首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Correlative secretion of protein, lactose and K + in milk of the goat   总被引:2,自引:0,他引:2  
Rates of secretion of milk constituents (fat, protein, lactose, Na+ and K+) in the lactating goat were measured under normal circumstances and after injections of ouabain. In all experiments a close association was noted in the secretion rates for protein, lactose and K+. Under the influence of ouabain, the concentration of Na+ in the milk tended to rise and that of K+ to fall. The rate of milk fat secretion varied independently from the rates for the other constituents. It is reasonably assumed that the principal mechanism of milk protein secretion is by emptying of Golgi vesicles through the plasma membrane. The close correlation in rates for protein, lactose and K+ supports the contention that all three are assembled in Golgi vesicles and secreted by the same mechanism.  相似文献   

2.
The role of the (Na+, K+)-ATPase system in lactose production by the lactating guinea pig mammary gland has been studied in vitro with slices of the gland. In this system there is an initial fast lactose release, mainly representing secretion of preformed lactose, followed by a continuous slow lactose release, representing mainly lactose synthesis. The latter process occurs at a rate of 1.6 to 2.4 g lactose/kg wet wt/h, which value is about half of the lactose production in vivo (3.9 g/kg wet wt/h).Incubation of slices in the presence of 10−4 M ouabain does not influence the rate of overall lactose production. When determined separately, it does not change either the rate of secretion or that of synthesis. This pleads against a role of the (Na+, K+)-ATPase system in lactose secretion or synthesis, in particular it seems to rule out control of the rates of these processes by the intracellular potassium concentration. An explanation for the generally observed correlation between the lactose and potassium concentrations in milk, may be that both the maintenance of the intracellular potassium concentration and the lactose synthesis rate require the presence of ATP.  相似文献   

3.
Twenty-four sows were used to study the effects of dietary protein restriction during pregnancy and exogenous porcine prolactin (pPRL) during late pregnancy and throughout lactation on lactation performance. Eight sows were given a protein-adequate diet containing 179 g crude protein (CP)kg−1 during their first pregnancy while the remaining 16 sows received the same amount of a diet containing 80 g CP kg−1. Eight of the sows given 80 g CP kg−1 during pregnancy were injected with 15 mg pPRL i.m. twice daily at 08:00 and 20:00 between day (d) 102.1 (±0.3) of pregnancy and weaning after their first lactation. Pregnant sows offered the low protein diet gained significantly less body weight during gestation and tended to eat less in the subsequent lactation than sows given the protein-adequate diet. Dietary protein had no significant effect on birth weight, milk yield, milk composition or growth rate of the litter during lactation. Neither dietary protein intake during pregnancy nor exogenous prolactin affected the concentrations of plasma glucose, serum insulin, urea or non-esterified fatty acid (NEFA) during lactation. The concentration of lactose in plasma during lactation was unaffected by treatment, but at d 105 of pregnancy, plasma lactose levels were greater in sows which had received exogenous prolactin (32.4 vs. 6.2 mg l−1, P < 0.05). The concentrations of RNA and DNA in mammary tissue biopsies were unaffected by either dietary protein or pPRL. The concentration of RNA and DNA increased between d 70 and 90 from 0.66 to 2.77 mg g−1 and from 0.54 to 1.19 mg g−1, respectively. Thereafter, RNA increased to 4.40 mg g−1 at d 14 of lactation whilst DNA concentration remained at a similar level of 0.90 mg g−1.Milk yield of sows between d 5 and 8 and between d 19 and 22 of lactation was reduced from 8.36 to 7.00 kg day−1 and from 10.74 to 8.22 kg day−1, respectively, in sows given pPRL. The protein content of colostrum from sows treated with pPRL was reduced from 164 to 104 g kg−1 whereas the fat content increased from 47 to 127 g kg−1. These results indicate that the administration of exogenous pPRL during late pregnancy and throughout lactation initiated lactogenesis prematurely and reduced subsequent milk yield during established lactation.  相似文献   

4.
ABSTRACT

The aim of the study was to investigate if dietary alpha-ketoglutarate (AKG) supplementation may improve the performance of lactating sows and their suckling piglets. After farrowing, 24 lactating sows (Large White × Landrace) with similar body weight (BW) were assigned to the control and AKG groups based on parity, and their lactation diets were supplemented with 0.00 or 0.25% AKG, respectively. It was found that supplementing the diet of lactating sows with 0.25% AKG enhanced growth performance of the suckling piglets from d 7 to d 21 of the lactation period, improved villus height of ileum and tended (p = 0.085) to increase mean volumetric bone mineral density of femur in the weanling piglets. In the lactating sows, dietary supplementation of AKG decreased plasma urea level on d 14 of lactation, decreased plasma calcium (Ca) concentrations from d 7 to d 21 of lactation and increased lactose and Ca levels in ordinary milk. Thus, it was proposed that AKG supplementation stimulates the capacity for lactose synthesis and Ca uptake in the mammary gland, thereby altering the composition of the ordinary milk which might be associated with the enhanced performance of piglets during the suckling period. These findings could lead to a better application of AKG in lactating nutrition, and therefore, promoting pork production.  相似文献   

5.
6.
An understanding of the mechanisms regulating milk yield in sows is crucial for producers to make the best management decisions during lactation. Suckling of mammary glands by piglets is one factor that is essential for development of these glands during lactation and for the maintenance of lactation in sows. The process of mammary development is not static as the majority of it takes place in the last third of gestation, continues during lactation, is followed by involution at weaning and starts over again in the next gestation. During involution, the mammary glands undergo a rapid and drastic regression in parenchymal tissue, and this can also occur during lactation if a gland is not suckled regularly. Indeed, the pattern of regression is similar for glands that involute at weaning or during lactation. Suckling during 12 to 14 h postpartum is insufficient to maintain lactation and the process of involution that occurs in early lactation is reversible within 1 day of farrowing but is irreversible if a gland is not used for 3 days. However, milk yield from a gland which is ‘rescued’ within the first 24 h remains lower throughout lactation. Suckling does not only affect milk yield in the ongoing lactation, but it also seems to affect that of the next lactation. Indeed, non-suckling of a mammary gland in first-parity sows decreased development and milk yield of that gland in second parity. Nursing behaviour of piglets in early lactation was also affected, where changes were indicative of piglets in second parity being hungrier when suckling glands that were not previously used. It is not known, however, if the same effects would be seen between the second and third lactation. Furthermore, the minimum suckling period required to ensure maximal milk yield from a gland in the next lactation is not known. This review provides an update on our current knowledge of the importance of suckling for mammary development and milk yield in swine.  相似文献   

7.
Pten is a tumor suppressor gene regulating many cellular processes, including growth, adhesion, and apoptosis. In the aim of investigating the role of Pten during mammary gland development and lactation of dairy cows, we analyzed Pten expression levels in the mammary glands of dairy cows by using western blotting, immunohistochemistry, and quantitative polymerase chain reaction (qPCR) assays. Dairy cow mammary epithelial cells (DCMECs) were used to study the function of Pten in vitro. We determined concentrations of β-casein, triglyceride, and lactose in the culture medium following Pten overexpression and siRNA inhibition. To determine whether Pten affected DCMEC viability and proliferation, cells were analyzed by CASY-TT and flow cytometry. Genes involved in lactation-related signaling pathways were detected. Pten expression was also assessed by adding prolactin and glucose to cell cultures. When Pten was overexpressed, proliferation of DCMECs and concentrations for β-casein, triglyceride, and lactose were significantly decreased. Overexpression of Pten down-regulated expression of MAPK, CYCLIN D1, AKT, MTOR, S6K1, STAT5, SREBP1, PPARγ, PRLR, and GLUT1, but up-regulated 4EBP1 in DCMECs. The Pten siRNA inhibition experiments revealed results that opposed those from the gene overexpression experiments. Introduction of prolactin (PRL) increased secretion of β-casein, triglyceride, and lactose, but decreased Pten expression levels. Introduction of glucose also increased β-casein and triglyceride concentrations, but did not significantly alter Pten expression levels. The Pten mRNA and protein expression levels were decreased 0.3- and 0.4-fold in mammary glands of lactating cows producing high quality milk (milk protein >3.0%, milk fat >3.5%), compared with those cows producing low quality milk (milk protein <3.0%, milk fat <3.5%). In conclusion, Pten functions as an inhibitor during mammary gland development and lactation in dairy cows. It can down-regulate DCMECs secretion of β-casein, triglyceride, and lactose, and plays a critical role in lactation related signaling pathways.  相似文献   

8.
《Insect Biochemistry》1991,21(4):399-405
Na+,K+-activated ATPase activity in tick salivary glands increases during the rapid stage of tick feeding paralleling similar increases in dopamine and cAMP-stimulated fluid secretion. High concentrations of cyclic AMP increase Na+,K+-ATPase activity in a plasma membrane-enriched fraction from the salivary glands of rapidly feeding ticks. Cyclic AMP-dependent protein kinase inhibitor protein blocks activation of Na+,K+-ATPase activity at low but not high concentrations of cAMP indicating that both activator and inhibitor modulator phosphoproteins of Na+,K+-ATPase activity exist in the plasma membrane-enriched fraction.ATPase activity in the plasma membrane-enriched fraction is not measurable in the absence of Mg2+, Ca2+ and Na+. Ca-stimulated nucleotidase activity is highest with ATP serving as the preferred substrate in a series including CTP, UTP, GTP and ADP. Calcium, Mg2+ stimulated ATPase activity is activated further by calmodulin and partially inhibited by low concentration of vanadate, trifluoperazine and oligomycin. Results suggest that the plasma membrane-enriched fraction of tick salivary glands contains both Ca2+-ATPase activity and oligomycin-sensitive Ca2+, Mg2+-ATPase activities, the latter likely from a small amount of mitochondria in the partially purified organelle fraction.  相似文献   

9.
The concentration of lactose in the mammary secretion from individual glands of two sows increased significantly (P less than 0.01) between 0 and 24 h after parturition. In six sows studied during the perinatal period there was a negative correlation (r = -0.80; P less than 0.02) at parturition between the concentration of progesterone in the blood and the concentration of lactose in the mammary secretion. Furthermore, the increase in concentration of lactose in the mammary secretion after parturition was related to the timing of the decline of plasma progesterone to low levels. The results indicate that the initiation of lactation occurs within 24 h of parturition in most sows, and the results are consistent with the hypothesis that progesterone withdrawal acts as the 'trigger'. Neither the changes in corticosteroid binding globulin nor the changes in total corticosteroids were temporally related to the initiation of lactation. However, a circadian rhythm was observed for total corticosteroids in the blood of three out of nine lactating and pregnant sows, whereas no circadian rhythm was observed in progesterone of the four pregnant sows. The results are discussed in relation to the disease complex mastitis-metritis-agalactia.  相似文献   

10.
The objectives of this study were to determine the effects of maize distillers dried grains with solubles (DDGS) during late gestation and lactation on sow and piglet performance, and on colostrum and milk composition. Thirty-six second- and third-parity (2.43 parity) sows (Yorkshire) were allotted to 1 of 3 groups and fed diets containing 0 (control), 200 or 400 g DDGS/kg during the last 20 d of gestation and throughout a 21 d of lactation. Experimental diets contained 12.9 MJ metabolizable energy/kg and 9.7 g lysine/kg. The colostrum and milk samples were obtained on d 0 (farrowing) and d 21 (weaning). There were no differences (P>0.05) in the sows’ average gestation lengths, weaning-to-estrus interval, average daily feed intake, and the lactation backfat and body weight change between dietary treatments. There were no dietary effects (P>0.05) of DDGS on the numbers of total, born alive piglets, average birth weights, piglets per litter at weaning or piglets average daily gain during lactation. No differences (P>0.05) were observed in total solids, protein, fat and lactose among the sows fed the DDGS diets compared with the control. The composition of total solids and protein of sows colostrum and milk were higher at farrowing (d 0) than at weaning (d 21) (P<0.001). However, the fat and lactose content of sows colostrum and milk were increased (P<0.001) from d 0 (farrowing) to d 21 (weaning). In conclusion, the results suggest that 400 g DDGS/kg (87 g lysine/kg) supplemented with 5.2 g lysine/kg included in late gestation and lactation diets is sufficient to replace all the dietary soybean meal without significantly affecting sow and litter performance or colostrum and milk composition.  相似文献   

11.
Sow productivity improvements continue to increase metabolic demands during lactation. During the peripartum period, energy requirements increase by 60%, and amino acid needs increase by 150%. As litter size has increased, research on peripartum sows has focused on increasing birth weight, shortening farrowing duration to reduce stillbirths and improving colostrum composition and yield. Dietary fibre can provide short-chain fatty acids to serve as an energy source for the uterus prior to farrowing; however, fat and glucose appear to be the main energy sources used by the uterus during farrowing. Colostrum immunoglobulin G concentration can be improved by increasing energy and amino acid availability prior to farrowing; however, the influence of nutrient intake on colostrum yield is unequivocal. As sows transition to the lactation period, nutrient requirements increase with milk production demands to support large, fast-growing litters. The adoption of automated feed delivery systems has increased feed supply and intake of lactating sows; however, sows still cannot consume enough feed to meet energy and amino acid requirements during lactation. Thus, sows typically catabolise body fat and protein to meet the needs for milk production. The addition of energy sources to lactation diets increases energy intake and energy output in milk, leading to a reduction in BW loss and an improvement in litter growth rate. The supply of dietary amino acids and CP close to the requirements improves milk protein output and reduces muscle protein mobilisation. The amino acid requirements of lactating sows are variable as a consequence of the dynamic body tissue mobilisation during lactation; however, lysine (Lys) is consistently the first-limiting amino acid. A regression equation using published data on Lys requirement of lactating sows predicted a requirement of 27 g/day of digestible Lys intake for each 1 kg of litter growth, and 13 g/day of Lys mobilisation from body protein reserves. Increases in dietary amino acids reduce protein catabolism, which historically leads to improvements in subsequent reproductive performance. Although the connection between lactation catabolism and subsequent reproduction remains a dogma, recent literature with high-producing sows is not as clear on this response. Many practical aspects of meeting the nutrient requirements of lactating sows have not changed. Sows with large litters should approach farrowing without excess fat reserves (e.g. <18 mm backfat thickness), be fed ad libitum from farrowing to weaning, be housed in a thermoneutral environment and have their skin wetted to remove excess heat when exposed to high temperatures.  相似文献   

12.
The present study aimed to determine the mechanism of cation-selective secretion by multicellular salt glands. Using a hydroponic culture system, the secretion and accumulation of Na+ and K+ in Tamarix ramosissima and T. laxa under different salt stresses (NaCl, KCl and NaCl+KCl) were studied. Additionally, the effects of salt gland inhibitors (orthovanadate, Ba2+, ouabain, tetraethylammonium (TEA) and verapamil) on Na+ and K+ secretion and accumulation were examined. Treatment with NaCl (at 0–200 mmol L−1 levels) significantly increased Na+ secretion, whereas KCl treatment (at 0–200 mmol L−1 levels) significantly increased K+ secretion. The ratio of secretion to accumulation of Na+ was higher than that of K+. The changes in Na+ and K+ secretion differed after adding different ions into the single-salt solutions. Addition of NaCl to the KCl solution (at 100 mmol L−1 level, respectively) led to a significant decrease in K+ secretion rate, whereas addition of KCl to the NaCl solution (at 100 mmol L−1 level, respectively) had little impact on the Na+ secretion rate. These results indicated that Na+ secretion in Tamarix was highly selective. In addition, Na+ secretion was significantly inhibited by orthovanadate, ouabain, TEA and verapamil, and K+ secretion was significantly inhibited by ouabain, TEA and verapamil. The different impacts of orthovanadate on Na+ and K+ secretion might be the primary cause for the different Na+ and K+ secretion abilities of multicellular salt glands in Tamarix.  相似文献   

13.
Total ion (Na+, K+, Ca2+, SO4 2? and Cl?) accumulation by plants, ion contents in plant tissues and ion secretion by salt glands on the surface of shoots of Tamarix ramosissima adapted to different soil salinity, namely low (0.06 mmol Na+/g soil), moderate (3.14–4.85 mmol Na+/g soil) and strong (7.56 mmol Na+/g soil) were analyzed. There are two stages of interrelated and complementary regulation of ion homeostasis in whole T. ramosissima plants: (1) regulation of ion influx into the plant from the soil and (2) changing the secretion efficiency of salt glands on shoots. The secretion efficiency of salt glands was appraised by the ratio of ion secretion to tissue ion content. Independent of soil salinity, the accumulation of K+ and Ca2+ was higher than the contents of these ions in the soil. Furthermore, the accumulation of K+, Ca2+ and SO4 2? ions by plants was maintained within a narrow range of values. Under low soil salinity, Na+ was accumulated, whereas under moderate and strong salinity, the influxes of Na+ were limited. However, under strong salinity, the accumulation of Na+ was threefold higher than that under low soil salinity. This led to a change in the Na+/K+ ratio (tenfold), an increase in the activity of salt glands (tenfold) and a reduction in plant growth (fivefold). An apparently high Na+/K+ ratio was the main factor determining over-active functioning of salt glands under strong salinity. Principal component analysis showed that K+ ions played a key role in ion homeostasis at all levels of salinity. Ca2+ played a significant role at low salinity, whereas Cl? and interrelated regulatory components (K+ and proline) played a role under strong salinity. Proline, despite its low concentration under strong salinity, was involved in the regulation of secretion by salt glands. Different stages and mechanisms of ion homeostasis were dominant in T. ramosissima plants adapted to different levels of salinity. These mechanisms facilitated the accumulation of Na+ in plants under low soil salinity, the limitation of Na+ under moderate salinity and the over-activation of Na+ secretion by salt glands under strong salinity, which are all necessary for maintaining ion homeostasis and water potential in the whole plant.  相似文献   

14.
Summary The lachrymal salt glands of hatchlings of the green sea turtle (Chelonia mydas) secrete a hyperosmotic (up to 2000 mosmol·kg–1) NaCl solution. X-ray microanalysis of frozen-hydrated glands showed that during secretion intracellular Na+ concentration in the principal cells increased from 13 to 34 mmol·l–1 of cell water, whilst Cl and K+ concentrations remained unchanged at 81 mmol·l–1 and 160–174 mmol·l–1, respectively. The high Cl concentration and the change in Na+ concentration are consistent with the prevailing paradigm for secretion by the structurally and functionally similar elasmobranch rectal gland. Concentrations of Na+, Cl and K+ in the lumina of secretory tubules of secreting (Na+ 122, Cl 167, K+ 38 mmol·l–1) and non-secreting (Na+ 114, Cl–1 174, K+ 44 mmol·l–1) glands were similar and the fluid was calculated to be approximately isosmotic with blood. In the central canals Na+ and Cl concentrations were similar but K+ concentration was lower (11–15 mmol·l–1). It is concluded that either a high transepithelial NaCl gradient in secretory tubules and central canals is very rapidly dissipated during the short time between gland excision and freezing, or that ductal modification of an initial isosmotic secretion occurs.  相似文献   

15.
Abstract

In order to determine the effects of a varied level of dietary energy intake during pregnancy and lactation on milk yield and composition, first, second and fourth parity sows (Large White × German Landrace) were provided with energy at a level of either: (i) 100% of ME requirement (MEreq) during pregnancy and lactation, (ii) 120% MEreq during pregnancy and 80% during lactation, and (iii) 80% MEreq during pregnancy and 120% during lactation. In spite of equal target levels feed analysis revealed that gestating first parity sows with 120/80 treatment combination and lactating sows of 80/120 treatment combination received 25, and 11 – 17% more digestible N than in the respective 100/100 treatment combination. Irrespective of this 120/80 sows responded with the highest milk DM, fat, and energy contents, and the lowest lactose concentrations whereas protein levels where not affected, irrespective of parity (p < 0.05). Milk yield of sows in 1st and 4th lactation was 85 and 106% of that in 2nd lactation, respectively. Average milk composition was 18.1% DM, 4.9% protein, 6.8% fat, 5.6% lactose, and 0.8% ash. Milk composition changes ceased at day 7 of lactation with a reduction of milk GE and protein, and an increase of lactose content. Concentrations of threonine, arginine, valine, leucine, tyrosine, phenylalanine, cystine, and tryptophan, as well as stearic, oleic, and linoleic acid were higher in colostrum than in milk at later lactation stages. In contrast, laurine, myristic, palmitic, and palmitoleic acids were lower concentrated in colostrum. In conclusion, these results illustrate the importance of body reserve mobilization for milk production in sows and indicate that low energy supply during gestation cannot be compensated by higher energy supply during lactation.  相似文献   

16.
A study was made of the local immune response in the udder of the sow following infusion of a soluble antigen. Four mammary glands of each of four pregnant sows were infused with ferritin prepartum. Samples of blood, colostrum, and milk were collected during the following lactation; animals were slaughtered and mammary tissue removed for immunohistology. Blood, colostrum, milk, and mammary tissues were similarly collected from nonimmunized (control) sows. Colostral and milk whey from immunized sows contained higher levels of immunoglobulins than whey from control sows. There was an increase in numbers of IgA-containing plasma cells and total lymphoid cells in mammary tissue of immunized sows compared with controls. The results suggested that the local immune response was at least as great in non-infused glands as infused glands of immunized sows.  相似文献   

17.
The hypothesis that the restriction of dietary protein during lactation has different impacts on sow metabolic status and milk production according to body weight was evaluated. From 5-months of age until farrowing, the gilts were fed to achieve body weights of 180 or 240 kg at farrowing. At this time, 38 sows were assigned to one of three groups: " 180 kg" sows not restricted in dietary protein during lactation (180CP); "180 kg" restricted in protein (180LP), or "240 kg" sows restricted in protein (240LP). Catheters were fitted in the jugular vein of 24 sows and serial blood samples were collected 1 d before and 1 d after weaning. Amongst the protein-restricted animals, heavy sows (240LP) had a smaller appetite than light sows in early lactation, resulting in lower energy and protein intakes in the 240LP than in the 180LP sows. Body protein losses were 8, 11 and 13.5% of calculated body protein mass at farrowing in the 180CP, 180LP and 240LP sows, respectively. At the end of lactation, IGF-I concentrations were lower in the 180LP than in the sows from the other groups, probably because of the uncoupling between GH and IGF-I secretions. Low IGF-I concentrations likely promote lean tissue mobilization. Glucose and insulin profiles suggested an insulin resistance state in the 240LP sows compared with the 180LP sows, which may explain, at least in part, the lower feed intake and body reserve mobilization in these sows. Plasma pre- and post-prandial concentrations of amino acids in late lactation differed among the three treatment groups. Throughout lactation, litters from the 180LP and 240LP sows had a slower growth rate than litters from sows which were not restricted, suggesting that endogenous protein mobilization throughout lactation does not completely compensate for a low protein intake.  相似文献   

18.
Even in temperate climate regions, an increase in ambient temperature and exposure to solar radiation can cause heat stress in lactating dairy cows. We hypothesised that grazing dairy cows exhibit short-term physiological changes due to increasing heat load under moderate climate conditions. Over two consecutive summers, 38 lactating Holstein dairy cows were studied in a full-time grazing system. Data were collected in 10 experimental periods of up to three consecutive days with a moderate comprehensive climate index (CCI). The individual animals’ vaginal temperature (VT), heart rate, and locomotor activity data were automatically monitored with sensors. Blood samples and proportional whole milk samples were collected at afternoon milking. The concentrations of beta-hydroxybutyrate, glucose, non-esterified fatty acids, urea nitrogen, plasma thyroxine and triiodothyronine were analysed in blood plasma, and fat, protein, lactose, urea nitrogen, cortisol, Na+, K+, and Cl? concentrations were analysed in milk. The daily distribution of VT recordings greater than 39 °C showed a circadian rhythm with a proportion of recordings of 2% and lower during the night and a percentage of 10% or higher in the afternoon. The cows’ maximal daily vaginal temperature (VTMAX) between 0830 and 1430 h was positively related to the mean daily CCI in the same time period (CCIMEAN; mean and SD 23.6 ± 5.4 °C). Cows with greater VTMAX had an increased mean heart rate, plasma glucose and milk cortisol concentrations and decreased concentrations of plasma thyroxine and triiodothyronine. The concentration of Na+ in milk was lower, and the concentration of K+ in milk tended to be higher in cows with increased VTMAX. For beta-hydroxybutyrate, non-esterified fatty acids and urea nitrogen concentrations in plasma and fat and lactose concentrations in milk no relationships were found in terms of increasing VT. For milk urea nitrogen and protein concentrations, the proportion of total variance explained by inter-individual or -period variance was high. In conclusion, changes observed in milk and blood likely reflected short-term physiological responses to moderate heat stress. In particular, milk cortisol and Na+ may be useful traits for timely monitoring of heat stress in individual cows because their inter-individual variances were relatively small and samples can be collected non-invasively.  相似文献   

19.
Mammary function in the conscious goat was studied during colchicine-induced depression of milk secretion in one mammary gland. Milk yield of the treated gland was reduced to approximately a quarter of previous, while there were significant increases in afternoon milk yield from the untreated glands on the 2nd and 3rd days after treatment in goats in late lactation. Milk composition in the untreated glands was not significantly affected. In the treated gland, milk [Na+], [Cl-], [citrate] and [protein] increased while [K+] and [lactose] decreased, although the time course of these changes differed; milk [fat] was unaffected. Mammary extractions ((A-V)/A) of glucose, acetate and most amino acids were significantly decreased during the period of maximal inhibition of secretion. There were no significant changes in arterial plasma concentrations of glucose, acetate or any essential amino acids. In another series of experiments, mammary blood flow increased and then returned to normal after colchicine treatment even though milk yield and mammary glucose uptake decreased markedly; oxygen uptake was not significantly affected. The results are discussed in relation to the actions of colchicine on the mammary secretory cell, to the normal control of mammary blood flow and to the mechanism of compensation by the untreated gland.  相似文献   

20.
The present study aimed to evaluate the mechanisms modulated by dietary arginine supplementation to sows during lactation regarding antioxidant capacity and vascularization of mammary glands. At 109 days of gestation, animals were transferred to individual farrowing crates equipped with manual feeders and automatic drinker bowls. Environmental temperature and humidity inside the farrowing rooms were registered every 15 min. At farrowing, sows were assigned in a completely randomized design to a control diet (CON) or the CON diet supplemented with 1.0% L-arginine (ARG). A total of three gilts and two sows were fed the CON diet, whereas three gilts and three sows were fed ARG diets. Sows were fed a fixed amount of 6.0 kg/day, subdivided equally in four delivery times (0700, 1000, 1300 and 1600 h) for 21 days. At weaning, sows were slaughtered and mammary tissue samples and blood from the pudendal vein were collected. Data were analyzed considering each sow as an experimental unit. Differences were considered at P<0.05. L-arginine fed sows presented lower messenger RNA (mRNA) expression for prolactin receptor (P=0.002), angiopoietin1 (P=0.03) and receptor tyrosine kinase (P=0.01); higher mRNA expression for prostaglandin synthase 1 (P=0.01); a trend of decrease for glucocorticoid receptor (P=0.06) and IGF receptor 1 (P=0.07); and a trend (P=0.05) for an increased glutathione peroxidase mRNA expression. The angiopoietin2:angiopoietin1 mRNA ratio tended to increase (P=0.07) in ARG fed sows. L-arginine fed sows had greater (P=0.04) volumetric proportion of blood vessels and a trend of enhance (P=0.07) in the number of blood vessels per mm2. These findings show that 1.0% ARG supplementation to sows activates proliferative mechanisms, may improve mammary tissues’ angiogenesis and tended to increase mRNA expression of genes that encode antioxidant enzymes in mammary gland of sows.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号