首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Patterns of translocation of recently-assimilated phosphorus (P) exported from'young' source roots (located 3–4 nodes from the stolon apex) and 'old' source roots (located near the base of the stolon) on the primary stolon of clonal plants of the forage legume white clover ( Trifolium repens L.) were determined using 32P. Plants of a small-leaved genotype and of a large-leaved genotype were grown in sand culture at two notionally limiting or near-limiting rates of P supply and one non-limiting rate of supply. The small-leaved genotype showed little response in growth rate to the full range of P treatments whereas growth of the large-leaved genotype at the non-limiting rate of P supply was 2. 4 times greater than at the two low rates of P supply. Source roots of both genotypes exported only 26–30% of the P they acquired to the shoot within 24 h when P supply was limited whereas at the high-P rate 54% of recently-assimilated P was exported. Patterns of translocation of exported P to specific sinks differed little between the genotypes and the P treatments; branches were the main sink, accounting for nearly 80% of the estimated amounts of P (μg day−1) exported from young and old roots combined. Translocation patterns from individual roots were determined largely by the modular structure of plants and by the location of the root relative to the major sinks, and were therefore consistent with the same source-sink principles which govern carbohydrate translocation in clonally-growing species. There were strong suggestions that storage of P in stolons and roots played a much greater role in the growth of the small-leaved plants than of the large-leaved plants.  相似文献   

2.
Nassiri  M.  Elgersma  A. 《Plant and Soil》2002,246(1):107-121
The effects of applied nitrogen (N) on dynamics of regrowth, dry matter (DM) allocation and leaf characteristics of grass and clover were investigated. Binary mixtures and monocultures of the diploid perennial ryegrass cultivars Barlet (erect) and Heraut (prostrate) and the white clovers cvs. Alice (large-leaved) and Gwenda (small-leaved) were established in a field experiment. Grass monocultures received three levels of N application (0, 140 or 280 kg N ha–1), and mixtures 150 kg N ha–1 (+N) or no N (–N). N was applied split over the season. Application of N reduced the average clover content in the DM of the mixtures from 43 to 12%. Due to defoliation, clover lost relatively more leaf area and less DM than grass, leading to a lower clover fraction in the leaf area index (LAI) of the stubble at the start of the next regrowth. In the –N mixtures, the clover fraction of the biomass and of the LAI increased within successive regrowth periods. In the +N mixtures, large-leaved Alice maintained its content during summer, mainly due to its greater petiole length which increased in response to N. The opposite was observed for Gwenda. At each harvest, the content of small-leaved Gwenda in the LAI and DM was lower than in the stubble at the start of regrowth. The allocation of DM to the petioles of Alice led to a decrease in the leaf weight ratio (LWR) in the +N mixtures, while Gwenda had a higher LWR and specific leaf area (SLA) in the +N mixtures than in the –N mixtures. There was little or no effect of ryegrass cultivar on competition with white clover.  相似文献   

3.
Detailed measurements of irrigated ryegrass/white clover swards growing without interruption, with or without nitrogen fertiliser in spring, showed that the relative growth rate of clover was as great as that of grass, in the + N sward, and considerably greater than grass, in the – N sward. Clover leaves were not overtopped by grass leaves. Indeed, in both swards, clover had a greater proportion of its leaf lamina area in the upper, well lit, layers of the canopy than grass did. Consequently, clover had a greater mean rate of leaf photosynthesis in situ in the sward than grass. Clover's advantage in photosynthetic rate per leaf area was offset to some extent by its smaller ratio of leaf area to total above-ground dry weight than grass. The consequences of these results for our understanding of competition between grass and clover in mixed swards are discussed.  相似文献   

4.
The growth, morphology and carbon allocation patterns of F1progeny white clover (Trifolium repens L.) plants selected foreither low (‘LBF’) or high (‘HBF’) frequencyof stolon branching were compared in two controlled-environmentexperiments. Selections from within both a small-leaved (‘GrasslandsTahora’) and a large-leaved (‘Grasslands Kopu’)clover cultivar were compared, and plants were grown under arelatively lenient defoliation treatment (expt 1) or under threelevels of defoliation seventy (expt 2). Carbon allocation patternswere measured by 14CO2 pulse-chase labelling using fully unfoldedleaves on the main (parent) stolon. LBF and HBF displayed consistent differences in the selectedcharacter though, within cultivars, the difference between selectionswas most pronounced for Kopu. The selections developed fundamentallydifferent branching structures resulting from differences inbranching frequency, with total branch weight per plant averaging122 mg for LBF and 399 mg for HBF (mean of both experiments).More C moved from parent stolon leaves to branches in HBF thanin LBF (mean 22.6% vs. 15.1% respectively of the 14C exportedfrom source leaves). More C also moved to stolon tissue in HBF,but, counterbalancing this and the difference in allocationto branches, less moved to developing leaves and roots on theparent stolon itself compared to LBF. However, the total weightof developing leaves and roots per parent stolon was generallygreater in HBF than in LBF, probably reflecting greater C importby these sinks from the higher number of branches present perplant in the former selection. HBF plants were consistentlylarger at harvest than LBF plants. There were no defoliationtreatment x selection interactions in C allocation patternsin expt 2. The implications of the results for plant performancein grazed pastures are discussed. Branching, carbon translocation, defoliation, growth, morphology, Trifolium repens, white clover  相似文献   

5.
A two-year (2015 and 2016) grazing study was established to compare ewe and lamb performance when grazed on a perennial ryegrass only sward compared to more diverse sward types. In that study four sward types were investigated: a perennial ryegrass (Lolium perenne) only sward receiving 163 kg nitrogen per hectare per year (N/ha/yr) (PRG); a perennial ryegrass and white clover (Trifolium repens) sward receiving 90 kg N/ha/yr (PRGWC); a six species sward (two grasses (perennial ryegrass and timothy (Phleum pratense)), two legumes (white and red clover (Trifolium pratense)) and two herbs (ribwort plantain (Plantago lanceolata) and chicory (Cichorium intybus)) receiving 90 kg N/ha/yr (6S); and a nine species sward containing cocksfoot (Dactylis glomerata), greater birdsfoot trefoil (Lotus pedunculatus) and yarrow (Achillea millefolium) in addition to the six species listed above, receiving 90 kg N/ha/yr (9S). Each sward type was managed as a separate farmlet and stocked with 30 twin-rearing ewes at a stocking rate of 12.5 ewes/ha under rotational grazing management from turnout post-lambing until housing. Lamb live weight was recorded fortnightly and lambs were drafted for slaughter at 45 kg. Ewe live weight and body condition score (BCS) were recorded on five occasions annually. Lamb faecal egg count (FEC) was recorded fortnightly and lambs were treated with anthelmintics when mean lamb FEC per sward type was above 400 eggs per gram. Ewes grazing the 6S and 9S swards had heavier (P < 0.01) live weights and BCS throughout the study than the ewes grazing the PRG sward. Lambs grazing the 6S sward were heavier than lambs grazing all other sward types of 14 weeks old (P < 0.05). Lambs grazing the PRG sward required more days to reach slaughter weight than lambs grazing all other sward types (P < 0.001). Lambs grazing the 6S and 9S swards required fewer anthelmintic treatments than lambs grazing the PRG or PRGWC swards. In conclusion, grazing multispecies swards improved ewe and lamb performance and reduced the requirement for chemical anthelmintics.  相似文献   

6.
A field experiment was designed to recreate a species‐rich mesotrophic grassland community of conservation worth. Trifolium repens (white clover) was observed to increase significantly in both frequency and abundance in sown plots grazed by cattle, but not in plots cut in June and subsequently grazed by cattle. In both these treatments permanent quadrats containing clover patches were found to be lower in species richness than were quadrats without clover. In both treatments botanical diversity was seen to decline over time. In the grazed‐only treatment the loss of diversity may be linked to the increase in clover. In the cut and grazed plots, T. repens did not become so abundant but diversity was still seen to decline, possibly due to the loss of low growing species from the taller sward. A pot experiment which varied the sowing density of a mix of seven wild flower species in full factorial combination with cutting frequency was established on soils from an arable field also sown with a single density of clover. T. repens was seen to decline from initial high cover estimates in infrequently cut and uncut treatments. In the pot experiment where a grass component to the vegetation was absent, clover was seen to have less impact on the other forbs than it did in the field. It is suggested that, being a nitrogen fixer, T. repens may have a competitive edge in ex‐arable soils low in available nitrogen. The observed reduction in botanical diversity may be a result of this increase in available nitrogen, facilitating the spread of the sown grasses and preventing the recovery of the sown forbs that were excluded by the invasion of T. repens. It is suggested that reducing the proportion of grass in the seed mixtures during grassland habitat creation on these soils may help reduce or delay this effect.  相似文献   

7.
The benefits of using white clover in pastures have been widely recognised for many years. However, clover is perceived as being unreliable because of its typically low content, which is spatially and temporally variable, in mixed pastures. One proposed solution to increase the proportion of clover in the diet of grazing animals and composition in the pasture is to spatially separate clover from grass within the same field. In a field experiment ryegrass and white clover were grown in fine mixtures, and in pure alternating strips of ryegrass and clover of 1.5 m, 3 m or 18 m width within a field. Pastures were grazed for two grazing periods of 9 and 12 weeks, and measurements of sward surface height (SSH), herbage mass and composition and clover morphology were taken. Grazing behaviour was also observed. Results showed that spatial separation in the long term, when compared with a fine mixture, increased clover availability (18% to 30% v. 9%, based on standing dry matter) and was not grazed to extinction. Ewes maintained their preference for clover throughout the experiment (selection coefficient 2 to 5), which resulted in a reduction in the SSH of clover in monocultures to <3 cm and significant changes to the morphology of clover (smaller leaves, shorter petioles and thicker stolon), at the expense of maximising their intake. Spatial separation in the short term may therefore allow grazing animals to select their preferred diet; however, in the long term in continuously grazed pasture, their preference for clover depletes its availability.  相似文献   

8.
To understand the effects of grazing on grassland plants sexual and clonal recruitment, we conducted a demographic field investigation of species recruitment along a grazing gradient in the Tibetan alpine grassland. Grazing intensity had significant effects on quantity and diversity of sexual and clonal recruitment. Sexual recruitment increased significantly, but clonal offspring production decreased significantly with increased grazing intensity. Grazing intensity had different, significant effects on offspring recruitment of the various functional groups in the community, grasses (GG), sedges (SG), legumes (LG) and forbs (FG). Higher grazing intensity reduced offspring recruitment of GG and SG; it increased offspring recruitment of LG and FG. Seedlings were significantly more abundant in lightly grazed, moderately grazed and heavily grazed meadows than in non-grazed grasslands. Offspring diversity from sexual recruitment was significantly higher than that from clonal recruitment in grazed than in non-grazed grasslands. Our studies indicate that moderate grazing had positive effects on seedling recruitment and offspring diversity, but heavy gazing may alter community succession by affecting recruitment patterns among the four plant functional groups.  相似文献   

9.
 当年生小枝是多年生植物体上最活跃的部分之一, 其生物量分配是植物生活史对策研究的一个重要内容。该文采用标准化主轴估计(Standardized major axis estimation, SMA)和系统独立比较分析(Phylogenetically independent contrast analysis, PIC)的方法, 研究了杜鹃花属(Rhododendron)植物一年生小枝的大小对小枝叶片、叶柄和茎的生物量分配的影响, 以及对叶面积支持效率(即单位质量小枝支持的叶面积)的影响。结果显示: 1)小枝大小对叶片生物量分配比率的影响不显著, SMA斜率为1.040 (95%的置信区间(CI)=0.998~1.085); 但是, 小枝越大, 叶柄生物量分配比例越高(SMA斜率为1.245, 显著大于1.0, 呈显著的异速生长关系)。2)小枝越小, 单叶面积越小(支持Corner法则), 单位质量小枝所支持的叶面积越大, 即具有较小枝条和较小叶片的物种可能具有较高的叶面积支持效率。这些结果有助于我们更好地理解亲缘关系十分接近的杜鹃花属植物, 在不同生境条件下叶片大小的差异, 以及为什么在胁迫生境条件下小叶物种更为常见。  相似文献   

10.
Coccoloba ecuadorensis sp. nov, a large-leaved species from the humid coastal forest of Northwestern Ecuador, and C. trollii sp. nov., a small-leaved species from an isolated patch of dry forest in central Bolivia are described.  相似文献   

11.
Perennial ryegrass and perennial ryegrass/white clover permanent dairy pastures are compared with respect to productivity, environmental impact and financial costs in nitrate vulnerable zones (NVZ) in the UK. With appropriate management, and utilisation of recommended perennial ryegrass and white clover cultivars, white clover is likely to stabilise at around 20% of total dry matter production in a mixed pasture. Plant dry matter production and milk production from a perennial ryegrass/white clover pasture are likely to be similar to that from a perennial ryegrass pasture receiving 200 kg N ha−1 annum−1 and around 70% of that obtained with perennial ryegrass supplied with 350–400 kg N ha−1 annum−1. Nitrate, phosphorus and methane losses from the system and decreases in biodiversity relative to a grazed indigenous sward are likely to be similar for a perennial ryegrass/white clover pasture and a perennial ryegrass pasture receiving 200 kg N ha−1 annum−1: nitrate leachate from both systems is likely to comply with European legislation. Greenhouse gas emissions resulting from nitrogen (N) fertiliser production would be avoided with the perennial ryegrass/white clover pasture. Within NVZ stocking rate restrictions, white clover can provide the N required by a pasture at a lower financial cost than that incurred by the application of N fertiliser.  相似文献   

12.
Knowledge of factors that influence oviposition behavior of malaria mosquitoes is critical to vector control measures aimed at larval habitat modifications and source reduction. Anopheles minimus s.l., an important malaria vector in Southeast Asia, generally breeds in clear, unpolluted water along shaded grassy edges of slow-moving streams. The objective of this study was to determine the influence of vegetation and plant structure on An. minimus s.l. ovipositing females. Twenty gravid female mosquitoes per replication were given a choice to lay eggs in bowls surrounded by different combinations of bare soil, grasses, small-leaved plants, and large-leaved plants. An. minimus s.l. females generally preferred to lay eggs in bowls with vegetation. A significantly higher number of eggs were found in bowls with small-leaved plants compared to bowls with grasses (P<0.05). The results suggest that gravid females preferred oviposition habitats in the following order: small-leaved plants > large-leaved plants > grasses > soil. Further studies are needed to determine the possible roles of plant structure and factors such as semiochemicals in the different species of the An. minimus species complex. Knowledge of female oviposition behavior is essential for the development of locally adapted vector control approaches.  相似文献   

13.
The evolution of sex is still a major unsolved puzzle in biology. One of the most promising theoretical models to answer this question is the Red Queen hypothesis. The Red Queen hypothesis proposes a fast adaptation of pathogens to common genotypes and therefore a negative frequency-dependent selection against common genotypes. Clonal organisms should be especially endangered when co-occurring with closely related sexual species. In this context, major histocompatibility (MHC) genes have been discussed to be auspicious candidates that could provide the genetic basis on which selection for immune competence could act. In this study, we investigated MHC variability in a clonal teleost fish: the Amazon molly, Poecilia formosa . The Amazon molly is an ideal candidate to test the Red Queen hypothesis as it is a clonal species but co-occurs with a closely related sexual species and should therefore be especially susceptible to pathogen infection. We found that allele numbers did in general not differ between sexual and clonal 'species' but that genotypic variability is reduced in the clonally reproducing fish, especially in the polyploids. We conclude that in clonal organisms, genotype frequency might be more important for immune competence than MHC allele number. Amazon mollies and their co-occurring parental species clearly fulfil a prerequisite of the Red Queen hypothesis and should therefore provide an ideal system to experimentally test this basic principle probably underlying the evolution of sex.  相似文献   

14.
Photosynthesis by White Clover Leaves in Mixed Clover/Ryegrass Swards   总被引:1,自引:0,他引:1  
Measurements of rates of net photosynthesis were made on singleBlanca white clover leaves on plants taken from a field-grown,mixed clover/perennial ryegrass sward during two regrowth periods. Net photosynthesis fell by 20 per cent in the first measurementperiod as leaf area index increased and the grass componentof the crop flowered, but did not change significantly in thesecond measurement period during which the grass remained vegetative. Leaves which had been artificially protected from shading inthe sward did not have significantly different photosyntheticcapacities from leaves in the undisturbed sward, even in thefirst measurement period. As leaf area index and sward height increased, successive cloverpetioles were longer, keeping the newly expanded leaves nearthe top of the sward where they received full light. It is suggestedthat it is this which allows successive clover leaves, unlikethose of vegetative grasses, to attain a high photosyntheticcapacity throughout a growth period. Trifolium repens, Lolium perenne, Photosynthetic capacity, shading, growth  相似文献   

15.
Clonal growth may increase the likelihood for alien plants becoming invasive, as it is an efficient foraging and spatial exploration strategy. Here, we investigated the effect of artificial herbivory on organs of clonal growth and its potential to drive post-introduction evolutionary change. Based on the assumption that tolerance traits are costly and that clonal alien species may benefit from investing freed resources into growth, fecundity or nutrient acquisition, we tested the hypothesis of lower tolerance to herbivory on organs of clonal growth in alien plants. In a common-garden experiment we studied divergence in plants from native German and alien New Zealand populations of six species with different clonal growth forms. A nutrient treatment testing the plant’s acquisition abilities, was combined with artificial herbivory on clonal organs. We investigated origin-dependent differences in sexual reproduction, plant growth and the production of clonal organs. For aboveground and clonal organ biomass, alien plants showed lower tolerance to artificial herbivory on clonal organs than native plants. In the combined herbivory and nutrient treatment, alien plants of four species grew fewer clonal organs when compared to the nutrient treatment alone. Alien plants of the other two species produced more clonal organs, regardless of treatment. All species revealed significant differences in flower production between origins, with five of them producing more flowers on alien than on native plants. The results support the hypothesis that a release of herbivory on clonal organs has lead to subtle evolutionary changes in tolerance of alien plants and to a species-dependent increase in plant vigour, clonal growth and/or sexual reproduction that may enhance their invasive success.  相似文献   

16.
Experiments are described to illustrate the different effect of defoliation and diurnal changes in light intensity and temperature on grazed white clover (Trifolium repens) ecotypes and pot grown clover. Removing all the fully expanded leaves from grazed clover has no effect on nodule numbers or on nitrogen fixing activity during the phase of early season rapid growth. No diurnal rhythm in nitrogen fixing activity is apparent in grazed clover swards. Isotope dilution experiments demonstrate that in the first half of the growing season underground transfer of nitrogen is low in cut plots in a previously grazed hill situation. The results are briefly described in the context of improved hill pasture utilisation.  相似文献   

17.
Summary The composition of the leachate from undisturbed monolith lysimeters cropped with white clover or meadow fescue or maintained bare was compared with that of the rain falling on them. No nitrogen fertilizer was applied only an initial dressing of phosphorus and potassium. The grass received much more nitrogen from the rain than it lost by leaching whereas the clover lost more than it received. Most of the leached nitrogen was NO3-N - 92 per cent on the bare soil and 90 per cent on the clover. About 27lb nitrogen per acre (30 kg/ha) per year was drained from the actively growing clover sward rising to about 117lb N/acre/year (131 kg/ha) when the clover died or was removed. Only 2.3lb/ac (2.5 kg/ha) was drained from the actively growing grass sward. It was estimated that the clover fixed at least 270lb N/ac/year (303 kg/ha/year. The rates of leaching of potassium from a grass sward was about 1.7lb/ac/year (1.9 kg/ha) and 0.8 lb (0.9 kg) phosphorus. The quantities were similar for clover. The grass received from the rain more phosphorus and potassium than was leached but only 60 per cent of the calcium and 13 per cent of the magnesium, similar results being obtained with white clover. During the year of establishment of the grass sward there was evidence of loss of gaseous nitrogen (elemental and/or compound) from the soil: subsequently the nitrogen content of the soil slowly increased. Calcium loss from the bare soil with an average rainfall of 26″ (650 mm) was about 100 lb Ca/ac/year (112 kg/ha).  相似文献   

18.
Clonal architecture may enable plants to effectively respond to environmental constraints but its role in plant tolerance to defoliation remains poorly documented. In several non-clonal species, modifications of plant architecture have been reported as a mechanism of plant tolerance to defoliation, yet this has been little studied in clonal plants. In a glasshouse experiment, five rhizomatous and five stoloniferous species of grazed pastures were subjected to three frequencies of defoliation in order to test two hypotheses. (1) We expected plant clonal response to defoliation to be either a more compact architecture (low clonal propagation, but high branching), or a more dispersed one (long-distance propagation and low branching). Such plastic adjustments of clonal architecture were assumed to be involved in tolerance to defoliation i.e. to promote genet performance in terms of biomass and number of ramets. (2) The response of clonal architecture to defoliation was expected to be dependent on the species and to be more plastic in stoloniferous than in rhizomatous species. Most genets of each species were tolerant to defoliation as they survived and developed in every treatment. Architectural modifications in response to defoliation did not match our predictions. Clonal growth was either maintained or reduced under defoliation. Relative growth rate (RGR) decreased in eight species, whereas defoliated genets of seven species produced as many ramets as control genets. Biomass allocation to ramet shoots remained stable for all but one species. In defoliated genets, the number and mean length of connections, and mean inter-ramet distance were equal to or lower than those in control genets. Four groups of species were distinguished according to their architectural response to defoliation and did not depend on the type of connections. We hypothesised that dense clonal architectures with low plasticity may be the most advantageous response in defoliated conditions such as in grazed pastures. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

19.
Parasites and pathogens are hypothesized to change host growth, reproduction and/or behaviour to increase their own transmission. However, studies which clearly demonstrate that parasites or pathogens are directly responsible for changes in hosts are lacking. We previously found that infection by the systemic fungus Epichloë glyceriae was associated with greater clonal growth by its host, Glyceria striata. Whether greater clonal growth resulted directly from pathogen infection or indirectly from increased likelihood of infection for host genotypes with greater clonal growth could not be determined because only naturally infected and uninfected plants were used. In this study, we decoupled infection and host genotype to evaluate the role of pathogen infection on host development and clonal growth. We found that total biomass production did not differ for clones of the same genotype, but infected clones allocated more biomass to clonal growth. Disinfected clones had more tillers and a greater proportion of their biomass in the mother ramet. Infected clones produced fewer tillers but significantly more and longer stolons than disinfected clones. These results support the hypothesis that pathogen infection directly alters host development. Parasite alteration of clonal growth patterns might be advantageous to the persistence and spread of host plants in some ecological conditions.  相似文献   

20.
This study was performed to analyse how a vegetative propagation pattern of plants affects the coexistence of species and subsequent species richness of the community. We compared community average clonal growth in the herbal communities of forests, wooded meadows, and open meadows in Laelatu, Estonia. The parameters used for the calculation of the community averages and measured for each species were ramet life span, rhizome branching, and clonal mobility. We also examined the intrinsic (i.e. independent of the environment) relationship between community clonal growth and plant species density. We found strong correlations between the environmental factors (productivity, light availability, and mowing regime) and community averages of clonal growth parameters, while species density was (negatively) correlated only with community average of rhizome increment. The community average of ramet life span decreased with the increasing biomass of the herb layer. No evidence was found to support the hypothesis that species-rich communities may consist of species with more contrasting mobility compared with species-poor communities. Independent of the effect of the environmental factors, species density was positively correlated with ramet density. There was intrinsic positive relationship between species density and community average of ramet life span at open meadow sites and intrinsic negative relationship between species density and community average of rhizome increment at wooded meadow sites. We conclude that in forest communities the capability of clonal plants to forage for light is favoured, while in unmown meadows a competitively strong phalanx growth form is advantageous. We established that ramet turnover increases and vegetative mobility decreases with increasing species diversity, although these two relationships depend strongly on the type of the studied community.Co-ordinating editor: J. Tuomi  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号