首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Climate change has caused a clear and univocal trend towards advancement in spring phenology. Changes in autumn phenology are much more diverse, with advancement, delays, and ‘no change' all occurring frequently. For migratory birds, patterns in autumn migration phenology trends have been identified based on ecological and life‐history traits. Explaining interspecific variation has nevertheless been challenging, and the underlying mechanisms have remained elusive. Radar studies on non‐species‐specific autumn migration intensity have repeatedly suggested that there are strong links with weather. In long‐term species‐specific studies, the variance in autumn migration phenology explained by weather has, nevertheless, been rather low, or a relationship was even lacking entirely. We performed a spatially explicit time window analysis of weather effects on mean autumn passage of four trans‐Saharan and six intra‐European passerines to gain insights into this apparent contradiction. We analysed data from standardized daily captures at the Heligoland island constant‐effort site (Germany), in combination with gridded daily temperature, precipitation and wind data over a 55‐year period (1960–2014), across northern Europe. Weather variables at the breeding and stopover grounds explained up to 80% of the species‐specific interannual variability in autumn passage. Overall, wind conditions were most important. For intra‐European migrants, wind was even twice as important as either temperature or precipitation, and the pattern also held in terms of relative contributions of each climate variable to the temporal trends in autumn phenology. For the trans‐Saharan migrants, however, the pattern of relative trend contributions was completely reversed. Temperature and precipitation had strong trend contributions, while wind conditions had only a minor impact because they did not show any strong temporal trends. As such, understanding species‐specific effects of climate on autumn phenology not only provides unique insights into each species' ecology but also how these effects shape the observed interspecific heterogeneity in autumn phenological trends.  相似文献   

2.
Climate and habitat type are frequently related with the abundance of individual species and have been hypothesized to be primary drivers of the spatial variation in species abundances at the regional scale. Our aim is to evaluate the relative roles of those environmental factors in determining spatial variation in bird species abundance. We surveyed birds and habitat-cover variables and compiled climatic data along a 1700-km latitudinal gradient in the southern Neotropics. To identify the primary environmental variable explaining spatial changes in species abundances we performed simple regressions; a goodness of fit test identified the environmental factor that most frequently acted as the primary predictor. Mantel tests and partial regressions were performed to account for the spatial structure of abundance and environmental factors and collinearity between them. Of the 88 species included, 70% responded primarily to habitat cover and the remaining to climate. Forest cover and annual thermal amplitude were the main habitat-cover and climatic variables, respectively, explaining spatial variation in bird abundances. Our results indicated that the considered environmental factors accounted for latitudinal changes in species abundances; however, habitat cover and climate together explained a higher proportion of the variation than each factor independently of each other. There was a primacy of habitat-cover type over climate to predict spatial changes in bird species abundances across the neotropical biogeographic regions studied, but the underlying causes are likely related with the interaction of both factors.  相似文献   

3.
Temporal and climate‐related changes in avian phenology were assessed for seven species of south‐eastern Australia using data obtained from members of the public, naturalist groups and other organizations. Despite significantly warmer temperatures (~0.02–0.03°C per year) and reduced rainfall (~1.6–8.0 mm per year) over much of south‐eastern Australia in recent decades, most species showed no corresponding trends in their timing of migration or breeding, the notable exceptions being the grey fantail (Rhipidura fuliginosa) and the flame robin (Petroica phoenicea), which migrate through Melbourne, Victoria, during autumn and spring. In many species, however, migration or breeding timing appeared to be influenced to some extent by local, rather than regional, climate conditions, particularly local daily maximum and minimum temperatures. Whether these species will noticeably change their phenology to match projected changes in climate, perhaps when a currently unknown climate threshold is crossed, or whether these species are sufficiently flexible in their foraging strategies or food sources to be able to maintain their current timing, remains to be seen.  相似文献   

4.
Land use management practices often change habitat structure, which in turn influence diversity and the composition of floral and faunal assemblages. In the southern Kalahari, southern Africa, heavy grazing after above‐average rainfall has lead to bush thickening, and widespread use of arboricides and/or removal of large trees for firewood has also impacted habitat structure. At sites near Kimberley, in South Africa, we investigated the effects of these changes on bird species richness and which aspects of habitat structure most influenced bird assemblage diversity and composition. We also investigated correlations between bird life history traits and habitat characteristics using RLQ analysis. Bird species richness and abundance were both explained by vertical habitat heterogeneity and density of woody species between the heights of 0–2 m, with bird species richness also explained by the density of woody species at heights above 6 m. Large trees within bush‐thickened areas dampened the effects of bush thickening on bird assemblages by enabling certain species to persist, consistent with the idea that large trees are keystone structures. Smaller insectivorous gleaners, ball‐ and cup‐nesters, birds with parts of their range extending into arid areas and birds with long‐wavelength plumage (i.e. red, orange or yellow plumage) dominated bush‐thickened habitats. Seed‐eaters, burrow‐ and ground‐nesters, bark‐foragers, birds that perch and sally, or perch and swoop to the ground, were all negatively associated with bush thickening. Cavity‐nesters, bark‐foragers, hawkers, frugivores, birds that perch and sally and species with iridescent plumage were negatively affected by the loss of large trees. Of the common species analysed, nearly 40% of species had life history traits tied to large trees; and 68% had traits negatively associated with bush thickening and removal of large trees together, suggesting that where these changes in habitat occur simultaneously, bird diversity will be strongly affected.  相似文献   

5.
Many studies have documented the individual effects of variables such as vegetation, long‐term climate and short‐term weather on biodiversity. Few, however, have explicitly explored how interactions among these major drivers can influence species abundance. We used data from a 15‐year study (2002–2017) in the endangered temperate woodlands of south‐eastern Australia to test hypotheses associated with the effects of vegetation type, long‐term climate and short‐term weather on population trajectories of seven species of (largely) nocturnal mammals and birds. Despite prolonged drought conditions, there was a significant increase in the abundance of some species over time (e.g. the Eastern Grey Kangaroo). It is possible that destocking of domestic livestock may have reduced competition with Kangaroos, thereby facilitating increases in abundance. The Common Brushtail Possum and Common Ringtail Possum were significantly less likely to occur in replanted woodlands, possibly because of the paucity of nesting sites. We found no evidence that replanted woodlands are refuges for exotic pest species like the European Rabbit and Red Fox. Short‐ and long‐term rainfall and vegetation type had important independent and combined effects on animal abundance. That is, responses to periods of high short‐term rainfall were dependent on vegetation type and whether sites occurred in long‐term climatically wet versus climatically dry locations. For example, the Red Fox responded positively to high levels of short‐term rainfall, but only at climatically dry sites. Our results highlight the complementary value of different vegetation types across the landscape and the context‐specific responses of animals to short‐term fluctuations in moisture availability. They also underscore the value of long‐term monitoring at a landscape scale for examining how multiple interacting factors influence trends in animal abundance.  相似文献   

6.
Mountain regions are globally important areas for biodiversity but are subject to multiple human‐induced threats, including climate change, which has been more severe at higher elevations. We reviewed evidence for impacts of climate change on Holarctic mountain bird populations in terms of physiology, phenology, trophic interactions, demography and observed and projected distribution shifts, including effects of other factors that interact with climate change. We developed an objective classification of high‐elevation, mountain specialist and generalist species, based on the proportion of their breeding range occurring in mountain regions. Our review found evidence of responses of mountain bird populations to climate (extreme weather events, temperature, rainfall and snow) and environmental (i.e. land use) change, but we know little about either the underlying mechanisms or the synergistic effects of climate and land use. Long‐term studies assessing reproductive success or survival of mountain birds in relation to climate change were rare. Few studies have considered shifts in elevational distribution over time and a meta‐analysis did not find a consistent direction in elevation change. A meta‐analysis carried out on future projections of distribution shifts suggested that birds whose breeding distributions are largely restricted to mountains are likely to be more negatively impacted than other species. Adaptation responses to climate change rely mostly on managing and extending current protected areas for both species already present, and for expected colonizing species that are losing habitat and climate space at lower elevation. However, developing effective management actions requires an improvement in the current knowledge of mountain species ecology, in the quality of climate data and in understanding the role of interacting factors. Furthermore, the evidence was mostly based on widespread species rather than mountain specialists. Scientists should provide valuable tools to assess the status of mountain birds, for example through the development of a mountain bird population index, and policy‐makers should influence legislation to develop efficient agri‐environment schemes and forestry practices for mountain birds, as well as to regulate leisure activities at higher elevations.  相似文献   

7.
There is growing evidence of changes in the timing of important ecological events, such as flowering in plants and reproduction in animals, in response to climate change, with implications for population decline and biodiversity loss. Recent work has shown that the timing of breeding in wild birds is changing in response to climate change partly because individuals are remarkably flexible in their timing of breeding. Despite this work, our understanding of these processes in wild populations remains very limited and biased towards species from temperate regions. Here, we report the response to changing climate in a tropical wild bird population using a long-term dataset on a formerly critically endangered island endemic, the Mauritius kestrel. We show that the frequency of spring rainfall affects the timing of breeding, with birds breeding later in wetter springs. Delays in breeding have consequences in terms of reduced reproductive success as birds get exposed to risks associated with adverse climatic conditions later on in the breeding season, which reduce nesting success. These results, combined with the fact that frequency of spring rainfall has increased by about 60 per cent in our study area since 1962, imply that climate change is exposing birds to the stochastic risks of late reproduction by causing them to start breeding relatively late in the season.  相似文献   

8.
UK moorlands are semi‐natural habitats managed for a mix of livestock, game shooting and forestry, among other activities. An assessment of the importance of characteristics that correlate with moorland bird populations of high conservation importance can inform appropriate management at appropriate locations. We use hierarchical partitioning to assess the absolute and relative importance of climate, topography, soil, landscape management (wider scale habitat configuration of forestry and agriculture) and site‐based management (indices of predator control, and vegetation characteristics) in determining the abundance of a suite of upland birds in four regions of the UK. Unmeasured region‐specific effects often made the largest contribution to models. Physical characteristics (climate, topography, soil) were important and on average explained a similar amount of variation to site‐based management. However, there was considerable interspecific variation in the importance of both. Landscape‐scale variables were generally of low importance. An index of predator control was positively correlated with the abundance of Red Grouse Lagopus lagopus scotica and two waders. Vegetation characteristics (composition and structure) were, together, strong correlates of the abundance of passerine species. Vegetation characteristics were as important as indices of predator control for waders and grouse. The importance of regional effects, physical characteristics and variables relating to management suggest targeting site‐based management (such as predator control or vegetation management) to the areas where physical characteristics are most favourable. The most beneficial management will vary between species, necessitating a mosaic of management options across upland areas to benefit all species.  相似文献   

9.
Extreme weather, including heat waves, droughts, and high rainfall, is becoming more common and affecting a diversity of species and taxa. However, researchers lack a framework that can anticipate how diverse species will respond to weather extremes spanning weeks to months. Here we used high‐resolution occurrence data from eBird, a global citizen science initiative, and dynamic species distribution models to examine how 109 North American bird species ranging in migration distance, diet, body size, habitat preference, and prevalence (commonness) respond to extreme heat, drought, and rainfall across a wide range of temporal scales. Across species, temperature influenced species’ distributions more than precipitation at weekly and monthly scales, while precipitation was more important at seasonal scales. Phylogenetically controlled multivariate models revealed that migration distance was the most important factor mediating responses to extremely hot or dry weeks; residents and short‐distance migrants occurred less often following extreme heat. At monthly or seasonal scales, less common birds experienced decreases in occurrence following drought‐like conditions, while widespread species were unaffected. Spatial predictions demonstrated variation in responses to extreme weather across species’ ranges, with predicted decreases in occurrence up to 40% in parts of ranges. Our results highlight that extreme weather has variable and potentially strong implications for birds at different time scales, but these responses are mediated by life‐history characteristics. As weather once considered extreme occurs more frequently, researchers and managers require a better understanding of how diverse species respond to extreme conditions.  相似文献   

10.
Abstract. Seedling abundance at four microsites (open fynbos, beneath emergent fynbos shrubs, beneath thicket, and beneath forest) was determined at three coastal dune landscapes, located along a gradient of increasing summer rainfall and where fire-dependent fynbos was the predominant vegetation. At all sites thicket seedlings were most common beneath emergent fynbos shrubs and under thicket clumps; seedlings of forest species were most abundant at forest microsites although some individuals were recorded beneath thicket. Very few thicket seedlings were observed in open fynbos. Birds play a keystone role in facilitating establishment of the fleshy fruit-bearing thicket flora. Seedling abundance at microsites of different thicket and forest species was generally unrelated to fruit abundance. Germination success of most species was highest under shaded conditions; soil organic content had no effect on germination. Removal of pulp and birdingestion enhanced the germination, relative to untreated controls, of two out of three species tested. A simple Markov model predicted a gradual increase in cover of the thicket and forest component and a gradual decline in fynbos under a ‘normal’ (20-yr interval) fire regime simulated over 10 cycles. Although inter-fire seedling establishment under emergent fynbos shrubs is important in the initial colonisation of fynbos by obligate resprouting thicket shrubs, these species persist and expand by vegetative recruitment after and between fires, respectively. In the prolonged absence of fire, the endemic-rich and fire-dependent fynbos flora would be replaced by species-poor forest and thicket.  相似文献   

11.
Aim To determine the factors influencing the distribution of birds in remnants in a fragmented agricultural landscape. Location Forty‐seven eucalypt remnants and six sites in continuous forest in the subhumid Midlands region of Tasmania, Australia. Methods Sites were censused over a two‐year period, and environmental data were collected for remnants. The avifauna of the sites was classified and ordinated. The abundances of bird species, and bird species composition, richness, abundance and diversity were related to environmental variables, using simple correlation and modelling. Results There were two distinct groups of sample sites, which sharply differed in species composition, richness, diversity and bird abundance, separated on the presence/absence of noisy miner (Manorina melanocephala Latham) colonies, remnant size, vegetation structural attributes and variables that reflected disturbance history. The approximate remnant size threshold for the change from one group to another was 20–30 ha. Remnant species richness and diversity were most strongly explained by remnant area and noisy miner abundance, with contributions from structural and isolation attributes in the second case. Segment richness was explained by precipitation, logging history and noisy miner abundance. Bird abundance was positively related to precipitation and negatively related to tree dieback. The 28 individual bird species models were highly individualistic, with vegetation structural variables, noisy miner abundance, climatic variables, variables related to isolation, area, variables related to floristics, disturbance variables, the nature of the matrix and remnant shape all being components in declining order of incidence. Age of the remnant did not relate to any of the dependent variables. Main conclusions Degraded and small remnants may have become more distinct in their avifaunal characteristics than might otherwise be the case, as a result of the establishment of colonies of an aggressive native bird, the noisy miner. The area, isolation and shape of remnants directly relate to the abundance of relatively few species, compared to vegetation attributes, climate and the abundance of the noisy miner. The nature of the matrix is important in the response of some species to fragmentation.  相似文献   

12.
Much of the recent changes in North American climate have occurred during the winter months, and as result, overwintering birds represent important sentinels of anthropogenic climate change. While there is mounting evidence that bird populations are responding to a warming climate (e.g., poleward shifts) questions remain as to whether these species‐specific responses are resulting in community‐wide changes. Here, we test the hypothesis that a changing winter climate should favor the formation of winter bird communities dominated by warm‐adapted species. To do this, we quantified changes in community composition using a functional index – the Community Temperature Index (CTI) – which measures the balance between low‐ and high‐temperature dwelling species in a community. Using data from Project FeederWatch, an international citizen science program, we quantified spatiotemporal changes in winter bird communities (= 38 bird species) across eastern North America and tested the influence of changes in winter minimum temperature over a 22‐year period. We implemented a jackknife analysis to identify those species most influential in driving changes at the community level and the population dynamics (e.g., extinction or colonization) responsible for these community changes. Since 1990, we found that the winter bird community structure has changed with communities increasingly composed of warm‐adapted species. This reshuffling of winter bird communities was strongest in southerly latitudes and driven primarily by local increases in abundance and regional patterns of colonization by southerly birds. CTI tracked patterns of changing winter temperature at different temporal scales ranging from 1 to 35 years. We conclude that a shifting winter climate has provided an opportunity for smaller, southerly distributed species to colonize new regions and promote the formation of unique winter bird assemblages throughout eastern North America.  相似文献   

13.
《Ostrich》2013,84(4):295-308
Global climate warming, now conclusively linked to anthropogenically-increased CO2 levels in the earth's atmosphere, has already had impacts on the earth's biodiversity and is predicted to threaten more than 1 million species with extinction by 2050. Climate change in southern Africa is expected to involve higher temperatures and lower rainfall, with less predictability and a greater frequency of severe storms, fires and El Niño events. The predicted changes to birds in Africa — the continent most at risk from climate change — have hardly been explored, yet birds and many other vertebrates face uncertain futures. Here, in one of the first focused analyses of the correlates of climate change vulnerability in southern African birds, we offer a wide-ranging perspective on which species may be most at risk, and explore which traits may influence the adaptability or extinction risk of bird species.

Our review suggests that small nomadic species with short generation times may be least at risk. While larger-bodied species may be physiologically buffered against environmental change, their longer generation times may make them less able to adapt evolutionarily to climate change. Migrant species, and those with specialised feeding niches such as pollinators, are also predicted to be at risk of population declines, based on low ability to adapt to new environments when introduced there as aliens. Species with small ranges (<50 000km2) restricted to the two southern African biodiversity hotspots most at risk from climate change — the Cape Floral Kingdom and the Succulent Karoo — are ranked according to low, medium or high risk of extinction. Those restricted to mountain slopes, mountain tops or islands, and those occurring mainly at the southern or western extremes of these biomes, are ranked as highest risk. These include endemic sunbirds, warblers and rock-jumpers — none of which are currently recognised Red Data species. Using climate envelopes we modelled the possible range shifts by 2050 of three pairs of species found in habitats considered to be at risk: fynbos, mountain and arid Karoo. All six species lost substantial portions of their range (x = 40%), with the montane Drakensberg Rock-jumper Chaetops aurantius losing most (69%). Significant reductions of available climate space in all species may interact with life history characteristics to threaten many southern African bird species unable to shift geographic range or adapt to novel resource conditions. We conclude with a list of research priorities and testable hypotheses which may advance our understanding of the complex influence that climate change is likely to have on African, particularly southern African, birds.  相似文献   

14.
Understanding the susceptibility of highly mobile taxa such as migratory birds to global change requires information on geographic patterns of occurrence across the annual cycle. Neotropical migrants that breed in North America and winter in Central America occur in high concentrations on their non‐breeding grounds where they spend the majority of the year and where habitat loss has been associated with population declines. Here, we use eBird data to model weekly patterns of abundance and occurrence for 21 forest passerine species that winter in Central America. We estimate species’ distributional dynamics across the annual cycle, which we use to determine how species are currently associated with public protected areas and projected changes in climate and land‐use. The effects of global change on the non‐breeding grounds is characterized by decreasing precipitation, especially during the summer, and the conversion of forest to cropland, grassland, or peri‐urban. The effects of global change on the breeding grounds are characterized by increasing winter precipitation, higher temperatures, and the conversion of forest to peri‐urban. During spring and autumn migration, species are projected to encounter higher temperatures, forests that have been converted to peri‐urban, and increased precipitation during spring migration. Based on current distributional dynamics, susceptibility to global change is characterized by the loss of forested habitats on the non‐breeding grounds, warming temperatures during migration and on the breeding grounds, and declining summer rainfall on the non‐breeding grounds. Public protected areas with low and medium protection status are more prevalent on the non‐breeding grounds, suggesting that management opportunities currently exist to mitigate near‐term non‐breeding habitat losses. These efforts would affect more individuals of more species during a longer period of the annual cycle, which may create additional opportunities for species to respond to changes in habitat or phenology that are likely to develop under climate change.  相似文献   

15.
14 species of fleas were recorded from 173 nests of 47 species of birds. Most abundant of them are Ceratophyllus vagabundus, C. gallinae, C. borealis. The abundance of fleas was found to depend on season and hosts' habitat. The above species were most frequently encountered in nests in May. The high abundance index of fleas was registered in birds nesting in hollows, burrows of small mammals and in clefts of rocks.  相似文献   

16.
Species occurrence is influenced by a range of factors including habitat attributes, climate, weather, and human landscape modification. These drivers are likely to interact, but their effects are frequently quantified independently. Here, we report the results of a 13‐year study of temperate woodland birds in south‐eastern Australia to quantify how different‐sized birds respond to the interacting effects of: (a) short‐term weather (rainfall and temperature in the 12 months preceding our surveys), (b) long‐term climate (average rainfall and maximum and minimum temperatures over the period 1970–2014), and (c) broad structural forms of vegetation (old‐growth woodland, regrowth woodland, and restoration plantings). We uncovered significant interactions between bird body size, vegetation type, climate, and weather. High short‐term rainfall was associated with decreased occurrence of large birds in old‐growth and regrowth woodland, but not in restoration plantings. Conversely, small bird occurrence peaked in wet years, but this effect was most pronounced in locations with a history of high rainfall, and was actually reversed (peak occurrence in dry years) in restoration plantings in dry climates. The occurrence of small birds was depressed—and large birds elevated—in hot years, except in restoration plantings which supported few large birds under these circumstances. Our investigation suggests that different mechanisms may underpin contrasting responses of small and large birds to the interacting effects of climate, weather, and vegetation type. A diversity of vegetation cover is needed across a landscape to promote the occurrence of different‐sized bird species in agriculture‐dominated landscapes, particularly under variable weather conditions. Climate change is predicted to lead to widespread drying of our study region, and restoration plantings—especially currently climatically wet areas—may become critically important for conserving bird species, particularly small‐bodied taxa.  相似文献   

17.
Global climate change will undoubtedly be a pressure on coastal marine ecosystems, affecting not only species distributions and physiology but also ecosystem functioning. In the coastal zone, the environmental variables that may drive ecological responses to climate change include temperature, wave energy, upwelling events and freshwater inputs, and all act and interact at a variety of spatial and temporal scales. To date, we have a poor understanding of how climate‐related environmental changes may affect coastal marine ecosystems or which environmental variables are likely to produce priority effects. Here we use time series data (17 years) of coastal benthic macrofauna to investigate responses to a range of climate‐influenced variables including sea‐surface temperature, southern oscillation indices (SOI, Z4), wind‐wave exposure, freshwater inputs and rainfall. We investigate responses from the abundances of individual species to abundances of functional traits and test whether species that are near the edge of their tolerance to another stressor (in this case sedimentation) may exhibit stronger responses. The responses we observed were all nonlinear and some exhibited thresholds. While temperature was most frequently an important predictor, wave exposure and ENSO‐related variables were also frequently important and most ecological variables responded to interactions between environmental variables. There were also indications that species sensitive to another stressor responded more strongly to weaker climate‐related environmental change at the stressed site than the unstressed site. The observed interactions between climate variables, effects on key species or functional traits, and synergistic effects of additional anthropogenic stressors have important implications for understanding and predicting the ecological consequences of climate change to coastal ecosystems.  相似文献   

18.
To better understand the ecological implications of global climate change for species that display geographically and seasonally dynamic life‐history strategies, we need to determine where and when novel climates are projected to first emerge. Here, we use a multivariate approach to estimate time of emergence (ToE) of novel climates based on three climate variables (precipitation, minimum and maximum temperature) at a weekly temporal resolution within the Western Hemisphere over a 280‐yr period (2021–2300) under a high emissions scenario (RCP8.5). We intersect ToE estimates with weekly estimates of relative abundance for 77 passerine bird species that migrate between temperate breeding grounds in North America and southern tropical and subtropical wintering grounds using observations from the eBird citizen‐science database. During the non‐breeding season, migrants that winter within the tropics are projected to encounter novel climates during the second half of this century. Migrants that winter in the subtropics are projected to encounter novel climates during the first half of the next century. During the beginning of the breeding season, migrants on their temperate breeding grounds are projected to encounter novel climates during the first half of the next century. During the end of the breeding season, migrants are projected to encounter novel climates during the second half of this century. Thus, novel climates will first emerge ca 40–50 yr earlier during the second half of the breeding season. These results emphasize the large seasonal and spatial variation in the formation of novel climates, and the pronounced challenges migratory birds are likely to encounter during this century, especially on their tropical wintering grounds and during the transition from breeding to migration. When assessing the ecological implications of climate change, our findings emphasize the value of applying a full annual cycle perspective using standardized metrics that promote comparisons across space and time.  相似文献   

19.
Global climate change has the potential to alter aquatic communities through changes in evapotranspiration and increased variability in precipitation. We used aquatic mesocosms to test the impacts of variable precipitation on population dynamics of common mosquito (Culicidae) and midge (Chironomidae) larvae that inhabit vernal pools. In a mixed deciduous forest in northern Vermont, USA, we orthogonally crossed seven levels of mean water level (increased rainfall) with seven levels of water level coefficient of variation (more variable rainfall) to simulate a broad array of climate change scenarios in 49 experimental mesocosms. The average abundance of Culicidae was highest at low water levels, whereas the average abundance of Chironomidae was highest at higher water levels and low variability in water level. Treatments and environmental and spatial covariates collectively explained 49% of the variance in mean abundance. For both taxa, we fit hierarchical Bayesian models to each 16‐week time series to estimate the parameters in a Gompertz logistic equation of population growth with density dependence. We found that Culicidae population growth rate increased with decreasing water levels and that 87% of the variance in Chironomidae density dependence could be explained by treatment. Collectively, these results suggest that climate change can alter abundances aquatic invertebrate taxa but not necessarily through the same mechanism on all populations. In the case of Culicidae the abundance is affected by changes in growth rate, and in Chironomidae by changes in the strength of density dependence.  相似文献   

20.
Biome boundaries are expected to be sensitive to changes in climate and disturbance, because it is here that ecological communities are at environmental, ecological or disturbance limits. Using palaeoecology to study ecosystem dynamics at biome boundaries provides opportunities for understanding ecosystem resilience or sensitivity at ecologically meaningful timescales, and under varying climatic and disturbance conditions.The fynbos biome is a megadiverse Mediterranean type shrubland, found only in South Africa, that is threatened by climate change, land-use change and invasion by alien species. We used palaeoecological records from the semi-arid and mesic boundaries of the fynbos biome to test hypotheses regarding ecosystem resilience over timescales of centuries to millennia. We hypothesised that fynbos would expand at its mesic boundary at the expense of afrotemperate forest under drier and / or more fire prone conditions. In contrast, we hypothesised that at the semi-arid boundary, fynbos would expand at the expense of succulent karoo under wetter and cooler and / or more fire-prone conditions. Contrary to our expectations, the fossil pollen record at both biome boundaries showed remarkable stability at centennial - millennial timescales. To explain our results, we generated new hypotheses exploring possible mechanisms that might confer resilience.At the mesic (temperate) boundary, we suggest that decreased seasonality of rainfall during drier phases favoured fire and fynbos persistence, while in wetter periods, increased seasonality of rainfall resulted in enhanced summer drought stress, inhibiting forest expansion. At this boundary, internal reorganisation from grassy to proteoid fynbos states conferred resilience through resistance. At the succulent karoo boundary, we suggest that increased aridity was offset by less seasonality of rainfall, which enhanced biomass and allowed fire to persist, favouring persistence of fynbos. At this boundary, fynbos sensu stricto retreated during arid phases but recovered during climate amelioration, consistent with resilience through recovery. In both cases, this mega-diverse, disturbance-adapted flora provided a range of traits that enabled fynbos to persist despite environmental perturbation. Our findings agree with general observations that for ecosystems in regions of ample resource availability (i.e. at the mesic boundary), biotic interactions and disturbance tend to become more important in ecosystem dynamics, whereas in regions of scarce resources (in this case water scarcity at the semi-arid boundary) abiotic stress is more important. Our findings contribute to debates over the mechanisms that confer resistance and resilience to environmental change. Understanding and conserving the processes and mechanisms underpinning its resilience will be critical to effective conservation planning.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号