首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A histochemical study, using myosin-adenosine triphosphatase activity at pH 9.4, was conducted in soleus and plantaris muscles of adult rats, after bilateral crushing of the sciatic nerve at the sciatic notch. The changes in fiber diameter and per cent composition of type I and type II fibers plus muscle weights were evaluated along the course of denervation-reinnervation curve at 1, 2, 3, 4 and 6 weeks postnerve crush. The study revealed that in the early denervation phase (up to 2 weeks postcrush) both the slow and fast muscles, soleus and plantaris, resepctively, atrophied similarly in muscle mass. Soleus increased in the number of type II fibers, which may be attributed to "disuse" effect. During the same period, the type I fibers of soleus atrophied as much or slightly more than the type II fibers; whereas the type II fibers of plantaris atrophied significantly more than the type I fibers, reflecting that the process of denervation, in its early stages, may affect the two fiber types differentially in the slow and fast muscles. It was deduced that the type I fibers of plantaris may be essentially different in the slow (soleus) and fast (plantaris) muscles under study. The onset of reinnervation, as determined by the increase in muscle weight and fiber diameter of the major fiber type, occurred in soleus and plantaris at 2 and 3 weeks postcrush, respectively, which confirms the earlier hypotheses that the slow muscles are reinnervated sooner than the fast muscles. It is suggested that the reinnervation of muscle after crush injury may be specific to the muscle type or its predominant fiber type.  相似文献   

2.
3.
The involvement of calcineurin (CaN) and heat shock protein (Hsp) 72 in the regulation of fiber size and/or phenotype in response to functional overload (FO) was investigated. In one FO group, the plantaris muscle was overloaded by cutting the distal tendons (5-10 mm length) of the soleus and gastrocnemius of 3-week-old male Wistar rats. Cyclosporin A (CsA), a CaN inhibitor, was injected daily (5 mg/kg body weight, i.p.) in a second group of FO rats (FO+CsA group) for a 2-week period. Compared to age-matched controls (Con), the absolute and relative plantaris weights were increased in both FO groups: the hypertrophic response was attenuated in FO+CsA rats. The mean cross-sectional area of each fiber type was increased (approximately 2.0-fold) in the plantaris of FO rats: CsA treatment attenuated this effect, although the fibers were still larger than in Con rats. The percent composition of myosin heavy chain (MHC) IIb decreased from 54% in Con to 19% in FO rats, whereas types I, IIa, and IIx MHC increased in the FO rats. CsA treatment blunted the shifts in MHC isoforms: the FO+CsA group showed a smaller decrease in type IIb and a smaller increase in type IIx MHC than the FO group. The levels of CaN-A and -B proteins were higher (approximately 2.5-fold) in FO than Con rats, whereas these values were similar in Con and FO+CsA rats. Hsp72 protein levels were higher in FO (3.6-fold) and FO+CsA (5.2-fold) than Con rats, with the values being significantly higher in the FO+CsA than FO rats. CsA treatment in Con rats had no effects on muscle mass, fiber size, MHC composition, and Hsp72 or CaN levels. Combined, these results suggest that CaN levels are related to changes in both fiber size and phenotype, and that Hsp72 levels are more related to the levels of stress added to the muscle rather than to increases in the slow fiber phenotype in functionally overloaded rat plantaris muscles.  相似文献   

4.
Fifteen-week-old rats were subjected to unloading induced by hindlimb suspension for 3 weeks. The peroxisome proliferator-activated receptor γ coactivator-1α (PGC-1α) and forkhead box-containing protein O1 (FOXO1) mRNA levels and fiber profiles of the soleus and plantaris muscles in rats subjected to unloading (unloaded group) were determined and compared with those of age-matched control rats (control group). The body weight and both the soleus and plantaris muscle weights were lower in the unloaded group than in the control group. The PGC-1α mRNA was downregulated in the soleus, but not in the plantaris muscle of the unloaded group. The FOXO1 mRNA was upregulated in both the soleus and plantaris muscles of the unloaded group. The oxidative enzyme activity was reduced in the soleus, but not in the plantaris muscle of the unloaded group. The percentage of type I fibers was decreased and the percentages of type IIA and IIC fibers were increased in the soleus muscle of the unloaded group, whereas there was no change in fiber type distribution in the plantaris muscle of the unloaded group. Atrophy of all types of fibers was observed in both the soleus and plantaris muscles of the unloaded group. We conclude that decreased oxidative capacity and fiber atrophy in unloaded skeletal muscles are associated with decreased PGC-1α and increased FOXO1 mRNA levels.  相似文献   

5.
We have shown thatcycling exercise combined with fetal spinal cord transplantationrestored muscle mass reduced as a result of complete transection of thespinal cord. In this study, mechanisms whereby this combinedintervention increased the size of atrophied soleus and plantarismuscles were investigated. Rats were divided into five groups(n = 4, per group): control, nontransected; spinal cordtransected at T10 for 8 wk (Tx); spinal cord transected for 8 wk andexercised for the last 4 wk (TxEx); spinal cord transected for 8 wkwith transplantation of fetal spinal cord tissue into the lesion site 4 wk prior to death (TxTp); and spinal cord transected for 8 wk,exercised for the last 4 wk combined with transplantation 4 wk prior todeath (TxExTp). Tx soleus and plantaris muscles were decreased in sizecompared with control. Exercise and transplantation alone did notrestore muscle size in soleus, but exercise alone minimized atrophy inplantaris. However, the combination of exercise and transplantationresulted in a significant increase in muscle size in soleus andplantaris compared with transection alone. Furthermore, myofibernuclear number of soleus was decreased by 40% in Tx and was notaffected in TxEx or TxTp but was restored in TxExTp. A strongcorrelation (r = 0.85) between myofiber cross-sectional area and myofiber nuclear number was observed in soleus, but not inplantaris muscle, in which myonuclear number did not change with any ofthe experimental manipulations. 5'-Bromo-2'-deoxyuridine-positive nuclei inside the myofiber membrane were observed in TxExTp soleus muscles, indicating that satellite cells had divided and subsequently fused into myofibers, contributing to the increase in myonuclear number. The increase in satellite cell activity did not appear to becontrolled by the insulin-like growth factors (IGF), as IGF-I andIGF-II mRNA abundance was decreased in Tx soleus and plantaris, and wasnot restored with the interventions. These results indicate that,following a relatively long postinjury interval, exercise andtransplantation combined restore muscle size. Satellite cell fusion andrestoration of myofiber nuclear number contributed to increased musclesize in the soleus, but not in plantaris, suggesting that cellularmechanisms regulating muscle size differ between muscles with differentfiber type composition.

  相似文献   

6.
Although the soleus muscle comprises only 6% of the ankle plantar flexor mass in the rat, a major role in stance and walking has been ascribed to it. The purpose of this study was to determine if removal of the soleus muscle would result in adaptations in the remaining gastrocnemius and plantaris muscles due to the new demands for force production imposed on them during stance or walking. A second purpose was to determine whether the mass or the fiber type of the muscle(s) removed was a more important determinant of compensatory adaptations. Male Sprague-Dawley rats underwent bilateral removal of soleus muscle, plantaris muscle, or both muscles. For comparison, compensatory hypertrophy was induced in soleus and plantaris muscles by gastrocnemius muscle ablation. After forty days, synergist muscles remaining intact were removed. Mass, and oxidative, glycolytic, and contractile enzyme activities were determined. Despite its role in stance and slow walking, removal of the soleus muscle did not elicit a measurable alteration in muscle mass, or in citrate synthase, lactate dehydrogenase, or myofibrillar ATPase activity in gastrocnemius or plantaris muscles. Similarly, removal of the plantaris muscle, or soleus and plantaris muscles, had no effect on the gastrocnemius muscle, suggesting that this muscle was able to easily meet the new demands placed on it. These results suggest that amount of muscle mass removed, rather than fiber type, is the most important stimulus for compensatory hypertrophy. They also suggest that slow-twitch motor units in the gastrocnemius muscle play an important role during stance and locomotion in the intact animal.  相似文献   

7.
The effects of hypergravity (HG) on soleus and plantaris muscles were studied in Long Evans rats aged 100 days, born and reared in 2-g conditions (HG group). The morphological and contractile properties and the myosin heavy chain (MHC) content were examined in whole muscles and compared with terrestrial control (Cont) age-paired rats. The growth of HG rats was slowed compared with Cont rats. A decrease in absolute muscle weight was observed. An increase in fiber cross-sectional area/muscle wet weight was demonstrated, associated with an increase in relative maximal tension. The soleus muscle changed into a slower type both in contractile parameters and in MHC content, since HG soleus contained only the MHC I isoform. The HG plantaris muscle presented a faster contractile behavior. Moreover, the diversity of hybrid fiber types expressing multiple MHC isoforms (including MHC IIB and MHC IIX isoforms) was increased in plantaris muscle after HG. Thus the HG environment appears as an important inductor of muscular plasticity both in slow and fast muscle types.  相似文献   

8.
Because optimal overload-induced skeletal muscle hypertrophy requires ANG II, we aimed to determine the effects of blocking ANG II production [via angiotensin-converting enzyme (ACE) inhibition] on potential mediators of hypertrophy in overloaded skeletal muscle, namely, myonuclear addition and fibroblast content. In a 2 x 2 design, adult (200-225 g) female Sprague-Dawley rats were placed into one of four groups (n = 8/group): 7-day skeletal muscle overload, sham operation, 7-day skeletal muscle overload with ACE inhibition, or sham operation with ACE inhibition. Functional overloads of the plantaris and soleus muscles were produced via bilateral surgical ablation of the synergistic gastrocnemius muscle, and ACE inhibition was accomplished by the addition of the ACE inhibitor enalapril maleate to the animals' daily drinking water (0.3 mg/ml). Myonuclear addition and extrasarcolemmal nuclear proliferation, as measured by in vivo 5-bromo-2'-deoxyuridine labeling, were significantly (P < or = 0.05) increased by overload in both the slow-twitch soleus and fast-twitch plantaris muscles. Furthermore, ACE inhibition attenuated these overload-induced increases in the soleus muscle but not in the plantaris muscle. However, the effect of ACE inhibition on soleus extrasarcolemmal nuclei was not likely due to differences in fibroblast content because overload elicited significant increases in vimentin-positive areas in soleus and plantaris muscles, and these areas were unaffected by ACE inhibition in either muscle. There was no effect of ACE inhibition on any measure in sham-operated muscles. Collectively, these data indicate that ANG II may mediate the satellite cell response to overload in slow-twitch soleus but not in fast-twitch plantaris muscles and that this effect may occur independently of changes in fibroblast content.  相似文献   

9.
We investigated selected histochemical and histometrical characteristics of the heterogeneous fiber types of rat skeletal muscle following long-term compensatory muscle growth. Sixty days following surgical removal of the synergistic gastrocnemius muscle, the compensated ipsilateral plantaris and soleus muscles and the corresponding control muscles from the contralateral leg were excised and stained histochemically for myofibrillar ATPase and DPNH-diaphorase activities. The number of fibers per cross-section was determined by a direct count from transverse sections taken from the midportion of the muscles. Fiber area was determined by direct planimetry. The plantaris and soleus muscles hypertrophied 103% and 45%, respectively, within 60 days. Compensatory hypertrophy of the plantaris muscle was accompanied by a significant but disproportionate increase in the cross-sectional areas of the three muscle fiber types. There was an approximate 4-fold increase in the number of slow-twitch-oxidative (SO) fibers observed per transverse section. The hypertrophied plantaris muscle exhibited a significantly greater number of fibers per cross-section (29%) than the respective control muscle. The compensated soleus muscle consisted of nearly 100% SO fibers compared to 83% for the control soleus muscle.  相似文献   

10.
Protein kinase C (PKC) may be involved in growth regulation. In the present study the relationship between body weight, and thereby age, and the activity of PKC in muscle as well as in rapidly growing overloaded muscle were investigated. PKC activity in music was linearly inversely correlated to rat weight in both soleus (r = -0.59, P less than 0.05) and in plantaris (r = -0.74, P less than 0.01) muscles. During compensatory hypertrophy. PKC activity per muscle was maximally increased compared with the contralateral control muscles after 4 days in both soleus (126%) and in plantaris (105%) but had returned to basal levels by the 9th day. The data are in agreement with a role for PKC in muscle growth.  相似文献   

11.
The purpose of the present study was to determine whether endogenous factor(s) contributes to the expression of heat shock proteins (HSPs) during the early developmental stages of rat skeletal muscles. HSP72 was expressed in both the soleus and plantaris muscles at embryonic day 22 (E22). On the basis of myosin heavy chain (MHC) immunohistochemistry, HSP72 was specifically expressed in slow type I fibers in both muscles. These slow fibers were observed throughout the entire cross section of the soleus muscle and only in the deep region (close to the bone) of the plantaris muscle. These results indicate that the expression of HSP72 is related to endogenous factors associated with type I fibers, because E22 rats have minimal exogenous influences and the soleus and plantaris muscles of E22 rats have similar metabolic and contractile profiles at this stage of development. We then examined the changes in HSP72 and heat shock cognate (HSC) 73 in the same two muscles from E22 to postnatal day 56 via Western blotting. The level of HSP72 in the soleus muscle gradually increased in parallel with the increment in the type I MHC isoform. Compared with the soleus, only a small amount of HSP72 could be detected in the plantaris muscle throughout the developmental period. For both muscles, HSC73 reached levels observed in adult muscles at postnatal day 3, and these levels were unchanged thereafter. These results indicate that the expression of HSP72, but not HSC73, is influenced by both endogenous and exogenous factors during the embryonic and early developmental periods.  相似文献   

12.
Muscle fibre composition was compared among the proximal (25%), middle (50%) and distal (75%) regions of the muscle length to investigate whether compensatory overload by removal of synergists induces region-specific changes of fibre types in rat soleus and plantaris muscles. In addition, we evaluated fibre cross-sectional area in each region to examine whether fibre recruitment pattern against functional overload is nonuniform in different regions. Increases in muscle mass and fibre area confirmed a significant hypertrophic response in the overloaded soleus and plantaris muscles. Overloading increased the percentage of type I fibres in both muscles and that of type IIA fibres in the plantaris muscle, with the greater changes being found in the middle and distal regions. The percentage of type I fibres in the proximal region was higher than that of the other regions in the control soleus muscle. In the control plantaris muscle, the percentage of type I and IIA fibres in the middle region were higher than that of the proximal and distal regions. With regard to fibre size, type IIB fibre area of the middle and distal regions in the plantaris increased by 51% and 57%, respectively, with the greater changes than that of the proximal region (37%) after overloading. These findings suggest that compensatory overload promoted transformation of type II fibres into type I fibres in rat soleus and plantaris muscles, with the greater changes being found in the middle and distal regions of the plantaris muscle.  相似文献   

13.
Hypotheses were tested that the deficit in maximum isometric force normalized to muscle cross-sectional area (i.e., specific Po, N/cm2) of hypertrophied muscle would return to control value with time and that the rate and magnitude of adaptation of specific force would not differ between soleus and plantaris muscles. Ablation operations of the gastrocnemius and plantaris muscles or the gastrocnemius and soleus muscles were done to induce hypertrophy of synergistic muscle left intact in female Wistar rats (n = 47) at 5 wk of age. The hypertrophied soleus and plantaris muscles and control muscles from other age-matched rats (n = 22) were studied from days 30 to 240 thereafter. Po was measured in vitro at 25 degrees C in oxygenated Krebs-Ringer bicarbonate. Compared with control values, soleus muscle cross-sectional area increased 41-15% from days 30 to 240 after ablation, whereas Po increased 11 and 15% only at days 60 and 90. Compared with control values, plantaris muscle cross-sectional area increased 52% at day 30, 40% from days 60 through 120, and 15% at day 240. Plantaris muscle Po increased 25% from days 30 to 120 but at day 240 was not different from control value. Changes in muscle architecture were negligible after ablation in both muscles. Specific Po was depressed from 11 to 28% for both muscles at all times. At no time after the ablation of synergistic muscle did the increased muscle cross-sectional area contribute fully to isometric force production.  相似文献   

14.
Blood flow and glycogen use in hypertrophied rat muscles during exercise   总被引:1,自引:0,他引:1  
Previous findings suggest that skeletal muscle that has enlarged as a result of removal of synergistic muscles has a similar metabolic capacity and improved resistance to fatigue compared with normal muscle. The purpose of the present study was to follow blood flow and glycogen loss patterns in hypertrophied rat plantaris plantaris and soleus muscles during treadmill exercise to provide information on the adequacy of perfusion of the muscles during in vivo exercise. Thirty days following surgical removal of gastrocnemius muscle, blood flows (determined with radiolabeled microspheres) and glycogen concentrations were determined in all of the ankle extensor muscles of experimental and sham-operated control rats during preexercise and after 5-6 min of treadmill exercise at 15 m/min. There were no differences (P greater than 0.05) in blood flows per unit mass or glycogen concentrations between control and hypertrophied plantaris or soleus muscles at either time, although both muscles were larger (P less than 0.05) in the experimental group (plantaris: 95%; soleus: 40%). None of the other secondary ankle extensor muscles (tibialis posterior, flexor digitorum longus or flexor hallicus longus) hypertrophied in response to removal of gastrocnemius. These results provide indirect evidence that O2 delivery in the enlarged muscles is not compromised during low-intensity treadmill exercise due to limited perfusion.  相似文献   

15.
The purpose of this study was to determine whether skeletal muscle mass, myofibrillar adenosinetriphosphatase activity, and the expression of myosin heavy (MHC) and light chain subunits are differentially affected in juvenile (4 wk) and young adult (12 wk) rats by a hypertrophic growth stimulus. Hypertrophy of the plantaris or soleus was studied 4 wk after ablation of either two [gastrocnemius (GTN) and soleus or plantaris] or one (GTN) synergistic muscle(s). There was no difference in the relative magnitude of hypertrophy because of age. Plantaris myofibrillar adenosinetriphosphatase activity was decreased 21 and 12% in juvenile and adult rats, respectively, as a result of ablation of both the GTN and soleus. Slow myosin light chain isoforms (1s and 2s) were expressed to a greater extent in hypertrophied plantaris muscles of both ages, but the increase in 1s was greater in juvenile rats. The relative expression of slow beta-MHC in hypertrophied plantaris muscles increased by 470 and 350%, whereas MHC IIb decreased by 70 and 33% in juvenile and adult rats, respectively. The relative expression of MHC IIa increased (56%) in the plantaris after ablation in juvenile rats only. These shifts in myosin subunit expression and the increases in mass were generally about one-half the magnitude when only the GTN was removed. There were no detectable myosin shifts in hypertrophied soleus muscles. Although the extent of muscle hypertrophy is similar, the shifts in myosin subunits were greater in juvenile than in young adult rats.  相似文献   

16.
Spangenburg EE  Booth FW 《Cytokine》2006,34(3-4):125-130
Cytokines and growth factors are thought to contribute to skeletal muscle hypertrophy. Leukemia inhibitory factor (LIF), a cytokine, enhances skeletal muscle regeneration; however the role of LIF in skeletal muscle hypertrophy remains uncertain. We examined the hypertrophic ability of the plantaris and soleus muscles in wild-type mice (WT) and LIF knock-out mice [LIF(-/-)] in response to increased mechanical load. Using the functional overload model to induce increases in mechanical load on the plantaris and soleus muscle, WT mice demonstrated increases in plantaris and soleus mass after 7, 21, and 42 days of loading. However, the LIF(-/-) mice had no significant increases in plantaris muscle mass at any time point, while the soleus muscle exhibited a delayed hypertrophic response. Systemic delivery of LIF to the LIF(-/-) mice returned the hypertrophic response to the same levels as the WT mice after 21 days of functional overload. These data demonstrate for the first time that LIF expression in loaded skeletal muscle is critical for the development of skeletal muscle hypertrophy in the functional overload model.  相似文献   

17.
This study investigated regulation of autophagy in slow-twitch soleus and fast-twitch plantaris muscles in fasting-related atrophy. Male Fischer-344 rats were subjected to fasting for 1, 2, or 3 days. Greater weight loss was observed in plantaris muscle than in soleus muscle in response to fasting. Western blot analysis demonstrated that LC3-II, a marker protein for macroautophagy, was expressed at a notably higher level in plantaris than in soleus muscle, and that the expression level was fasting duration-dependent. To identify factors related to LC3-II enhancement, autophagy-related signals were examined in both types of muscle. Phosphorylated mTOR was reduced in plantaris but not in soleus muscle. FOXO3a and ER stress signals were unchanged in both muscle types during fasting. These findings suggest that preferential atrophy of fast-twitch muscle is associated with induction of autophagy during fasting and that differences in autophagy regulation are attributable to differential signal regulation in soleus and plantaris muscle.  相似文献   

18.
The obese Zucker rat (OZR) is a model of metabolic syndrome, which has lower skeletal muscle size than the lean Zucker rat (LZR). Because satellite cells are essential for postnatal muscle growth, this study was designed to determine whether reduced satellite cell proliferation contributes to reduced skeletal mass in OZR vs. LZR. Satellite cell proliferation was determined by a constant-release 5-bromo-2-deoxyuridine (BrdU) pellet that was placed subcutaneously in each animal. Satellite cell proliferation, as determined by BrdU incorporation, was significantly attenuated in control soleus and plantaris muscles of the OZR compared with that shown in the LZR. To determine whether this attenuation of satellite cell activity could be rescued in OZR muscles, soleus and gastrocnemius muscles were denervated, placing a compensatory load on the plantaris muscle. In the LZR and the OZR after 21 days of loading, increases of approximately 25% and approximately 30%, respectively, were shown in plantaris muscle wet weight compared with that shown in the contralateral control muscle. The number of BrdU-positive nuclei increased similarly in loaded plantaris muscles from LZR and OZR. Myogenin, MyoD, and Akt protein expressions were lower in control muscles of OZR than in those of the LZR, but they were all elevated to similar levels in the loaded plantaris muscles of OZR and LZR. These data indicate that metabolic syndrome may reduce satellite cell proliferation, and this may be a factor that contributes to the reduced mass in control muscles of OZR; however, satellite cell proliferation can be restored with compensatory loading in OZR.  相似文献   

19.
20.
Anabolic agents such clenbuterol (Cb) are useful tools for probing the mechanisms by which muscles respond to disuse. Cb was examined under different loading conditions with respect to its effects on muscle mass, protein (myofibrillar and cytosolic), and spermidine content in mature male rats. Compared with control treatment, Cb significantly increased loaded and unloaded soleus, plantaris, and extensor digitorum longus (EDL) mass. Likewise, Cb significantly increased loaded and unloaded soleus (24.8 and 21.6%, respectively), plantaris (12.1 and 22.9%, respectively), and EDL (22.4 and 13.3%, respectively) myofibrillar protein content. After unloading, cytosolic proteins significantly increased in the EDL but decreased in the soleus and plantaris. Cb significantly increased cytosolic protein levels in all loaded muscles, while only causing increases in unloaded soleus. When compared with controls, unloading caused significant reductions in spermidine levels in the soleus (40.4%) and plantaris (35.9%) but caused increases in the EDL (54.8%). In contrast, Cb increased spermidine levels in unloaded soleus (42.9%), plantaris (102.8%), and EDL (287%). In loaded muscles, Cb increased spermidine levels in all three muscles, but to a lesser degree than under unloading conditions. Nonlinear regression analyses indicated that the plantaris behaves like a slow-twitch muscle under unloading conditions and like a fast-twitch muscle when loaded. This suggests that the responses of these muscles to unloading and (or) Cb treatment might be influenced by factors beyond fiber type alone.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号