首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A new generation of HIV vaccines   总被引:10,自引:0,他引:10  
WHO estimates that currently there are 40 million individuals living with HIV and there are 16000 new infections daily, worldwide. The best strategy to control the AIDS epidemic would be the development of an effective vaccine. New strategies for vaccine development have gained momentum over the past decade, some of which show greater promise in macaque models than did earlier protein-subunit or recombinant-canarypox strategies. These new vaccines include DNA vaccines and live viral vectors, and have been based on the generation of high levels of antiviral T cells. These vaccines do not prevent infection, but rather control virus replication with a rapid expansion and then contraction of antiviral T cells in response to the challenge infection. These recent vaccine successes in macaques raise hope that a vaccine can be developed that will successfully limit both the development of AIDS and viral transmission.  相似文献   

2.
HIV/AIDS: in search of an animal model   总被引:4,自引:0,他引:4  
AIDS is among the most devastating diseases of our time, claiming the lives of approximately 3 million people per year. The primary cause of AIDS, human immunodeficiency virus type 1 (HIV-1), is a pathogen that is highly specific for humans and generally does not infect or cause disease in other species. This property complicates the generation of animal models that are urgently needed to test new antiretroviral therapies and vaccines. The most practical animal models developed to date consist of infection of rhesus macaques with a simian immunodeficiency virus (SIV) or chimeric HIV/SIV viruses. Although these models are useful for particular applications, the fact that SIV is a distinct virus compared with HIV-1 represents a significant limitation to their use. Here, we discuss the uses and limitations of existing models and recent advances that might lead to better animal models for HIV/AIDS.  相似文献   

3.
Prior to Simian Immunodeficiency Virus (SIV)-infected macaques becoming the 'model of choice' in the 1990s, chimpanzees were widely used in AIDS vaccine research and testing. Faced with the continued failure to develop an effective human vaccine, some scientists are calling for a return to their widespread use. To assess the past and potential future contribution of chimpanzees to AIDS vaccine development, databases and published literature were systematically searched to compare the results of AIDS vaccine trials in chimpanzees with those of human clinical trials, and to determine whether the chimpanzee trials were predictive of the human response. Protective and/or therapeutic responses have been elicited in chimpanzees, via: passive antibody transfer; CD4 analogues; attenuated virus; many types and combinations of recombinant HIV proteins; DNA vaccines; recombinant adenovirus and canarypox vaccines; and many multi-component vaccines using more than one of these approaches. Immunogenicity has also been shown in chimpanzees for vaccinia-based and peptide vaccines. Protection and/or significant therapeutic effects have not been demonstrated by any vaccine to date in humans. Vaccine responses in chimpanzees and humans are highly discordant. Claims of the importance of chimpanzees in AIDS vaccine development are without foundation, and a return to the use of chimpanzees in AIDS research/vaccine development is scientifically unjustifiable.  相似文献   

4.
Beyond BCG: the potential for a more effective TB vaccine.   总被引:14,自引:0,他引:14  
The 'Bacille Calmette-Guerin' (BCG) vaccine has been used throughout most parts of the world for the majority of the century. It is safe to use and cheap to produce, but there have been increasing doubts about its effectiveness. These doubts could not come at a worse time, as tuberculosis (TB) rates continue to rise, compounded by the AIDS epidemic, and outbreaks of tuberculosis caused by multidrug-resistant strains are more common even in advanced countries. As a result, there is now a concerted research effort to produce new TB vaccine candidates. These include DNA vaccines, recombinant and auxotrophic vaccines and subunit vaccines, all of which hold promise. The real difficulty will probably arise at the clinical trial level, when a decision must be made either to replace BCG or to boost existing BCG-induced immunity using these new-generation vaccines.  相似文献   

5.
Despite great advances in the field of vaccination, there are still needs for novel and effective vaccines because still no effective vaccines have been produced for some diseases such as malaria, acquired immune deficiency syndrome (AIDS), and tuberculosis. Furthermore, many of the existing vaccines have disadvantages such as failure to stimulate completely the immune system, in vivo instability, high toxicity, the need for cold chain, and multiple administrations. Nanotechnology has been raised as a powerful tool for solving these problems in this regard. Generally, nanovaccines are a new generation of vaccines using nanoparticles (NPs) as carriers and/or adjuvants. Due to the similar scale (size) between the NPs and pathogens, the immune system can be stimulated well, resulting in triggered cellular and humoral immunity responses. Other benefits of the nanovaccines include their better stability in blood flow to increase the shelf life in blood, enhanced immune system stimulation, no need for booster doses, no need to maintain the cold chain, and ability to create active targeting. In addition, nanovaccines have raised the hope to treat diseases such as rheumatoid arthritis, AIDS, malaria, and chronic autoimmune, and so forth.  相似文献   

6.
全球范围内艾滋病的流行使发展安全有效的疫苗势在必行。本文讨论了各种不同类型的艾滋病疫苗的优点和缺点,包括传统疫苗(灭活疫苗、减毒活疫苗)和新型疫苗(病毒颗粒样疫苗、重组亚单位疫苗、重组活载体病毒疫苗),同时也指出了发展艾滋病疫苗所面临的挑战,如病毒的变异、没有充足的动物模型和HIV感染免疫系统本身。概述了正在进行的艾滋病疫苗的临床试验,并对下一步研究进行了展望。  相似文献   

7.
An AIDS Vaccine Surveillance System (AVSS) was designed and implemented to track the rapidly growing international database supporting the development of promising AIDS vaccines. Both preclinical nonhuman primate (NHP) and clinical human trials are tracked by the AVSS. This report presents summary data generated from the AVSS on the NHP AIDS vaccine/live virus challenge studies only. Summary data on more than 100 preclinical HIV/SIV vaccines are presented within the framework of 1) 13 arbitrary Vaccine Types, 2) studies grouped by animal model (i.e., chimpanzee/HIV-1, and macaque/SIV, HIV-2), and 3) immunization approach (i.e., active and passive). Systematic and timely presentations of these summary data, both here and in future reports, aim to promote a clearer understanding of both earlier and more recent preclinical AIDS vaccine developments.  相似文献   

8.
Animal models of AIDS   总被引:21,自引:0,他引:21  
M B Gardner  P A Luciw 《FASEB journal》1989,3(14):2593-2606
Animal models of AIDS are essential for understanding the pathogenesis of retrovirus-induced immune deficiency and encephalopathy and for development and testing of new therapies and vaccines. AIDS and related disorders are etiologically linked to members of the lentivirus subfamily of retroviruses; these lymphocytopathic lentiviruses are designated human immuno-deficiency virus type 1 (HIV-1) and human immuno-deficiency virus type 2 (HIV-2). The only animals susceptible to experimental HIV-1 infection are the chimpanzee, gibbon ape, and rabbit but AIDS-like disease has not yet been reported in these species. Macaques can be persistently infected with some strains of HIV-2 but no AIDS-like disease has resulted. It is not yet clear how suitable HIV-infected SCID-hu mice will be as a model for AIDS. Several subfamilies of naturally occurring cytopathic retroviruses cause immune suppression, including fatal immunodeficiency syndromes in chickens, mice, cats, and monkeys. Domestic cats suffer immunosuppression from both an onco-virus, feline leukemia virus, and a member of the lentivirus subfamily, feline immunodeficiency virus (FIV). Asian macaques are susceptible to fatal simian AIDS from a type D retrovirus, indigenous in macaques, and from a lentivirus, simian immunodeficiency virus (SIV), which is indigenous to healthy African monkeys. SIV is the animal lentivirus most closely related to HIV. Of these animal models, the lentivirus infections of cats (FIV) and macaques (SIV) appear to bear the closest similarity in their pathogenesis to HIV infection and AIDS. This review will summarize these various animal model systems for AIDS and illustrate their usefulness for antiviral therapy and vaccinology.  相似文献   

9.
Combinations of DNA and recombinant-viral-vector based vaccines are promising AIDS vaccine methods because of their potential for inducing cellular immune responses. It was found that Gag-specific cytotoxic lymphocyte (CTL) responses were associated with lowering viremia in an untreated HIV-1 infected cohort. The main objectives of our studies were the construction of DNA and recombinant Sendal virus vector (rSeV) vaccines containing a gag gene from the prevalent Thailand subtype B strain in China and trying to use these vaccines for therapeutic and prophylactic vaccines. The candidate plasmid DNA vaccine pcDNA3.1( )-gag and recombinant Sendai virus vaccine (rSeV-gag) were constructed separately. It was verified by Western blotting analysis that both DNA and rSeV-gag vaccines expressed the HIV-1 Gag protein correctly and efficiently. Balb/c mice were immunized with these two vaccines in different administration schemes. HIV-1 Gag-specific CTL responses and antibody levels were detected by intracellular cytokine staining assay and enzyme-linked immunosorbant assay (ELISA) respectively. Combined vaccines in a DNA prime/rSeV-gag boost vaccination regimen induced the strongest and most long-lasting Gag-specific CTL and antibody responses. It maintained relatively high levels even 9 weeks post immunization. This data indicated that the prime-boost regimen with DNA and rSeV-gag vaccines may offer promising HIV vaccine regimens.  相似文献   

10.
Mucosal vaccines: the promise and the challenge   总被引:2,自引:0,他引:2  
Most infectious agents enter the body at mucosal surfaces and therefore mucosal immune responses function as a first line of defence. Protective mucosal immune responses are most effectively induced by mucosal immunization through oral, nasal, rectal or vaginal routes, but the vast majority of vaccines in use today are administered by injection. As discussed in this Review, current research is providing new insights into the function of mucosal tissues and the interplay of innate and adaptive immune responses that results in immune protection at mucosal surfaces. These advances promise to accelerate the development and testing of new mucosal vaccines against many human diseases including HIV/AIDS.  相似文献   

11.
Increased international support for both research into new vaccines and their deployment in developing countries has been evident over the past decade. In particular, the GAVI Alliance has had a major impact in increasing uptake of the six common infant vaccines as well as those against hepatitis B and yellow fever. It further aims to introduce pneumococcal and rotavirus vaccines in the near future and several others, including those against human papillomavirus, meningococcal disease, rubella and typhoid not long after that. In addition, there is advanced research into vaccines against malaria, HIV/AIDS and tuberculosis. By 2030, we may have about 20 vaccines that need to be used in the developing world. Finding the requisite funds to achieve this will pose a major problem. A second and urgent question is how to complete the job of global polio eradication. The new strategic plan calls for completion by 2013, but both pre-eradication and post-eradication challenges remain. Vaccines will eventually become available beyond the field of infectious diseases. Much interesting work is being done in both autoimmunity and cancer. Cutting across disease groupings, there are issues in methods of delivery and new adjuvant formulations.  相似文献   

12.
Williamson AL 《IUBMB life》2002,53(4-5):207-208
One in nine people in South Africa are estimated to be HIV-1 infected, with the majority of these infections being due to HIV-1 subtype C. Until recently, most HIV-1 candidate vaccines were not based on subtype C genes. In response to this epidemic, therefore, the South African AIDS Vaccine Initiative (SAAVI) was established to facilitate the development and testing of candidate HIV-1 subtype C vaccines. The first HIV-1 subtype C candidate vaccine is due to be, tested at the end of 2002, and is based on Venezuelan encephalitis virus replicons expressing Gag protein. The next candidate vaccines to be tested will be DNA and modified vaccinia Ankara vaccines expressing subtype C genes.  相似文献   

13.
Live, attenuated immunodeficiency virus vaccines, such as nef deletion mutants, are the most effective vaccines tested in the simian immunodeficiency virus (SIV) macaque model. In two independent studies designed to determine the breadth of protection induced by live, attenuated SIV vaccines, we noticed that three of the vaccinated macaques developed higher set point viral load levels than unvaccinated control monkeys. Two of these vaccinated monkeys developed AIDS, while the control monkeys infected in parallel remained asymptomatic. Concomitant with an increase in viral load, a recombinant of the vaccine virus and the challenge virus could be detected. Therefore, the emergence of more-virulent recombinants of live, attenuated immunodeficiency viruses and less-aggressive wild-type viruses seems to be an additional risk of live, attenuated immunodeficiency virus vaccines.  相似文献   

14.
One of the great demands and challenges for vaccination is to successfully target the pathogens responsible for much of mankind's chronic disease burden including: AIDS, infectious hepatitis, tuberculosis and malaria. Another is realizing the potential of therapeutic immunization to cure diseases such as cancer, allergy and inflammatory autoimmunity. To achieve these objectives, the fundamental insights gained from immunology, genomics, molecular-cellular biology and vaccinology must be implemented in order to develop more effective, better defined and safer vaccines. As an illustrative example of this we examine the key features of viruses that are known to be responsible for eliciting superb host immune responses. These insights have formed a basis for understanding the effectiveness of existing vaccines and provide a framework for designing and developing new vaccines better able to meet pressing unmet medical needs. The key immunogenic properties of viruses that are understood to date and are currently being applied include: their particulate nature, their highly repetitive and ordered structures, their ability to induce innate immunity with consequent conditioning of adaptive responses and the kinetics and distribution of viral antigens during infection. Vaccines and vaccine-formulations recently registered for use in humans already incorporate some of these elements. Of great anticipation is the progress of the next-generation vaccines now advancing through the various stages of research and development. Vaccines which, by way of rational design, incorporate viral properties to induce tailored responses and thus have the potential to provide safer and more effective prophylaxis and therapies.  相似文献   

15.
Infections by intracellular pathogens such as viruses, some bacteria and many parasites, are cleared in most cases after activation of specific T cellular immune responses that recognize foreign antigens and eliminate infected cells. Vaccines against those infectious organisms have been traditionally developed by administration of whole live attenuated or inactivated microorganisms. Nowadays, research is focused on the development of subunit vaccines, containing the most immunogenic antigens from the particular pathogen. However, when purified subunit vaccines are administered using traditional immunization protocols, the levels of cellular immunity induced are mostly low and not capable of eliciting complete protection against diseases caused by intracellular microbes. In this review, we present a promising alternative to those traditional protocols, which is the use of recombinant viruses encoding subunit vaccines as immunization tools. Recombinant viruses have several interesting features that make them extremely efficient at inducing immune responses mediated by T-lymphocytes. This cellular immunity has recently been demonstrated to be of key importance for protection against malaria and AIDS, both of which are major targets of the World Health Organization for vaccine development. Thus, this review will focus in particular on the development of new vaccination protocols against these diseases.  相似文献   

16.
Although educational programs have had some impact, immunization against HIV will be necessary to control the AIDS pandemic. To be effective, vaccination will need to be accessible and affordable, directed against multiple antigens, and delivered in multiple doses. Plant-based vaccines that are heat-stable and easy to produce and administer are suited to this type of strategy. Pilot studies by a number of groups have demonstrated that plant viral expression systems can produce HIV antigens in quantities that are appropriate for use in vaccines. In addition, these plant-made HIV antigens have been shown to be immunogenic. However, given the need for potent cross-clade humoral and T-cell immunity for protection against HIV, and the uncertainty surrounding the efficacy of protein subunit vaccines, it is most likely that plant-made HIV vaccines will find their niche as booster immunizations in prime-boost vaccination schedules.  相似文献   

17.
Primate models of AIDS   总被引:4,自引:0,他引:4  
The primate models of AIDS provide insights into pathogenesis, transmission, and immune responses to infection and are useful in testing vaccines and drugs. The HIV-1/chimpanzee, SIV(mac)/macaque, and SHIV/macaque models are the most widely used. The advantages and drawbacks of these and other models are discussed.  相似文献   

18.
Current therapeutic vaccine trials in major chronic diseases including AIDS, cancer, allergy and autoimmunity, target antigenic pathogens but not the pathogenic stromal cytokines which can be major sources of histopathologic processes. Considering that the limited efficacy of these vaccines has been ascribed to local pathogen-induced cytokine dysfunction, we propose to antagonize pathogenic cytokine(s) by high affinity neutralizing auto-Abs triggered by specific anti-cytokine vaccines. As anticipated by theoretical considerations, animal experiments and initial clinical trials showed that anti-cytokine immunization was safe, well tolerated and triggered transient high titers Abs neutralizing pathogenic cytokines but, in contrast to conventional vaccines, no relevant cellular response was observed. Advantages of active versus passive anti-cytokine Ab therapy, particularly for long-term treatments, as those required in AIDS, cancer, allergy and autoimmunity include greater ease of maintaining high Ab titers, lack of anti-antibody responses and low cost.  相似文献   

19.
In 1981 a new epidemic of about two-dozen heterogeneous diseases began to strike non-randomly growing numbers of male homosexuals and mostly male intravenous drug users in the US and Europe. Assuming immunodeficiency as the common denominator the US Centers for Disease Control (CDC) termed the epidemic, AIDS, for acquired immunodeficiency syndrome. From 1981-1984 leading researchers including those from the CDC proposed that recreational drug use was the cause of AIDS, because of exact correlations and of drug-specific diseases. However, in 1984 US government researchers proposed that a virus, now termed human immunodeficiency virus (HIV), is the cause of the non-random epidemics of the US and Europe but also of a new, sexually random epidemic in Africa. The virus-AIDS hypothesis was instantly accepted, but it is burdened with numerous paradoxes, none of which could be resolved by 2003: Why is there no HIV in most AIDS patients, only antibodies against it? Why would HIV take 10 years from infection to AIDS? Why is AIDS not self-limiting via antiviral immunity? Why is there no vaccine against AIDS? Why is AIDS in the US and Europe not random like other viral epidemics? Why did AIDS not rise and then decline exponentially owing to antiviral immunity like all other viral epidemics? Why is AIDS not contagious? Why would only HIV carriers get AIDS who use either recreational or anti-HIV drugs or are subject to malnutrition? Why is the mortality of HIV-antibody-positives treated with anti-HIV drugs 7–9%, but that of all (mostly untreated) HIV-positives globally is only 1–4%? Here we propose that AIDS is a collection of chemical epidemics, caused by recreational drugs, anti-HIV drugs, and malnutrition. According to this hypothesis AIDS is not contagious, not immunogenic, not treatable by vaccines or antiviral drugs, and HIV is just a passenger virus. The hypothesis explains why AIDS epidemics strike non-randomly if caused by drugs and randomly if caused by malnutrition, why they manifest in drug- and malnutrition-specific diseases, and why they are not self-limiting via anti-viral immunity. The hypothesis predicts AIDS prevention by adequate nutrition and abstaining from drugs, and even cures by treating AIDS diseases with proven medications.  相似文献   

20.
Combinations of DNA and recombinant-viral-vector based vaccines are promising AIDS vaccine methods because of their potential for inducing cellular immune responses. It was found that Gag-specific cytotoxic lymphocyte (CTL) responses were associated with lowering viremia in an untreated HIV-1 infected cohort. The main objectives of our studies were the construction of DNA and recombinant Sendai virus vector (rSeV) vaccines containing a gag gene from the prevalent Thailand subtype B strain in China and trying to use these vaccines for therapeutic and prophylactic vaccines. The candidate plasmid DNA vaccine pcDNA3.1(+)-gag and recombinant Sendai virus vaccine (rSeV-gag) were constructed separately. It was verified by Western blotting analysis that both DNA and rSeV-gag vaccines expressed the HIV-1 Gag protein correctly and efficiently. Balb/c mice were immunized with these two vaccines in different administration schemes. HIV-1 Gag-specific CTL responses and antibody levels were detected by intracellular cytokine staining assay and enzyme-linked immunosorbant assay (ELISA) respectively. Combined vaccines in a DNA prime/rSeV-gag boost vaccination regimen induced the strongest and most long-lasting Gag-specific CTL and antibody responses. It maintained relatively high levels even 9 weeks post immunization. This data indicated that the prime-boost regimen with DNA and rSeV-gag vaccines may offer promising HIV vaccine regimens. Foundation item: National 863 project (2003AA219070)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号