首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Formic acid solutions of 1, 10, 100, and 1000 mM have been irradiated with 4He ions of 5 to 25 MeV, and the production of OH radicals has been determined by measuring the yield of CO2. The differential OH radical yields were obtained from the observed energy dependencies; with 25 MeV 4He ions they range from 1.91 to 3.48 molecules/100 eV for formic acid concentrations of 1 to 1000 mM, respectively. The OH radical yields decrease with decreasing particle energy, and at the maximum LET (230 eV/nm) they range from 0.30 at 1 mM to 0.82 molecules/100 eV at 1000 mM. These values are only 15 to 20% of that found with fast electrons. The OH radical yields are relatively more dependent on formic acid concentration at higher 4He ion energies. The average time dependencies of the OH radical from 7.7 ns to 7.7 microseconds were estimated from the formic acid concentration dependencies at various 4He energies. In terms of absolute yields, there is a considerable variation in the yields of OH radicals with time at the highest energies, but at the maximum LET the OH radical yields are nearly invariant with time after about 10 ns.  相似文献   

2.
In order to investigate the mechanism of sonolysis of nucleic acid constituents, the yield of thymine radicals generated by 50 kHz ultrasound in Ar-saturated aqueous solution was compared with that formed by gamma-radiolysis in N2O-saturated solutions in the presence of various non-volatile scavengers, which cannot act in the gas phase of the cavitation bubbles. For comparison of thymine radical yields by sonolysis and gamma radiolysis, the method of spin trapping with 3,5-dibromo-4-nitrosobenzenesulphonate (a water-soluble, non-volatile, aromatic nitroso spin trap) combined with ESR was used. The efficiency of OH radical scavenging is expressed by the reciprocal value of C1/2, the scavenger concentration at which the thymine radical yield is decreased by 50 per cent. In gamma radiolysis the scavenging efficiencies of the solutes depend on their rate constants with OH radicals. For sonolysis the C1/2 values were similar to those obtained for gamma radiolysis except for the hydrophobic 5,5-dimethyl-1-pyrroline-N-oxide. These results suggest that thymine radicals induced by ultrasound are produced in the bulk of the solution as well as in the interfacial region.  相似文献   

3.
Monte Carlo simulations of the radiolysis of neutral liquid water and 0.4 M H(2)SO(4) aqueous solutions at ambient temperature are used to calculate the variations of the primary radical and molecular yields (at 10(-6)s) as a function of linear energy transfer (LET) in the range approximately 0.3 to 6.5 keV/micrometer. The early energy deposition is approximated by considering short (approximately 20-100 micrometer) high-energy (approximately 300-6.6 MeV) proton track segments, over which the LET remains essentially constant. The subsequent nonhomogeneous chemical evolution of the reactive species formed in these tracks is simulated by using the independent reaction times approximation, which has previously been used successfully to model the radiolysis of water under various conditions. The results obtained are in good general agreement with available experimental data over the whole LET range studied. After normalization of our computed yields relative to the standard radical and molecular yields for (60)Co gamma radiation (average LET approximately 0.3 keV/micrometer), we obtain empirical relationships of the primary radiolytic yields as a function of LET over the LET range studied. Such relationships are of practical interest since they allow us to predict a priori values of the radical and molecular yields for any radiation from the knowledge of the average LET of this radiation only. As an application, we determine the corresponding yields for the case of (137)Cs gamma radiation. For this purpose, we use the value of approximately 0.91 keV/micrometer for the average LET of (137)Cs gamma rays, chosen so that our calculated yield G(Fe(3+)) for ferrous-ion oxidation in air-saturated 0.4 M sulfuric acid reproduces the value of 15.3 molecules/100 eV for this radiation recommended by the International Commission on Radiation Units and Measurements. The uncertainty range on those primary radical and molecular yields are also determined knowing the experimental error (approximately 2%) for the measured G(Fe(3+)) value. The following values (expressed in molecules/100 eV) are obtained: (1) for neutral water: G(e(-)(aq)) = 2.50 +/- 0.16, G(H(.)) = 0.621 +/- 0.019, G(H(2)) = 0.474 +/- 0.025, G((.)OH) = 2.67 +/- 0.14, G(H(2)O(2)) = 0.713 +/- 0.031, and G(-H(2)O) = 4.08 +/- 0.22; and (2) for 0.4 M H(2)SO(4) aqueous solutions: G(H(.)) = 3.61 +/- 0.09, G(H(2)) = 0.420 +/- 0.019, G((.)OH) = 2.78 +/- 0.12, G(H(2)O(2)) = 0.839 +/- 0.037, and G(-H(2)O) = 4.46 +/- 0.16. These computed values are found to differ from the standard yields for (60)Co gamma rays by up to approximately 6%.  相似文献   

4.
The purpose of the present study was to evaluate the dependence of the OH radical yield on the atomic number and the energy of the heavy ions to understand chemical reactions of aqueous solutions. The total yields of oxidized products from phenol in water increased superlinearly as the incident energy increased from 5 MeV/nucleon to 18 MeV/nucleon for carbon and neon ions. The radiolytic yields of OH radicals produced by the ions were determined by analyzing the relationships of the oxidation yields of phenol to the incident energies up to 18 MeV/nucleon for ions in the range of LET from 110 eV/nm to 550 eV/nm and from 320 eV/nm to 1100 eV/nm for carbon and neon ions, respectively. The yields of the OH radicals increased with the specific energy for the same kind of ion and decreased with the atomic number for different ions used at the same specific energy.  相似文献   

5.
Time-resolved electron spin resonance (ESR) spectroscopy for the study of radicals produced by pulse radiolysis is illustrated by a study of the oxidation of ascorbic acid by OH radical in aqueous solution. In basic solution, the direct oxidation product, the ascorbate mono-anion radical, is formed within less than 2 mus of the radiolysis pulse. In acid solutions (pH 3(-4.5), N(2)O:saturated) three radicals are initially formed, the ascorbate mono-anion radical, an OH adduct seen also in steady-state ESR experiments, and an OH adduct at C2 with the main spin density at C3 of the ring. The first OH adduct decays with an initial half-life of about 100 mus, probably by biomolecular reaction. The second OH adduct, which shows one hyperfine splitting about a(H) = 24.4 +/- 0.3 G and g = 2.0031 +/- 0.0002, decays with a half-life of about 10 mus. On this same time scale the concentration of the ascorbate radical approximately doubles. It is concluded that the adduct at C2, but not the other adduct, loses water rapidly to form the ascorbate radical.  相似文献   

6.
The possible use of 2,2,6,6-tetramethyl-4-piperidone (TMPone) for the detection of singlet oxygen was investigated by gamma radiolysis and sonolysis of oxygen-saturated aqueous solutions. Formation of 2,2,6,6-tetra-methyl-4-piperidone-N-oxyl (TAN) was observed with both gamma radiolysis and sonolysis with a similar dependence on the concentration of TMPone up to 20 mM and a strong dependence on pH. In oxygen-saturated solutions the sonolysis of TMPone leads to the formation of the cyclic hydroxylamine (approx. 30% of the yield of TAN) while radiolysis does not. In the low pH range (5-6.5) and at high concentrations of OH radical scavengers (azide or formate), TAN is produced by sonolysis but not by radiolysis. Sonolysis of argon-saturated solutions of TMPone produces methyl radicals due to the high-temperature regions of the collapsing cavitation bubbles. The methyl radicals were detected by ESR (electron spin resonance) and spin trapping with 3,5-dibromo-2,6-dideuterio-4-nitroso-benzene sulfonate. Since the reaction of singlet oxygen with TMPone is also strongly dependent on pH, it does not seem likely that TMPone could be used for the detection of singlet oxygen in sonochemistry.  相似文献   

7.
The yields of single- and double-strand breaks (SSB and DSB) in calf thymus DNA, after 60Co gamma irradiation in dilute aqueous solution, have been determined via molecular weight measurements using a low-angle laser light scattering technique. The irradiations were administered to N2O-containing solutions of DNA in the absence and presence of oxygen and with different concentrations of the OH radical scavengers phenol, tertiary butanol, and methanol. OH radicals were found to produce SSB linearly with dose with a G value of 55 nmol J-1 and 54 nmol J-1 in deoxygenated and oxygenated solutions, respectively. DSB were formed according to a linear-quadratic dose relationship and the G value of linearly formed DSB were GDSB alpha(r.t.) = 3.5 nmol J-1 in deoxygenated and 3.2 nmol J-1 in oxygenated solution. The ratio of GSSB/GDSB alpha(r.t.) = gamma of 19 +/- 6 was independent of the scavenger concentration in the case of tertiary butanol and methanol-containing solutions. GDSB alpha(r.t.) is interpreted to result from a radical site transferred from a sugar moiety of the cleaved strand to the complementary intact strand. This process of radical transfer and subsequent cleavage of the second strand occurs with a probability of about 6 +/- 2% in the presence of oxygen at all scavenger concentrations studied. These data on scavenging capacity on GDSB alpha(r.t.) suggest that the double-strand breakage produced via radical transfer remains higher than that resulting from direct effect, up to scavenging capacities of about 10(9) s-1.  相似文献   

8.
Formation of free radicals in golden hamster embryo (GHE) cells in the frozen living state by gamma irradiation has been studied by electron spin resonance spectroscopy at 4.2 and 77 K. The relative yields of H atoms, OH radicals, and organic radicals trapped in the irradiated GHE cells are 12, 72, and 16%, respectively, of total radical yields. When dimethylsulfoxide (DMSO) is added to GHE cells at 77 K, a large quantity of CH2SOCH3 radicals (DMSO radicals) are formed after gamma irradiation. The yields of OH radicals are not affected by the addition of DMSO. When the GHE cell-DMSO mixtures are irradiated with gamma rays at 77 K and then warmed to 111 K, the OH radicals decay, whereas the DMSO radicals do not increase complementarily. Moreover, the decay rates of the OH radicals at 111 K do not depend upon the concentration of DMSO. Thus OH radicals do not react with DMSO during warming of the irradiated sample. When H atoms are produced by gamma irradiation of acid ice at 60 K, the decay rates of the H atoms at 77 K increase with increasing DMSO concentration, indicating that DMSO reacts with H atoms (CH3SOCH3 + H----.CH2SOCH3 + H2) at 77 K by quantum-mechanical tunneling. When the GHE cell-DMSO mixture is irradiated with gamma rays at 77 or 4.2 K in the dark, DMSO ions are produced in addition to DMSO radicals. Therefore it is concluded that DMSO does not scavenge OH radicals, but does capture H atoms, holes and/or electrons in the gamma-irradiated cells, resulting in the remarkable formation of DMSO radicals. This scavenger effect of DMSO may be related to the radioprotection of DMSO against cell killing described in the companion paper (Watanabe et al., Radiat. Res., this issue).  相似文献   

9.
Cell killing by ionizing radiation has been shown to be caused by hydroxyl free radicals formed by water radiolysis. We have previously suggested that the killing is not caused by individual OH free radicals but by the interaction of volumes of high radical density with DNA to cause locally multiply damaged sites (LMDS) (J. F. Ward, Radiat. Res. 86, 185-195, 1985). Here we test this hypothesis using hydrogen peroxide as an alternate source of OH radicals. The route to OH production from H2O2 is expected to cause singly damaged sites rather than LMDS. Chinese hamster V79-171 cells were treated with H2O2 at varying concentrations for varying times at 0 degree C. DNA damage produced intracellularly was measured by alkaline elution and quantitated in terms of Gray-equivalent damage by comparing the rate of its elution with that of DNA from gamma-irradiated cells. The yield of DNA damage produced increases with increasing concentration of H2O2 and with time of exposure. H2O2 is efficient in producing single-strand breaks; treatment with 50 microM for 30 min produces damage equivalent to that formed by 10 Gy of gamma irradiation. In the presence of a hydroxyl radical scavenger, dimethyl sulfoxide (DMSO), the yield of damage decreases with increasing DMSO concentration consistent with the scavenging of hydroxyl radicals traveling an average of 15 A prior to reacting with the DNA. In contrast to DNA damage production, cell killing by H2O2 treatment at 0 degree C is inefficient. Concentrations of 5 X 10(-2) M H2O2 for 10 min are required to produce significant cell killing; the DNA damage yield from this treatment can be calculated to be equivalent to 6000 Gy of gamma irradiation. The conclusion drawn is that individual DNA damage sites are ineffectual in killing cells. Mechanisms are suggested for killing at 0 degree C at high concentrations and for the efficient cell killing by H2O2 at 37 degrees C at much lower concentrations.  相似文献   

10.
The kinetics of the reaction of OH radicals with ferricytochrome c was studied in the time range 1 microsecond to 1 s by means of pulse radiolysis. The OH radicals reduce ferricytochrome c by 40% +/- 10%. The time course of the reduction is explained by a mechanism whereby a radical formed after hydrogen has been abstracted from the outer surface of the protein reduces the iron by electron tunnelling. We have calculated that the reducing electron in the radical is bound with an energy of at least 1.75 eV and that the frequency factor of the tunnelling process is v=10(11.5)s-1. This model accounts for the observed absorbance change in time range 5 . 10(-6)--10(-1)s. The time course of the reduction of ferricytochrome c by H radicals (Lichtin, N.N., Shafferman A. and Stein, G. (1974) Biochim. Biophys. Acta 357, 386--398) is explained by the same model.  相似文献   

11.
A derivation is given for the dependence of the rate constant of the reaction of OH radicals with a spherical macromolecule on the rate by which such radicals are scavenged by the medium. Experiments were carried out with oxygenated solutions of dilute single-stranded phi X174 DNA at 10(-4)M NaCl (large reaction radius of DNA) or at 10(-4)M NaCl + MgCl2 (small reaction radius) with t-butanol as a scavenger. The results of these experiments cannot be described by simple second-order competition, but can be explained by the predicted dependence of the rate constant of the reaction OH + DNA on the concentration of t-butanol. Furthermore, the results show that only part of the reactions of OH radicals with phi X174 DNA leads to DNA inactivation, and that even at zero scavenger concentration OH radicals are scavenged by other molecules than DNA, presumably impurities remaining even after careful purification of the DNA.  相似文献   

12.
An efficient scavenger for radiolytically generated hydroxyl (OH) radicals, p-nitrosodimethylaniline, was used to try to substantiate the presence of this oxygen radical species in several biochemical systems. Most of these systems which were investigated had previously been assumed to generate OH radicals, e.g. the autoxidation of 6-hydroxydopamine, the hydroxylating system NADH/phenazine methosulfate, and the oxidation of xanthine or acetaldehyde by xanthine oxidase. We did not observe inhibition of the bleaching of p-nitrosodimethylaniline in oxygenated solutions by other scavengers of OH radicals nor, in the case of xanthine/xanthine oxidase, by catalase and superoxide dismutase. We therefore conclude that, under biochemical conditions as opposed to radiolysis or photolysis, no freely diffusable OH radicals are formed. Rather, a strongly oxidizing OH-analogous complex is considered to represent the p-nitrosodimethylaniline-detectable species formed under these conditions.  相似文献   

13.
Hydroxyl radicals, generated by reaction of an iron-EDTA complex with H2O2 in the presence of ascorbic acid, attack deoxyribose to form products that, upon heating with thiobarbituric acid at low pH, yield a pink chromogen. Added hydroxyl radical "scavengers" compete with deoxyribose for the hydroxyl radicals produced and diminish chromogen formation. A rate constant for reaction of the scavenger with hydroxyl radical can be deduced from the inhibition of color formation. For a wide range of compounds, rate constants obtained in this way are similar to those determined by pulse radiolysis. It is suggested that the deoxyribose assay is a simple and cheap alternative to pulse radiolysis for determination of rate constants for reaction of most biological molecules with hydroxyl radicals. Rate constants for reactions of ATP, ADP, and Good's buffers with hydroxyl radicals have been determined by this method.  相似文献   

14.
The sonolysis of aqueous solutions of various dihydropyrimidines and substituted pyrimidines was investigated by ESR and spin trapping with the nonvolatile, water soluble spin trap, 3,5-dibromonitrosobenzene sulfonate (DBNBS) and its deuterated analog to examine the possibility of detecting new radicals specifically generated in the high temperature zones produced by collapsing cavitation bubbles. Similar ESR spectra were obtained from sonolysis of argon-saturated aqueous solutions, from uv photolysis of aqueous solutions containing H2O2, and from gamma radiolysis of nitrous oxide saturated solutions, although sonolysis of aqueous solutions leads to the formation of pyrimidine radicals by H atom as well as OH radical addition to the 5,6 double bond of pyrimidines. No evidence for specific new radicals formed in the high temperature regions induced by cavitation could be found. For the reactions of dihydropyrimidines with hydroxyl radicals additional spin adducts could be detected and identified with the spin trap DBNBS compared to 2-methyl-2-nitrosopropane which was used in previous studies; however, for alkylpyrimidines fewer spin adducts were observed. The use of the deuterated analog of DBNBS is helpful for unambiguous radical structure assignment.  相似文献   

15.
Spin trapping techniques combined with electron spin resonance spectroscopy were used to capture and detect free radicals generated in vivo during exposure to ionizing radiation. Tissue extracts of mice given an intraperitoneal or intragastric dose of the spin trap, alpha-phenyl-t-butyl nitrone prior to exposure to gamma radiation (2 to 5 Gy), contained a radical adduct with hyperfine splitting constants characteristic of spin adducts of carbon-centered lipid radicals. Considerably more radicals were trapped in tissues when the trap was given 3 h before radiation as compared to 30 min before exposure. The radicals observed may either be secondary species resulting from an attack on cellular components by products of water radiolysis, or primary radicals resulting from direct interaction of the radiation with biological molecules. The results indicate that the spin trapping agent is able to penetrate well into animal tissues, and to capture radical species under conditions where the latter would be expected to occur.  相似文献   

16.
17.
Using an electrophoresis assay system developed in our laboratory, we have simultaneously measured single- and double-strand DNA breaks (SSBs and DSBs) induced by gamma radiation in small SV40 viral DNA molecules, under conditions of greatly varying radical scavenger concentration and DNA configuration. In our experiments with aqueous solutions of SV40 DNA, we observe that SSB induction is linear with dose (one-hit response), over the entire hydroxyl scavenger efficiency range examined, from approximately 0 to 5 x 10(9) s-1, while DSB induction shifts from having a major quadratic component (two-hit response) at very low scavenger efficiencies to nearly pure linear for efficiencies greater than 10(7) s-1. The mean ratio of SSBs to one-hit DSBs remains relatively constant with increasing scavenger efficiency, decreasing from about 100:1 to 40:1 as the scavenger efficiency increases from 2 x 10(5) s-1 to 5 x 10(9) s-1, and the absolute induction efficiencies for breaks decrease by three orders of magnitude. This decrease takes place primarily at scavenger efficiencies above 1 x 10(8) s-1. Irradiation of intranuclear SV40 minichromosomes induces SSBs and DSBs at nearly the same efficiencies as does irradiation of free DNA at the highest scavenger concentrations examined, and at only about twice the efficiencies observed at -75 degrees C, where direct effects are believed to predominate. Our observations that the linear-quadratic mix of the dose-response curve for DSBs depends critically on scavenger efficiency may help to clarify the considerable confusion in the literature on the shape of such curves. Our observations of a relatively constant ratio between one-hit SSBs and DSBs at low and moderate scavenger efficiencies are in agreement with the recent hypothesis of Siddiqi and Bothe (Radiat. Res. 112, 449-463 (1987)) that, contrary to widely and long-held beliefs, the formation by indirect effects of a one-hit DSB in DNA occurs under these conditions predominantly by a mechanism involving a single OH radical, with a presumed radical transfer between complementary DNA strands. In contrast, our results for strongly protective conditions are not consistent with this hypothesis, but are consistent with the predictions of Ward's hypothesis (Radiat. Res. 86, 185-195, (1981)) that one-hit DSBs from indirect effects are produced predominantly by local clusters of OH radicals from single energy deposition events (locally multiply damaged sites) rather than by single OH radicals.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

18.
This paper provides evidence that dietary flavonoids can repair a range of oxidative radical damages on DNA, and thus give protection against radical-induced strand breaks and base alterations. We have irradiated dilute aqueous solutions of plasmid DNA in the absence and presence of flavonoids (F) in a "constant *OH radical scavenging environment", k of 1.5 x 10(7) s(-1) by decreasing the concentration of TRIS buffer in relation to the concentration of added flavonoids. We have shown that the flavonoids can reduce the incidence of single-strand breaks in double-stranded DNA as well as residual base damage (assayed as additional single-strand breaks upon post-irradiation incubation with endonucleases) with dose modification factors of up to 2.0+/-0.2 at [F] < 100 microM by a mechanism other than through direct scavenging of *OH radicals. Pulse radiolysis measurements support the mechanism of electron transfer or H* atom transfer from the flavonoids to free radical sites on DNA which result in the fast chemical repair of some of the oxidative damage on DNA resulting from *OH radical attack. These in vitro assays point to a possible additional role for antioxidants in reducing DNA damage.  相似文献   

19.
PURPOSE: To investigate the importance of two possible mechanisms of tyrosine oxidation on the yield of protein dimerization. The model chosen is hen and turkey egg-white lysozymes, which differ by seven amino acids, among which one tyrosine is in the 3 position. MATERIALS AND METHODS: Aqueous solutions of proteins were oxidized by OH(*) or N(*)(3) free radicals produced by gamma or pulse irradiation in an atmosphere of N(2)O. Protein dimers were quantified by SDS-PAGE and reverse-phase HPLC. Dityrosines were identified by absorption and fluorescence. RESULTS: Using N(*)(3) free radicals, the initial yields of dimerization are equal to (8.6 +/- 0.7) x 10(-9) mol J(-1) for both proteins. Using OH(*) free radicals, they become equal to (1.23 +/- 0.1) x 10(-8) and (4.42 +/- 0.1) x 10(-8) mol J(-1) for hen and turkey egg-white lysozymes, respectively (gamma radiolysis). DISCUSSION. N(*)(3) radicals react primarily with tryptophan residues only. Tyrosine gets oxidized by intramolecular long-range electron migration, whereas OH(*) may react directly with tyrosines. We propose a low participation of Tyr3 in turkey protein in the intramolecular process, because Tyr3 is far from all tryptophans. On the other hand, Tyr3 is very accessible to solvent and in a flexible area; thus collisions with OH(*) could easily be followed by intermolecular dimerization.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号