difference visible absorption spectrum by Mg2+ or Ca2+. The difference spectrum has a trough around 435 nm, indicating a blue shift of the absorption spectrum due to the nitrophenol chromophore of the modified A1. The plot of delta A at 435 nm versus concentration of free Mg2+ fitted a single binding curve, independent of the total concentration of AMPPNP. These results reveal that free Mg2+ binds to the active site of S-1 ATPase, but not as Mg-AMPPNP complex. The dissociation constants of magnesium from S-1 complex were different with the two nucleotides and were 1.25 X 10(-8) M and 1.24 X 10(-7) with AMPPNP and ADP, respectively. The difference spectrum was also obtained in the presence of ATP. The delta epsilon value after adding ATP changed with the ATPase reaction. The steady state rate of S-1 ATPase was measured at various concentrations of free Mg2+. The dissociation constant of magnesium from the steady state complex, EPADP(a), was estimated as 6 X 10(-8) M. These results suggest that the affinity of magnesium at the active site of ATPase changes with the intermediate states of ATPase reaction. The affinity of calcium was lower than that of magnesium.  相似文献   

3.
During a part of the hydrolytic cycle, myosin head (S1) carries no nucleotide and binds strongly to an actin filament forming a rigor bond. At saturating concentration of S1 in rigor, S1 is well known to form 1:1 complex with actin. However, we have provided evidence that under certain conditions S1 could also form a complex with 2 actin monomers in a filament (Andreev, O.A. & Borejdo, J. (1991) Biochem. Biophys. Res. Comm. 177, 350-356). This view was recently challenged by Carlier & Didry (Carlier, M-F. & Didry, D. (1992) Biochem. Biophys. Res. Comm. 183, 970-974) who interpreted our data by suggesting that F-actin underwent a simple depolymerization and implied that, when only actin in the F-form was scored, the real stoichiometry in our experiments was 1:1. We show here that under conditions of our experiments less than 8% of actin was depolymerized. Moreover, we have repeated the experiments in the presence of phalloidin and show that under these conditions too, when S1 was added slowly to a fixed concentration of F-actin, it formed a different complex with F-actin than when it was added quickly. This confirms our original conclusion that S1 can bind actin in two different ways and shows that depolymerization of F-actin is not responsible for this finding.  相似文献   

4.
Fluorescence energey transfer in myosin subfragment-1   总被引:7,自引:0,他引:7  
D J Marsh  S Lowey 《Biochemistry》1980,19(4):774-784
Fluorescent probes have been selectively introduced into skeletal muscle myosin subfragment-1 and the fluorescence emission characteristics of the labeled products studied. The fluorophores employed were the thiol-specific reagents N-[[(iodoacetyl)aminolethyl-5-naphthylamine-1-sulfonic acid and 5-(iodoacetamido)fluorescein, the spectral properties of which render them a particularly effective donor-acceptor pair in F?rster energy-transfer studies. Alkali 1 light chain, labeled at a single cysteine with either of these probes, was incorporated into chymotryptic subfragment-1 by the exchange procedure of Wagner & Weeds [Wagner, P.D., & Weeds, A.G. (1977) J. Mol. Biol. 109, 455-473]. The resultant, fluorescently labeled subfragment-1 was isolated by ion-exchange chromatography. Determination of the extent of incorporation by extinction and fluorescence indicated that greater than 80% of the subfragment-1 population possessed a fluorescently labeled alkali 1 light chain. The introduction of labeled alkali 1 did not perturb the K+-, Ca2+-, or actin-activated adenosine triphosphatases of subfragment-1. The addition of adenosine triphosphate (ATP), liganded by various cations, to this singly labeled subfragment-1 induced a 6-10% decrease in the fluorescence intensity of the extrinsic chromophore. An intensity decrease of approximately 4% was obtained when the hydrolysis of ATP was complete, and also upon direct addition of adenosine diphosphate. The ATP analogue adenylyl imidodiphosphate induced a decrease of approximately 7% in intensity. The addition of F-actin to the subfragment-1 in the presence of MgATP elicited no further fluorescence intensity change. A second, appropriate fluorophore was introduced into the singly labeled subfragment-1 at the SH1 thiol on the heavy chain. F?rster energy transfer was observed between this labeled site and the fluorophore previously introduced on the alkali 1 light chain. The measured efficiency of energy transfer indicated that the two fluorophores were approximately 40 A apart. The same value was obtained upon reversal of the donor and acceptor attachment sites, suggesting that the uncertainty in the calculated distance introduced by the choice of orientation factor is probably less than 20%. Steady-state observations did not reveal any obvious change in this distance upon the addition of MgATP and then F-actin to the doubly labeled subfragment-1.  相似文献   

5.
We have demonstrated previously that urea inhibits the activity and alters the tertiary structure of skeletal muscle myosin in a biphasic manner. This was attributed to differential effects on its globular and filamentous portion. The inhibition of catalytic activity was counteracted by methylamines. With the aim of comprehending the effects of urea on the catalytic (globular) portion of myosin, this study examines the effects of urea and the countereffects of betaine on the catalytic activity and structure of myosin subfragment-1. It is shown that urea inactivates subfragment-1 in parallel with its ability to induce exposure of the enzyme hydrophobic domains, as assessed using intrinsic and extrinsic fluorescence. Both effects are counteracted by betaine, which alone does not significantly affect subfragment-1. Urea also enhances the accessibility of thiol groups, promotes aggregation and decreases the alpha-helix content of S1, effects that are also counteracted by betaine. We conclude that urea-induced inactivation of the enzyme is caused by partial unfolding of the myosin catalytic domain.  相似文献   

6.
Bundling of myosin subfragment-1-decorated actin filaments   总被引:1,自引:0,他引:1  
We have reported previously that rabbit skeletal myosin subfragment-1 (S-1) assembles actin filaments into bundles. The rate of this reaction can be estimated roughly from the initial rate (Vo) of the accompanying turbidity increase ("super-opalescence") of the acto-S-1 solution. Vo is a function of the molar ratio (r) of S-1 to actin, with a peak at r = 1/6 to 1/7 and minimum around r = 1. In the present paper we report a different type of opalescence (we call it "hyper-opalescence") of acto-S-1 solutions, which also resulted from bundle formation. Adjacent filaments in the bundles had a distance of approximately 180 A. Hyper-opalescence occurred at r approximately equal to 1 when KCOOCH3 was used instead of KCl. By comparing the effects of ADP, epsilon-ADP, tropomyosin or ionic strength upon the super- and hyper-opalescence, we concluded that the two types of S-1-induced actin bundling had different molecular mechanisms. The hyper-opalescence type of bundling seemed to be induced by S-1, which was not complexed with actin in the manner of conventional rigor binding. The presence of the regulatory light chain did not affect hyper-opalescence (or super-opalescence), since there were no significant differences between papain S-1 and chymotryptic S-1 with respect to these phenomena.  相似文献   

7.
A new method for producing myosin subfragment-1   总被引:6,自引:0,他引:6  
  相似文献   

8.
The kinetics of the association of actin with myosin subfragment-1 (S1) has been studied by using S1 labeled at the sulfhydryl group SH1 with 5-(iodoacetamido)fluorescein (S1-AF). Upon rapid mixing in a stopped-flow apparatus, the fluorescence intensity of the fluorescein moiety increased by 50%, followed by a slower increase that was well resolved. This slow phase of the fluorescence change could not be fitted to either a monoexponential or a biexponential function, but it could be fitted to a sum of three exponential terms yielding three observed first-order rate constants (lambda i). The dissociation of acto.-(S1-AF) was studied by displacement of S1-AF from the complex with native S1. The dissociation kinetics was characterized by a single rate constant (approximately 0.012 s-1 at 20 degrees C), and this constant was independent of S1 concentration. Together with previous equilibrium data that were obtained under identified conditions for formation of acto-subfragment-1 (Lin, S.-H., and H. C. Cheung. 1991. Biochemistry. 30:4317-4323), a six-state two-pathway model is proposed as a minimum kinetic scheme for formation of rigor acto.S1. In this model, unbound subfragment-1 exists in two conformational states (S1' and S1) which are in equilibrium with each other, one corresponding to the previously established low-temperature state and the other to the high-temperature state. Each subfragment-1 state can interact with actin to form a collision complex, followed by two isomerizations to form two acto-subfragment-1 states (A.S1' and A.S1). Both isomerizations were visible in stopped-flow experiments. Two special cases of the model were considered: 1) a rapid pre-equilibration of the initial collision complex with actin and S1, and 2) trace accumulation of the collision complex. The first case required that the three combinations of the three observed rate constants be independent of actin concentration. The data were incompatible with this approximation. The other special case required that the sum of the lambda i vary linearly with actin concentration and the other two combinations of lambda i vary with actin concentration in a quadratic fashion. The present data were in agreement with the second case. At 20 degrees C and in 60 mM KCl, 2 mM MgCl2, 30 mM 2-([-hydroxy-1,1-bis(hydroxymethyl)ethyl]amino)ethanesulfonic acid, and pH 7.5, the biomolecular association rate constants for the interaction of actin with S1' and S1 were 8.58 x 10(5) and 1.11 x 10(6) M-1 s-1, respectively.  相似文献   

9.
Submolecular structure of subfragment-1 of the myosin molecule   总被引:1,自引:0,他引:1  
  相似文献   

10.
Crystals of myosin subfragment-1 have been examined by X-ray diffraction and electron microscopy to determine how the molecules pack in the unit cell and to gain preliminary information on the size and shape of the myosin head. Subfragment-1 crystallizes in space group P212121. Analysis of the X-ray diffraction photographs shows that there are eight molecules in the unit cell with two in the asymmetric unit related by a non-crystallographic or local 2-fold axis. It also indicates that in projection down the a axis, two molecules of myosin subfragment-1 lie almost directly on top of one another except for a translation of about 9 A along c. Small crystals were fixed and embedded in the presence of tannic acid, and thin sections were cut perpendicular to each of the three crystallographic axes. Image analysis of micrographs recorded from these sections confirm the packing arrangement deduced from X-ray diffraction, and give the approximate size and shape of the molecule in the crystal lattice. They show that the molecule is at least 160 A long with a maximum thickness of about 60 A, and that it has marked curvature in the unit cell.  相似文献   

11.
Myosin subfragment-1 (S1), which has one heavy chain (HC) (93 kDa) and two light chains (LC1 and LC2), was prepared by papain digestion of myosin from abalone-smooth muscle in the presence of Ca2+. The Ca-sensitivity of abalone S1 itself was not lost completely (about 30%). The tryptic digestion of S1 showed that in the presence of EDTA, S1 HC was split into 68, 55, and 23 kDa fragments, as in the presence of Ca2+, but 23 kDa was further degraded into 19 kDa. In contrast to the result in the presence of Ca2+, LCs disappeared in the early stage of reaction and Ca-ATPase activity decreased rapidly to about 70% of that of intact S1. This rapid decrease of Ca-ATPase activity seemed to be accompanied with the digestion of LCs. Therefore, LCs contribute to the protection of 23 kDa fragment from further digestion, to the maintenance of Ca-ATPase activity by stabilizing the structure of S1 to some extent in the presence of Ca2+. Since F-actin suppressed the cleavage of S1 HC to 68 and 23 kDa during tryptic digestion, it might be that 23 and 68 kDa corresponded to 20 kDa (C-terminal fragment) and to 50 + 25 kDa (N-terminal fragment) of skeletal myosin S1, respectively.  相似文献   

12.
13.
Chymotryptic digestion of scallop myosin yielded two different preparations of subfragment-1, having the following features. The major product from chymotryptic digestion of scallop myosin was subfragment-1 (S1) either in Ca-medium or in EDTA-medium. However, the S1 preparations obtained from the digestion in Ca-medium, abbreviated as Ca-S1(CT), had both types of light chain subunits (regulatory light chains (R-LC) and essential light chains (SH-LC], and 100 Kdaltons (Kd) heavy chain subfragments (HCs), whereas the S1 preparations obtained from the digestion in EDTA-medium, ED-S1(CT), had no R-LC, partially fragmented SH-LC (SH-LC), and 90 Kd HCs. On the other hand, Ca-S1(CT) and ED-S1(CT) were practically identical with each other in ATPase activity and in actin-binding ability. The two S1 preparations were also identical in that the Mg-ATPase activity of both S1 and acto-S1 was insensitive to calcium ions. Ca-S1(CT), which contained both R-LC and SH-LC in a stoichiometric amount, was further digested with trypsin, which is known to cleave rabbit skeletal myosin not only at the head-tail junction but also in the head. The tryptic digestion of Ca-S1(CT) appeared, in terms of the SDS-gel electrophoretic pattern, to occur at a much faster rate in Ca-medium than in EDTA-medium, and with a different digestion profile. It is therefore suggested that association of R-LC induces changes in the heavy chain conformation which result in an increase in the proteolytic digestibility of heavy chains and in an alteration of the site of proteolytic cleavage on heavy chains.  相似文献   

14.
Hydrostatic pressure-induced structural changes in subfragment-1 (S1) of myosin molecule were studied. ATP-induced emission spectra of S1 were used to detect global structural change of S1 by pressure treatment. The fluorescence intensity of unpressurized S1 increased by addition of ATP. The increment of fluorescence of pressurized S1 up to 150 MPa was almost the same as control, whereas it became smaller above 200 MPa. ATP binding ability of S1 examined using 1, N6-ethenoadenosine 5′-diphosphate (-ADP) indicated that the binding of -ADP to S1 decreased in the range of 250–300 MPa. S1 pressurized below 250 MPa and unpressurized S1 similarly bound to F-actin, although binding of S1 pressurized above 250 MPa decreased. Electron microscopic observation revealed arrowhead structure in control acto-S1, while disordered arrowhead structure was observed in acto-S1 prepared from pressurized S1 at 300 MPa. S1 pressurized below 250 MPa retained the same actin activated ATPase activity as the control, whereas the activity decreased to 60% at 300 MPa. Pressure treated S1 was easily cleaved by tryptic digestion into three domains, i.e. 27 kDa (N-terminal), 50 and 20 kDa (C-terminal) fragments, which were the same as those in unpressurized one. It is concluded that pressure-induced global structural changes of S1 begin to occur about 150 MPa, and the local structural changes in ATPase and actin binding sites followed with elevating pressure to 250–300 MPa.  相似文献   

15.
Smooth muscle contraction is controlled in part by the state of phosphorylation of myosin. A recently discovered actin and calmodulin-binding protein, named caldesmon, may also be involved in regulation of smooth muscle contraction. Caldesmon cross-links actin filaments and also inhibits actin-activated ATP hydrolysis by myosin, particularly in the presence of tropomyosin. We have studied the effect of caldesmon on the rate of hydrolysis of ATP by skeletal muscle myosin subfragment-1, a system in which phosphorylation of the myosin is not important in regulation. Caldesmon is a very effective inhibitor of ATP hydrolysis giving up to 95% inhibition. At low ionic strength (approximately 20 mM) this effect does not require smooth muscle tropomyosin, whereas at high ionic strength (approximately 120 mM) tropomyosin enhances the inhibitory activity of caldesmon at low caldesmon concentrations. Cross-linking of actin is not essential for inhibition of ATP hydrolysis to occur since at high ionic strength there is very little cross-linking as determined by a low speed sedimentation assay. Under all conditions examined, the decrease in the rate of ATP hydrolysis is accompanied by a decrease in the binding of myosin subfragment-1 to actin. Furthermore, caldesmon weakens the equilibrium binding of myosin subfragment-1 to actin in the presence of pyrophosphate. We conclude that caldesmon has a general weakening effect on the binding of skeletal muscle myosin subfragment-1 to actin and that this weakening in binding may be responsible for inhibition of ATP hydrolysis.  相似文献   

16.
Myosin and subfragment 1 give a maximum burst size of 0.25 to 0.30 protons per active site at pH 8 with ATP, alpha,beta-methylene-ATP, ADP, and adenylyl imidodiphosphate as substrates. The proton is derived from a change in conformation of the enzyme-substrate complex since it is produced by substrates which are not hydrolyzed. The rate constants for the binding of ATP and the proton release step in 0.1 M, 0.5 M, and 1.0 M KCl have been determined by analysis of the concentration dependence of the apparent rate. (see article)  相似文献   

17.
18.
Summary Heavy meromyosin subfragment-1 (S1) was prepared by -chymotrypsin from myosin of carp acclimated to either 10°C or 30°C for a minimum of 5 weeks. The objective of these studies was to document thermally-induced changes in the myosin molecule and to extend previous observations. Ca2+- and K+ (EDTA)-ATPase activities of cold-acclimated carp S1 were 1.1 and 0.8 mol Pi·min-1·mg-1, respectively, and these values did not differ significantly from those of warm-acclimated carp. The inactivation rate constant (KD) of S1 from cold-acclimated carp was 32.1x10-4· s-1, compared to 13.2x10-4·s-1 for warm-acclimated carp. The maximum initial velocity of acto-S1 Mg2+-ATPase activity at pH 7.0 in 0.05 M KCl was 9.3 s-1 with cold-acclimated carp, about 3.7 times higher than that for warm-acclimated carp. However, no significant difference was observed in the apparent affinity of S1 to actin. Peptides maps of the heavy chain of S1 were different and suggested distinct isoforms for the myosins from warm- and cold-acclimated muscle.Abbreviations ATPase adenosine 5-triphosphatase - DTNB 5,5-dithiobis (2-nitrobenzoic acid) - DTT dithiothreitol - EDTA ethylenediaminetetraacetic acid - EGTA ethyleneglycol bis (-aminoethylether)-N,N,N,N-tetraacetic acid - K D inactivation rate constant - K m apparent dissociation constant - P i inorganic -phosphate - PMSF phenylmethane-sulfonyl fluoride - S 1 heavy meromyosin subfragment-1 - SDS sodium dodecyl sulfate - SDS-PAGE SDS-polyacrylamide gel electrophoresis - TPCK N-tosyl-l-phenylalanyl chloromethyl ketone - V max maximum initial velocity  相似文献   

19.
The effects of nucleotide binding and temperature on the internal structural dynamics of myosin subfragment 1 (S1) were monitored by intrinsic tryptophan phosphorescence lifetime and fluorescence anisotropy measurements. Changes in the global conformation of S1 were monitored by measuring its rate of rotational diffusion using transient electric birefringence techniques. At 5 degrees C, the binding of MgADP, MgADP,P and MgADP,V (vanadate) progressively reduce the rotational freedom of S1 tryptophans, producing what appear to be increasingly more rigidified S1-nucleotide structures. The changes in the luminescence properties of the tryptophans suggest that at least one is located at the interface of two S1 subdomains. Increasing the temperature from 0 to 25 degrees C increases the apparent internal mobility of S1 tryptophans in all cases and, in addition, a reversible temperature-dependent transition centered near 15 degrees C was observed for S1, S1-MgADP and S1-MgADP,P, but not for S1-MgADP,V. The rotational diffusion constants of S1 and S1-MgADP were measured at temperatures between 0 and 25 degrees C. After adjusting for the temperature and viscosity of the solvent, the data indicate that the thermally induced transition at 15 degrees C comprises local conformational changes, but no global conformational change. Structural features of S1-MgADP,P, which may relate to its role in force generation while bound to actin, are presented.  相似文献   

20.
A comparison of the transient kinetics of cardiac ventricular normal and hyperthyroid modified myosin subfragment-1 reveals substantial similarities between the two proteins. The nucleotide-binding kinetics are nonexponential for both proteins, but the large tryptophan fluorescence changes, 34% for ATP binding and 12% for ADP binding which are comparable to those of rabbit skeletal myosin subfragment-1, permit the kinetic data to be resolved into a sum of two exponentials. Both the fast and slow forms of the proteins reach limiting rate constants at high nucleotide concentration. The fast forms of normal and thyrotoxic cardiac subfragment-1 are kinetically identical for nucleotide binding at 20 degrees C and pH 7 and the slow forms differ by less than a factor of 2. The kinetic data for ADP release and the single turnover of ATP could neither be fit by a single exponential nor resolved into two components, which indicates a difference in the rate constants by a factor of 2 or less. The largest difference found was in the steady state turnover of ATP for which thyrotoxic subfragment-1 had a 2.5 times faster turnover as compared to normal subfragment-1. The fractions of fast and slow forms of the two proteins are dependent on the nucleotide concentration and the fractions as well as the rate constants are a function of the protein concentration. This is consistent with the kinetic heterogeneity of cardiac myosin subfragment-1 resulting from aggregation. The differences in the rate constant for the steady state turnover of ATP and in aggregation properties between normal and hyperthyroid cardiac subfragment-1 are consistent with the induction of a myosin isozyme by thyroxine treatment. Moreover, the increase in the steady state turnover of ATP is consistent with the increase in contractility of the muscle in the hyperthyroid state.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号