首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Isopropanol and acetone administered to rats in conditions leading to a similar blood acetone level differ markedly in their effects on lipid metabolism. Isopropanol administration determines a fatty liver, which is mainly related to a defect in hepatic lipoprotein synthesis. Acetone administration gives only raise to a slight increase in the liver triacylglycerol level. It does not alter the [1-14C] palmitate, [1-14C] glycerol or [U-14C] leucine incorporation into blood lipoproteins. Acetone does thus not appear to play a preminent role in the isopropanol induced fatty liver which seems to be related mainly to a direct action of the alcohol itself.  相似文献   

2.
1. The effect of ethanol on the metabolism of [1-(14)C]palmitate in rat liver was investigated in a single-pass perfusion system at concentrations of 10mm- or 80mm-ethanol and 0.2mm- or 1mm-palmitate. 2. After the perfusion the hepatic lipid was isolated in subcellular fractions. The two major fractions contained triacylglycerol from cytoplasmic lipid droplets and from endoplasmic reticulum plus Golgi apparatus respectively. 3. In experiments with 0.2mm-palmitate perfusion with 10mm- or 80mm-ethanol did not measurably increase the esterification, and the oxidation was markedly decreased and the fatty acid uptake was not affected. 4. Perfusion with ethanol, at 1mm-palmitate, increased the fatty acid uptake, increased esterification and decreased oxidation. The effects of 10mm- and 80mm-ethanol were similar. The incorporation of [1-(14)C]palmitate into triacylglycerol in cytoplasmic lipid droplets was not affected statistically significantly by ethanol. Ethanol increased the incorporation of [1-(14)C]palmitate into di- and tri-acylglycerol in the membranous fraction. Estimated chemically, the contents of di- and tri-acylglycerol were only slightly affected by ethanol. These results suggest that the effect of ethanol was to increase the turnover of fatty acids in triacylglycerol rather than to increase its accumulation. 5. The results indicate that an increased concentration of fatty acids is more important for the formation of acute fatty liver in fed rats than are the direct effects of ethanol on hepatic fatty acid metabolism.  相似文献   

3.
Isopropanol administered in a large (6 g/kg, orally) as well as in a lower dose (1 g/kg, I.P.) is slowly oxidized into acetone by the intact rat. Using two inhibitors, 3 amino-1,2,4-triazole and pyrazole, investigations on the hepatic enzymatic system involved in the oxidation of isopropanol show that catalase does not play an important part in this pathway, contrary to alcohol dehydrogenase which is the major enzyme responsible for this oxidation. Although isopropanol oxidation is mainly catalysed in the liver through alcohol dehydrogenase, no alteration of the hepatic extramitochondrial redox state occurs after the administration of a large as well as of a lower dose of isopropanol. From these experiments it may be concluded that alterations of the liver NAD+/NADH ratio, which seem to play an important part in the ethanol induced fatty liver, are not involved in the isopropanol induced one.  相似文献   

4.
1. The metabolism of [1-14C]palmitate in rat liver was studied in a single-pass perfusion system at concentrations of 0.2 or 1 mM. 2. After the perfusion the liver was homogenized and the floating fat was isolated. The incorporation of [1-14C]palmitate into triacylglycerol in this pool increased 9-fold when the palmitate concentration in the medium was increased from 0.2 to 1 mM. In time studies with 1 mM-[1-14C]palmitate 75% of the total accumulation of triacylglycerol occurred in this pool. Our results support the concept that the floating-fat fraction contains the storage pool of triacylglycerol, i.e. the cytoplasmic lipid droplets. 3. In a particulate preparation consisting mainly of mitochondria and microsomal fraction the incorporation of [1-14C]palmitate into triacylglycerol was proportional to the fatty acid concentration. Triacylglycerol in the perfusate medium and in the particulate fraction was in isotopic equilibrium, which indicates that the particulate fraction contained the precursor pool for secreted triacylglycerol, i.e. the pool in endoplasmic reticulum and Golgi apparatus. 4. The oxidation to labelled water-soluble products and to CO2 was increased 14-fold by the 5-fold increase in palmitate concentration.  相似文献   

5.
This investigation was designed to determine the effect of a novel soluble beta-glucan salecan on acute alcohol-induced hepatic injury in mice. Mice were given salecan (15 or 30 mg/kg) or PBS for 4 d. Ethanol (6 g/kg) was administered orally 1 h after the last injection. The animals were sacrificed at 10 h after alcohol administration. Pretreatment with salecan significantly ameliorated the hepatic damage induced by ethanol, as evidenced by markedly reduced serum aminotransferase activities and hepatocyte steatosis. Salecan administration remarkably alleviated the formation of thiobarbituric acid-reactive substances and counteracted glutathione depletion. The mRNA level of peroxisome proliferator activated receptor alpha, a major gene responsible for fatty acid oxidation, was significantly increased after salecan pretreatment. The expression of diacylglycerol acyltransferase 1, an important gene responsible for triacylglycerol synthesis, was markedly decreased after salecan was administrated. These findings suggest that salecan might represent a novel protective strategy against alcoholic liver injury.  相似文献   

6.
This investigation was designed to determine the effect of a novel soluble beta-glucan salecan on acute alcohol-induced hepatic injury in mice. Mice were given salecan (15 or 30 mg/kg) or PBS for 4 d. Ethanol (6 g/kg) was administered orally 1 h after the last injection. The animals were sacrificed at 10 h after alcohol administration. Pretreatment with salecan significantly ameliorated the hepatic damage induced by ethanol, as evidenced by markedly reduced serum aminotransferase activities and hepatocyte steatosis. Salecan administration remarkably alleviated the formation of thiobarbituric acid-reactive substances and counteracted glutathione depletion. The mRNA level of peroxisome proliferator activated receptor alpha, a major gene responsible for fatty acid oxidation, was significantly increased after salecan pretreatment. The expression of diacylglycerol acyltransferase 1, an important gene responsible for triacylglycerol synthesis, was markedly decreased after salecan was administrated. These findings suggest that salecan might represent a novel protective strategy against alcoholic liver injury.  相似文献   

7.
After an intravenous injection of a pulse of [U-14C]palmitate to starved rats, the time-dependent radioactivity profiles were determined in the triacylglycerol (triglyceride) of hepatic microsomal fractions, floating fat, mitochondria and nuclei. The profile of activity in serum gave a value of 0.08 mg/min per 100 g body wt. for the irreversible disposal rate of triacylglycerol from serum. This value, combined with the previously estimated rate of movement of triacylglycerol from serum to liver, and the reported rate from intestine to serum, gave a calculated value of 0.35 mg/min per 100 g body wt. for release rate of triacylglycerol from liver to serum. The rate of release of hepatic triacylglycerol into serum was also measured by the widely used Triton WR-1339 method. The rate obtained with this technique (0.15 mg of triacylglycerol/min per 100 g body wt.) was identical with that reported previously. During the interval from 45 min to 3h after ethanol administration this rate increased to 0.18 mg/min per 100 g body wt. It was concluded that the use of Triton underestimates the true rate of movement of triacylglyerol from liver to serum.  相似文献   

8.
M Sharkawi 《Life sciences》1984,35(23):2353-2357
The activity of liver alcohol dehydrogenase (LADH) from rats sacrificed two hours after the administration of ethanol 3, 4 or 5 g/kg intraperitoneally was significantly inhibited compared to the activity of LADH from control rats. LADH activity was inversely related to the dose of ethanol administered, to the concentration of ethanol in the liver, and to the concentration of ethanol in the blood. The clearance of blood ethanol in rats was dose-dependent and was inversely related to the dose administered. The half-life of ethanol elimination increased as the dose of ethanol increased. These results suggest that ethanol-induced inhibition of LADH can occur in vivo and that the level of activity of this enzyme determines the rate of oxidation of ethanol.  相似文献   

9.
In the experimental conditions used, cysteine administered per os together with ethanol reduces the blood alcohol levels, but does not modify significantly the rate of alcohol oxidation. No effect of cysteine administration is however observed when ethanol is injected intraperitoneally. Cysteine addition in vitro enhances ethanol consumption by liver slices and reduces at the same time 14CO2 production from [2-14C] ethanol. This effect is only observed with a high cysteine/ethanol molar ratio. The changes in the blood alcohol level resulting from cysteine administration do not appear to result from such an interaction with ethanol oxidation, but seem to be due to a delayed ethanol absorption from the gastrointestinal tract.  相似文献   

10.
Effects of maternal ethanol consumption were investigated on the rates of protein synthehsis by livers of foetal and neonatal rats both in vivo and in vitro, and on the activities of enzymes involved in protein synthesis and degradation. The rates of general protein synthesis by ribosomes in vitro studied by measuring the incorporation of [14C]leucine into ribosomal protein showed that maternal ethanol consumption resulted in an inhibition of the rates of protein synthesis by both foetal and neonatal livers from the ethanol-fed group. The rates of incorporation of intravenously injected [14C]leucine into hepatic proteins were also significantly lower in the foetal, neonatal and adult livers from the ethanol-fed group. Incubation of adult-rat liver slices with ethanol resulted in an inhibition of the incorporation of [14C]leucine into hepatic proteins; however, this effect was not observed in the foetal liver slices. This effect of externally added ethanol was at least partially prevented by the addition of pyrazole to the adult liver slices. Pyrazole addition to foetal liver slices was without significant effect on the rates of protein synthesis. Cross-mixing experiments showed that the capacity of both hepatic ribosomes and pH5 enzyme fractions to synthesize proteins was decreased in the foetal liver from the ethanol-fed group. Maternal ethanol consumption resulted in a decrease in hepatic total RNA content, RNA/DNA ratio and ribosomal protein content in the foetal liver. Foetal hepatic DNA content was not significantly affected. Ethanol consumption resulted in a significant decrease in proteolytic activity and the activity of tryptophan oxygenase in the foetal, neonatal and adult livers. It is possible that the mechanisms of inhibition of protein synthesis observed here in the foetal liver after maternal ethanol consumption may be responsible for at least some of the changes observed in 'foetal alcohol syndrome'.  相似文献   

11.
An acute intraperitoneal injection of ethanol (0.7 or 2.1g/kg body wt.) causes the reversible, dose-dependent accumulation of hepatic triglyceride in rats. By using a pulse of [14C]palmitate injected into a tail vein, it was found that ethanol (2.1g/kg)had no effect on the flux of unesterified fatty acid of serum (4.3mumol/min per 100g body wt.). However, either dose increased the fraction of the total flux going to liver from 0.16 to0.27 as rapidly as could be measured (30s), and it remained elevated until all ethanol had been cleared from the blood. The fraction of the total radioactivity in lipids of liver that was in triglyceride increased linearly for 1 h from 30 to 50% and there was a simultaneous decrease in phospholipid from 60 to 40%. The rate of synthesis of hepatic triglyceride derived directly from unesterified fatty acid of serum was calculated by using the flux rate of unesterified fatty acid in serum, the fractional hepatic uptake of this flux, and the percentage of liver fatty acid esterified to triglyceride. This contribution is related to the total synthetic rate of hepatic triglyceride (rate of accumulation+rate of release) to determine quantitatively how much of the developing fatty liver is attributable to increased uptake of unesterfied fatty acid of serum. At the higher dose of ethanol, about half of the accumulating triglyceride is derived from this source, whereas with the lower dose of ethanol it can account for all of the build-up.  相似文献   

12.
We have recently shown that the long-term ingestion of dietary diacylglycerol (DAG) mainly containing 1,3-isoform reduces body fat accumulation in humans as compared to triacylglycerol (TAG) with the same fatty acid composition. The fat reduction in this human experiment was most pronounced in visceral fat and hepatic fat. Recent animal studies have also indicated that dietary DAG induces alteration of lipid metabolism in the rat liver. In the present study, the dietary effects of DAG on high fat diet-induced hepatic fat accumulation and hepatic microsomal triglyceride transfer protein (MTP) activity were examined in comparison with those of TAG diet in rats. When the TAG oil content was increased from 10 to 30 g/100 g diet, hepatic TAG concentration, hepatic MTP activity and MTP large subunit mRNA levels were significantly increased after 21 days. However, when the dietary TAG oil (30 g/100 g diet) was replaced with the same concentration of DAG oil with the same fatty acid composition, the increase of the TAG concentration and the MTP activity in the liver were significantly less and the mRNA levels remained unchanged. The MTP activity levels correlated significantly with hepatic TAG concentration.These results showed that dietary DAG may suppress high fat diet-induced MTP activity in the liver, and indicated the possibility that hepatic TAG concentration may regulate hepatic MTP activity.  相似文献   

13.
The mechanisms by which ethanol causes accumulation of hepatic triacylglycerols are complex. It has been proposed that nitric oxide/cyclic GMP signaling pathway may be involved in regulation of fatty acid metabolism in the liver. Here, we investigated if this mechanism may have a role in adaptation to ethanol consumption. Hepatocytes were isolated from rats fed with an ethanol-containing liquid diet and pair-fed control rats, and incubated with a range of concentrations of 8-bromo-cyclic GMP. In both types of cells, this cyclic GMP analog inhibited in parallel fatty acid synthesis de novo and acetyl-CoA carboxylase activity. Addition of 8-bromo-cyclic GMP also decreased the rate of palmitate esterification to triacylglycerols and phospholipids, whereas palmitate oxidation was increased. However, in all these metabolic effects, hepatocytes from ethanol-fed rats were significantly less sensitive to the addition of 8-bromo-cyclic GMP. In order to know if this may be a more general mechanism of adaptation to ethanol, we also studied the effects on glucose metabolism. Similarly, hepatocytes from ethanol-fed rats showed a decreased sensitivity in the inhibition by 8-bromo-cyclic GMP of glycogen synthesis, fatty acid synthesis and the synthesis of glycerol backbone of hepatic triacylglycerols. These data suggest that ethanol consumption induces a desensitization of the regulatory effects mediated by cyclic GMP in fatty acid metabolism, contributing to triacylglycerol accumulation in the liver.  相似文献   

14.
1. Male rats were injected daily for 5 days with 0.15m-NaCl, corticotropin, cortisol or l-thyroxine and the rates of glycerolipid synthesis were measured in the livers after intraportal injection of [(14)C]palmitate and [(3)H]glycerol. 2. Injection of all three hormones decreased the rates of body-weight gain. 3. Cortisol treatment increased the weight of the liver relative to body weight. 4. Thyroxine treatment increased the relative rate of triacylglycerol synthesis from [(3)H]glycerol and decreased the relative accumulation of (3)H and (14)C in diacylglycerol. It did not significantly alter the accumulation of these isotopes in phosphatidate nor the activity of the soluble phosphatidate phosphohydrolase in the total liver. However, this activity increased by 1.5-fold when expressed relative to the soluble protein of the liver. The increased triacylglycerol synthesis appears to be related to a general increase in the turnover of fatty acids in the liver. 5. Treatment with cortisol and corticotropin increased the relative rate of triacylglycerol synthesis from [(3)H]glycerol, decreased the accumulation of (3)H in phosphatidate and increased the flux of both isotopes from phosphatidate to diacylglycerol. This appeared to be caused by the increased activity of the soluble phosphatidate phosphohydrolase that was observed in the livers of the cortisol-treated rats. 6. It is proposed that cortisol could be directly or indirectly involved in increasing the activity of hepatic phosphatidate phosphohydrolase in starvation, diabetes, laparotomy, subtotal hepatectomy, liver damage, ethanol feeding and in obesity. This enzyme adaptation could contribute to the potential of the liver to increase its synthesis and accumulation of triacylglycerols or to secrete very-low-density lipoproteins.  相似文献   

15.
Experiments were made with white random-bred rats (males) exposed to ethanol. The content of serotonin measured by spectrofluorometry was higher in the hypothalamus, brain stem and intestine, and was lower in the thalamus, striatum liver and blood in the animals predisposed to voluntary alcohol consumption and with lateral position duration 62 +/- 18 min as compared with the animals not predisposed to alcohol consumption and with lateral position duration 196 +/- 23 min, the dose of ethanol being 4.5 g/kg i. p. Thirty minutes after ethanol administration in a dose of 2.5 g/kg i. p. to the alcohol-predisposed rats there was a lowering of the serotonin content in the hypothalamus and an increase in the thalamus, brain stem, liver and blood. Meanwhile in the rats not predisposed to alcohol consumption, the serotonin content rose in the hypothalamus, brain stem, liver, intestine and blood and fell in the thalamus and striatum. It is assumed that the serotoninergic system of the brain may play a role in the formation of "positive" or "negative" attitudes to ethanol in the population of white random-bred rats.  相似文献   

16.
Isolated rat hepatocytes were used to study in vitro effects of 10 mM D-galactosamine (GalN) on hepatic fatty acids metabolism. At this concentration, membrane integrity and biochemical competence (i.e., gluconeogenesis and ureogenesis) remained unaffected. Protein synthesis and secretion, as measured by the incorporation of [U-14C]leucine into total and medium protein, was significantly inhibited when incubated for more than 2 h. GalN activated the incorporation of [U-14C]palmitate into triacylglycerols and depressed its utilization in the formation of labelled ketone bodies and 14CO2. Hepatocytes isolated from fasted rats exposed to GalN in vitro did not show any variation in prelabelled triacylglycerol secretion. GalN induced a rapid inhibition of prelabelled triacylglycerol secretion by hepatocytes isolated from fed rats in which this secretion occurred to a larger extent than in hepatocytes isolated from fasted rats. The data reported here suggest that GalN induces a rise of triacylglycerol synthesis by inhibiting the palmitate oxidation pathway and a decrease of triacylglycerol secretion through an early derangement of the secretory pathway.  相似文献   

17.
18.
To study the potential relationship between circulating triacylglycerol (TAG) levels and lipoprotein lipase (LPL) activity in the newborn rat liver, pups from undernourished or normal control mothers were nursed by normal dams, and studied at 0, 1, 15 or 30 days of age. Plasma TAG levels and liver TAG concentration increased more in pups from undernourished mothers than they did in controls. At birth, liver LPL activity was similarly high in both groups but, whereas in controls it decreased progressively after birth, in pups from undernourished mothers it remained stable until 15 days of age. Results suggest that the hypertriglyceridemia present in pups from undernourished mothers may be responsible for the sustained high LPL activity in their liver which may enhance the hepatic uptake of circulating TAG.  相似文献   

19.
The bifunctional wax ester synthase/acyl-coenzyme A:diacylglycerol acyltransferase (WS/DGAT) is the key enzyme in storage lipid accumulation in the gram-negative bacterium Acinetobacter calcoaceticus ADP1, mediating wax ester, and to a lesser extent, triacylglycerol (TAG) biosynthesis. Saccharomyces cerevisiae accumulates TAGs and steryl esters as storage lipids. Four genes encoding a DGAT (Dga1p), a phospholipid:diacylglycerol acyltransferase (Lro1p) and two acyl-coenzyme A:sterol acyltransferases (ASATs) (Are1p and Are2p) are involved in the final esterification steps in TAG and steryl ester biosynthesis in this yeast. In the quadruple mutant strain S. cerevisiae H1246, the disruption of DGA1, LRO1, ARE1, and ARE2 leads to an inability to synthesize storage lipids. Heterologous expression of WS/DGAT from A. calcoaceticus ADP1 in S. cerevisiae H1246 restored TAG but not steryl ester biosynthesis, although high levels of ASAT activity could be demonstrated for WS/DGAT expressed in Escherichia coli XL1-Blue in radiometric in vitro assays with cholesterol and ergosterol as substrates. In addition to TAG synthesis, heterologous expression of WS/DGAT in S. cerevisiae H1246 resulted also in the accumulation of fatty acid ethyl esters as well as fatty acid isoamyl esters. In vitro studies confirmed that WS/DGAT is capable of utilizing a broad range of alcohols as substrates comprising long-chain fatty alcohols like hexadecanol as well as short-chain alcohols like ethanol or isoamyl alcohol. This study demonstrated the highly unspecific acyltransferase activity of WS/DGAT from A. calcoaceticus ADP1, indicating the broad biocatalytic potential of this enzyme for biotechnological production of a large variety of lipids in vivo in prokaryotic as well as eukaryotic expression hosts.  相似文献   

20.
Acute hydrazine exposure elevated rat liver triacylglycerol content and produced a rapid rise in triacylglycerol production from sn-[1,3-14C]glycerol 3-phosphate by liver homogenate and microsomal fractions. Hydrazine treatment also increased the incorporation of [1,3-14C]glycerol into hepatic triacylglycerol by the intact animal. Homogenates of hepatocyte monolayers exposed to hydrazine in vitro also exhibited an increased capacity to form triacylglycerol from sn-[1,3-14C]glycerol 3-phosphate. Hydrazine-dependent increases in hepatic triacylglycerol production measured in vitro correlated well with an increase in microsomal phosphatidate phosphohydrolase (EC 3.1.3.4) activity. Therefore, the fatty liver associated with hydrazine exposure may be explained in part by a rise in the enzymatic capacity of hepatic triacylglycerol biosynthesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号