首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Estimating the abundance and density of mountain ungulates is difficult because of rugged and remote terrain, high elevations, and rapidly changing weather. Helicopter surveys could overcome these problems, but researchers have seldom applied helicopter-based survey methods at large spatial scales in mountain terrain. We used helicopters to count introduced Himalayan tahr (Hemitragus jemlahicus) at 117 plots, each of 4 km2, in New Zealand's Southern Alps during 2016–2019. The sampling frame was 7,844 km2 and we located the plots at the vertices of an 8-km grid superimposed over the sampling frame (i.e., a systematic random sampling design). We conducted 3 repeat counts at each plot during summer–autumn. We used the repeat counts to estimate tahr abundance and density, corrected for imperfect detection, using a dynamic N-mixture model for open populations. We estimated the population of tahr in the sampling frame using design-based, finite sampling methods and model-based inference procedures. The mean estimated density of tahr on each plot varied from zero to 31.7 tahr/km2. The mean densities of tahr varied among management units, ranging from 0.3 to 10.7 tahr/km2, and exceeded specified intervention densities in 6 of the 7 management units. The total design-based estimate of tahr abundance in the sampling frame was 34,500 (95% CI = 27,750–42,900), with a coefficient of variation (CV) of 0.11. The corresponding model-based estimate of total abundance was similar (34,550, 95% CI = 30,250–38,700) but was substantially more precise (CV = 0.06) than the design-based estimate. The precision of the estimates for the individual management units was also better than that of the design-based estimates, with CVs of <0.20 for all but 1 management unit. Our study provides a repeatable method for sampling mountain ungulates. More generally, robust estimation of abundance and density of mountain ungulates is possible by combining aerial surveys and open population models with an objective, probabilistic sampling design.  相似文献   

2.
Most Hawaiian forests lack resiliency following disturbance due to the presence of non‐native and invasive plant and animal species. The montane wet forest within Hakalau Forest National Wildlife Refuge on Hawai'i island has a long history of ungulate disturbance but portions of the refuge were fenced and most ungulates excluded by the early 1990s. We examined patterns of regeneration within two 100 ha study sites in this forest following the removal of ungulates and in the absence of invasive woody tree species to determine, in part, if passive restoration techniques can be successful under these conditions. We characterized growth, mortality, and basal area (BA) changes for approximately 7,100 marked individuals of all native tree species present in two surveys over a 17–18‐year period within two hundred 30 m diameter forest plots. Considerable recruitment within plots of new trees of all species significantly changed size class distributions and erased deficits in small‐sized trees observed during the first survey, particularly for the codominant canopy tree, koa (Acacia koa). Overall, growth of established dominant 'ōhi'a trees (Metrosideros polymorpha) and recruitment of mid‐canopy trees contributed to increases in BA while high levels of mortality for large A. koa trees contributed to decreased BA. This resulted in a slight increase in BA between the two surveys (+1.9%). This study demonstrates that fencing and ungulate removal may have rescued the A. koa population by facilitating the first real pulse in recruitment in over a century, and that passive restoration can be a successful management strategy in this forest.  相似文献   

3.
Protected area managers need reliable information to detect spatial and temporal trends of the species they intend to protect. This information is crucial for population monitoring, understanding ecological processes, and evaluating the effectiveness of management and conservation policies. In under-funded protected areas, managers often prioritize ungulates and carnivores for monitoring given their socio-economic value and sensitivity to human disturbance. Aircraft-based surveys are typically utilized for monitoring ungulates because they can cover large areas regardless of the terrain, but such work is expensive and subject to bias. Recently, unmanned aerial vehicles have shown great promise for ungulate monitoring, but these technologies are not yet widely available and are subject to many of the same analytical challenges associated with traditional aircraft-based surveys. Here, we explore use of inexpensive and robust distance sampling methods in Kafue National Park (KNP) (22,400 km2), carried out by government-employed game scouts. Ground-based surveys spanning 101, 5-km transects resulted in 369 ungulate group detections from 20 species. Using generalized linear models and distance sampling, we determined the environmental and anthropogenic variables influencing ungulate species richness, density, and distribution. Species richness was positively associated with permanent water and percent cover of closed woodland vegetation. Distance to permanent water had the strongest overall effect on ungulate densities, but the magnitude and direction of this effect varied by species. This ground-based approach provided a more cost-effective, unbiased, and repeatable method than aerial surveys in KNP, and could be widely implemented by local personnel across under-funded protected areas in Africa.  相似文献   

4.
ABSTRACT Estimating detection error, as well as the magnitude of other potential survey biases, is essential when sampling efforts play a role in the estimation of population size and management of wildlife populations. We quantified visual biases in aerial surveys of nesting wading birds (Ciconiiformes) in colonies in the Florida Everglades using a negative binomial count regression model to compare numbers of nests in quadrats counted on the ground with numbers estimated from aerial photographs of the same quadrats. The model also allowed the determination of degree of difference between monitoring results based upon such factors as nest density, vegetative cover, and nest turnover rates. Aerial surveys of White Ibis (Eudocimus albus) colonies underestimated the true number of nests found during ground counts by 11.1%, and underestimates were significantly greater (P= 0.047) in a colony with high nest turnover. Error rates did not differ for quadrats that varied in the density of White Ibis nests did not differ, and visual bias did not increase with vegetative complexity (P= 0.73). Estimates of nest density in colonies of Great Egrets (Ardea alba) based on aerial surveys were higher than ground counts for 38% of the quadrats sampled, and mean visual bias was 23.1%. Species misidentification likely contributed to visibility bias for Great Egrets in our study, with some Snowy Egrets almost certainly mistaken for Great Egrets in aerial photos. Biases of the magnitude we observed fro Great Egrets and White Ibises can mask true population trends in long‐term monitoring and, therefore, we recommend that detection probability be explicitly evaluated when conducting aerial surveys of nesting birds.  相似文献   

5.
Evaluation of alternative techniques used to estimate elephant population sizes is important in order to assess the accuracy of the results obtained, upon which management decisions may be based. Data from annual helicopter surveys carried out in the Addo Elephant National Park (1978–97) are compared with registration counts obtained from intensive ground surveys in which all elephants within the park are individually known. On average, total population size estimated in aerial surveys is 8.0% lower than registration counts (n1997 = 251), aerial calf (< 1 year) counts are 48.8% lower than registration counts, and aerial carcass counts are 50% below the total number of deaths documented in ground surveys. Registration counts provide more accurate demographic data than aerial surveys, the results of which are shown to vary widely and unpredictably, thus compromising their value. Where population estimates rely exclusively on aerial surveys, replicate counts are recommended in order to generate confidence intervals.  相似文献   

6.
Accurate detection of individual animals and estimation of ungulate population density might be a function of vegetation cover, animal size, observation radius or season. We assessed the effect of these factors on estimates of detection probability and density using five ungulate species in Western Serengeti National Park, Tanzania. Estimates were derived from information collected using ground surveys involving line transects targeting three resident species (impala, topi and buffalo) and two migrants (wildebeest and zebra) and analysed using DISTANCE, MANOVA, t‐test and Pearson correlation. Results showed that ground surveys that take observation radii of 100 m would appreciably estimate at least 80% of the available ungulates. Beyond 100 m radii, surveys would leave approximately 43% of individuals undetected, the reason being a substantial influence of animal size, vegetation cover and observation radius on the detection. Animal size and observation radius have interactive effects. On their own seasonal differences, they do not have any effect but in interaction with animal size have significant effects especially on the migrant species. As reliable estimates of detection and density are required for making reasonable inferences, we urge that surveys using DISTANCE approach should consider incorporating both ground and aerial survey methods and ensure adequate sample replication.  相似文献   

7.
8.
Aim Previous genetic studies of African savanna ungulates have indicated Pleistocene refugial areas in East and southern Africa, and recent palynological, palaeovegetation and fossil studies have suggested the presence of a long‐standing refugium in the south and a mosaic of refugia in the east. Phylogeographic analysis of the common eland antelope, Taurotragus oryx (Bovidae), was used to assess these hypotheses and the existence of genetic signatures of Pleistocene climate change. Location The sub‐Saharan savanna biome of East and southern Africa. Methods Mitochondrial DNA control‐region fragments (414 bp) from 122 individuals of common eland were analysed to elucidate the phylogeography, genetic diversity, spatial population structuring, historical migration and demographic history of the species. The phylogeographic split among major genetic lineages was dated using Bayesian coalescent‐based methods and a calibrated fossil root of 1.6 Ma for the split between the common eland and the giant eland, Taurotragus derbianus. Results Two major phylogeographic lineages comprising East and southern African localities, respectively, were separated by a net nucleotide distance of 4.7%. A third intermediate lineage comprised only three haplotypes, from Zimbabwe in southern Africa. The estimated mutation rate of 0.097 Myr?1 revealed a more recent common ancestor for the eastern lineage (0.21 Ma; 0.07–0.37) than for the southern lineage (0.35 Ma; 0.10–0.62). Compared with the latter, the eastern lineage showed pronounced geographic structuring, lower overall nucleotide diversity, higher population differentiation, and isolation‐by‐distance among populations. Main conclusions The data support the hypothesis of Pleistocene refugia occurring in East and southern Africa. In agreement with palynological, palaeovegetation and fossil studies, our data strongly support the presence of a longer‐standing population in the south and a mosaic of Pleistocene refugia in the east, verifying the efficacy of genetic tools in addressing such questions. The more recent origin of the common eland inhabiting East Africa could result from colonization following extinction from the region. Only two other dated African ungulate phylogenies have been published, applying different methods, and the similarity of dates obtained from the three distinct approaches indicates a significant event c. 200 ka, which left a strong genetic signature across a range of ungulate taxa.  相似文献   

9.
Faecal pellet counts have been widely used to monitor the abundances of introduced ungulates in New Zealand, but ground-based sampling cannot be conducted safely in the steep non-forest habitats that are common in New Zealand's Southern Alps. Helicopter counts may be an effective technique for monitoring ungulates in steep non-forest habitat. We evaluated the relationship between faecal pellet and helicopter counts of ungulates (primarily feral goat Capra hircus) at 12 non-forest sites in the Southern Alps. Within each site we counted the numbers of ungulates from a helicopter on three occasions and the number of intact faecal pellets along 30 transects. Mean observed densities of feral goats derived from helicopter counts ranged from 0.0 to 20.2 km?2. There was a positive curvilinear (concave down) relationship between faecal pellet and helicopter counts. Compared with faecal pellet counts, helicopter counts were cheaper, could identify ungulate species and provided estimates of absolute density. Helicopter counts are a cost-effective method for monitoring ungulates in the steep non-forest habitats of New Zealand's Southern Alps.  相似文献   

10.
The precision of elephant estimates from aerial sample surveys and dung counts is inversely proportional to abundance. West African elephant populations are already small, and the power of a monitoring programme to detect changes in abundance diminishes as the population shrinks in size. Thus it will be difficult to evaluate the effects on elephant numbers of new management policies in West Africa. The same will be true of monitoring schemes for antelope and primate populations that are hunted for bushmeat. Elephant estimates from dung counts are more precise than those from aerial sample surveys, and changes in elephant numbers are more likely to be detected in the subregion by dung counts than by aerial sample surveys.  相似文献   

11.
S. Imperio  S. Focardi  G. Santini  A. Provenzale 《Oikos》2012,121(10):1613-1626
Population fluctuations in ungulates are driven by both intrinsic and extrinsic factors. Available information, however, mainly refers to arctic, temperate and African ungulate populations, while the dynamics of Mediterranean species, exposed to a milder climate, is known to a much lesser extent. Here we studied the population dynamics of four wild ungulate species in the Castelporziano Preserve near Rome, Italy, as obtained from detailed bag counts from hunting drives during the period 1878–1986: the Italian roe deer Capreolus capreolus italicus, the Maremma wild boar Sus scrofa majori (both endemic to Italy), the native red deer Cervus elaphus, and the alien fallow deer Dama dama. We also considered the effects of the presence of another alien ungulate, the nilgai Boselaphus tragocamelus. This ungulate community experienced an accidental ‘removal experiment’ when, during World War II, red deer and nilgai were exterminated. This event and the length of the time series allowed us to test two main hypotheses: 1) that the complexity level of the ungulate community affects the strength of intra‐ and inter‐specific competition; and 2) that in Mediterranean environments intra‐ and inter‐specific interactions are stronger than climate forcing. Statistical methods ranged from state‐space‐modelling, GLM analysis and structural equation models. The results indicated that direct intra‐specific density dependence played a relevant role for all species, and was stronger after the removal. A complex pattern of species interactions was however revealed; fallow deer had a negative effect on roe deer population, while roe deer had an apparent positive effect on red deer and wild boar, possibly mediated by environmental factors. Nilgai appeared to facilitate all deer species. The results of the analysis also confirmed that at present climate appears to play a minor role with respect to density dependence; however, the increasing aridity of the Mediterranean area could change this picture in coming decades.  相似文献   

12.
During the last century, North African ungulate species have suffered from habitat loss and over‐hunting. Gazella dorcas (Antilopidae subfamily) and Ammotragus lervia (Caprinae subfamily) are among the ungulates that have suffered most. To help to protect these species, conservation programs and population genetics studies are being implemented. Here, we tested 30 published microsatellite primer‐pairs from Bovids (cattle, sheep and goat) on eight individuals from each species. From the 30 loci tested, 20 amplified well and showed moderate allelic richness (3.75 and 4.65 mean number of alleles per species, respectively, for G. dorcas and A. lervia), and moderatly high heterozygosity (0.53 and 0.63 per species, respectively). These 20 polymorphic markers will facilitate conservation and genetic studies in these two species, and promise to be widely useful across divergent ungulate taxa.  相似文献   

13.
Tropical forest conservation and restoration require an understanding of the movements and habitat preferences of important seed dispersers. With forests now being altered at an unprecedented rate, avian frugivores are becoming increasingly vital for forest regeneration. Seed movement, however, is highly dependent on the behavioral characteristics of their dispersers. Here, we examined the movements, habitat preferences, and range sizes of two African frugivores: the Black‐casqued (Ceratogymna atrata) and the White‐thighed (Bycanistes albotibialis) Hornbill, in the lowland rain forests of southern Cameroon. Using satellite transmitters, we tracked eight hornbills for 3 yr to characterize their movements and relate them to environmental landscape features. Hornbill movements differed significantly, with B. albotibialis ranging over larger areas (mean = 20,274 ha) than C. atrata (mean = 5604 ha), and females of both species covering over 15 times the area of males. Evidence suggests that movements are irruptive during particular periods, perhaps driven by low resource availability. In addition, hornbills often returned to the same localities within a year, although movements were not characterized as migratory. Both species displayed significant differences in habitat preference, with B. albotibialis utilizing disturbed habitat more frequently than Catrata (= ?22.04, = 2.2 × 10?16). Major roads were found to act as barriers for C. atrata, but not for B. albotibialis. The ability of both hornbill species to move large distances suggests hornbills will play a vital role in the maintenance and regeneration of rain forests in Central Africa as forest fragmentation increases and terrestrial vertebrates decline in numbers.  相似文献   

14.
Generating trend and population estimates from bird count data is challenging and a variety of factors have to be taken into account. We present an integrative statistical approach for estimating population numbers and trends for seabirds at sea. The method allows for the integration of bird-count data from different sources and sampling schemes: offshore observer-based line transect and digital strip transect surveys and land-based point counts; the estimation of log-linear and highly nonlinear trends; the prediction of population numbers for predefined sub-areas, years, or seasons; and investigations of the effects of various environmental and detection-related covariates on bird count numbers. We applied the approach to count data for great black-backed gulls (Larus marinus) in the German part of the North Sea and Baltic Sea from 1990–2016. Count data were collected by observer-based offshore ship and aerial surveys, offshore digital aerial surveys, and point counts from the shore. The detectability of great black-backed gulls was affected by the sea state (the condition of the sea surface, characterized by wave height, wave form, foam, and spray) and survey method. Digital and observer-based aerial surveys detected only 59–77% of the abundance recorded by ship-based surveys. Great black-backed gulls are mainly present in German waters in winter, when they account for 3–4% of the European population. Their core distributional areas are mainly in deeper offshore waters where they are relatively dispersed, with several concentrations probably connected to fishing activity. Great black-backed gulls have undergone substantial declines, with the most pronounced decreases of >90% in the offshore waters of the German part of the North Sea. Breeding numbers at important European breeding sites do not show similar declines, suggesting that the trends observed in the sea areas might indicate a shift in the distribution or habitat use and a decreasing importance of marine areas for European great black-backed gulls. © 2021 The Authors. The Journal of Wildlife Management published by Wiley Periodicals LLC on behalf of The Wildlife Society.  相似文献   

15.
Non-invasive collection of tissue samples to obtain DNA for microsatellite genotyping required to estimate population size has been used for many wildlife species but rarely for ungulates. We estimated mountain goat (Oreamnos americanus) population size on a mountain complex in southwestern British Columbia by identification of individuals using DNA obtained from fecal pellet and hair samples collected during 3 sampling sessions. We identified 55 individuals from 170 samples that were successfully genotyped, and estimated a population of 77 mountain goats (SE = 7.4). Mean capture probability was 0.38 (SE = 0.037) per session. Our technique provides one of the first statistically rigorous estimates of abundance of an ungulate species using DNA derived primarily from fecal pellets. Our technique enables managers to obtain minimum counts or population estimates of ungulates in areas of low sightability that can be used for conservation and management. © 2011 The Wildlife Society.  相似文献   

16.
17.
The effective management of endangered mammals requires reliable estimates of population size. This is challenging for species such as Grevy’s zebra (Equus grevyi) that are distributed over large areas at low densities. Less than 2500 Grevy’s zebra remain in the wild, scattered across 85,000 km2 of savannah in northern Kenya and Ethiopia. An efficient, accurate and repeatable survey method is required to guide conservation planning for the species. Currently, total aerial counts are used to census endangered species within Kenya, but are costly in terms of resources. In this study, we evaluated the suitability of sample survey methods for Grevy’s zebra. We estimated population size using sample aerial counts for a known population of Grevy’s zebra in Lewa Wildlife Conservancy (LWC), providing the opportunity to test the accuracy of sample methods, while comparing resource costs with total count methods. We sampled one‐third of LWC using parallel 500‐ m strip transects at 1500‐ m intervals. The population estimate was comparable to the known population size and was less than half as expensive as the equivalent total count survey. Our results suggest sample aerial surveys provide an accurate and cost‐effective means of monitoring Grevy’s zebra and other endangered species in open habitats.  相似文献   

18.
The oxpecker–ungulate association of sub‐Saharan Africa is an example of a complicated interspecific association subject to variation in outcome. Oxpeckers (Buphagus spp.) are unusual birds because they not only glean ticks from an array of African ungulates, but they are one of the few avian species known to wound‐feed from their living hosts. The conditions under which oxpeckers wound‐feed and the mechanisms generating variation in this association are unclear. We took a unique approach to studying the relationship by conducting a series of feeding preference experiments on twelve captive red‐billed oxpeckers (B. erythrorhynchus). We assessed how oxpecker feeding behaviour is influenced by changes in tick abundance and tick type. In cafeteria‐style experiments, oxpeckers fed equally on ticks and liquid bovine blood. In experiments using donkeys as the host animal, oxpeckers spent more time wound‐feeding when a less‐preferred tick type was available and when tick abundance was low compared to when a preferred tick type was available and when tick abundance was high. However, oxpeckers still wound‐fed even when offered a large number of the ticks they prefer. Additional experiments incorporating tick species of different stages and multiple ungulate species are necessary to fully reveal the dynamics of this association.  相似文献   

19.
Steen H  Mysterud A  Austrheim G 《Oecologia》2005,143(3):357-364
Inter-specific competition, facilitation and predation influence herbivore assemblages, but no study has experimentally explored the interactions between large ungulates and small rodents. In a fully replicated, landscape scale experiment, we manipulated densities of domestic sheep in mountain pastures in Norway. We then determined population growth and densities of rodents by live trapping in each of the areas with different sheep densities. We found that the (summer) population growth rate and autumn density of the field vole (Microtus agrestis) was lower at high sheep density. This provides the first experimental evidence of negative interactions between an ungulate and small rodent species. There was no effect on the bank vole (Clethrionomys glareolus), whose diet differs from sheep. Sheep density, therefore, potentially alters the pattern of inter-specific population synchrony amongst voles. Our study shows that negative interactions between large ungulates and small rodents may be species-specific and negative population consequences for the rodent population appear above threshold ungulate densities.Electronic supplementary material is available for this article at  相似文献   

20.
Surveys of colonial‐nesting waterbirds are needed to assess population trends and gain insight into the health of wetland ecosystems. Use of unmanned aerial systems (UAS) for such surveys has increased over the past decade, but possible sources of bias in surveys conducted with UAS have not been examined. We examined possible visibility biases associated with using a UAS to survey waterbird colonies in cypress‐tupelo watersheds and coastal island habitats in Texas in 2016. We used known numbers of four waterbird decoy types, including Black Skimmers (Rynchops niger), terns, and white‐ and dark‐plumaged herons, to estimate their detectability in each habitat. Six observers independently counted decoys from aerial imagery mosaics taken with a consumer‐grade, off‐the‐shelf quadcopter drone. We used generalized linear mixed‐effects models to estimate detection probabilities of each decoy type. Black Skimmers at the coastal island had a detection probability of just 53%. Detectability of both white‐ and dark‐plumaged herons was lower in the canopied cypress‐tupelo habitat than the coastal island. In addition, cloud cover > 50% further reduced detectability of white heron decoys in cypress‐tupelo habitat. Use of the double‐count method yielded biased‐low abundance estimates for white‐ and dark‐plumaged herons in canopied sites, suggesting that habitat differences were a greater source of bias than observer error. Black Skimmers were the only decoy type to be imperfectly detected at the coastal island, a surprising result given the stark contrast of their plumage with their sand and shell nesting substrate. Our results indicate that UAS‐derived photographic surveys are prone to low detection probabilities at sites where vegetation occludes nests. In habitats without canopy, however, UAS surveys show promise for obtaining accurate counts of terns, white herons, and dark herons.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号