首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
We studied Ca(2+) dependence of tension and actomyosin ATPase rate in detergent extracted fiber bundles isolated from transgenic mice (TG), in which cardiac troponin I (cTnI) serines 43 and 45 were mutated to alanines (cTnI S43A/S45A). Basal phosphorylation levels of cTnI were lower in TG than in wild-type (WT) mice, but phosphorylation of cardiac troponin T was increased. Compared with WT, TG fiber bundles showed a 13% decrease in maximum tension and a 20% increase in maximum MgATPase activity, yielding an increase in tension cost. Protein kinase C (PKC) activation with endothelin (ET) or phenylephrine plus propranolol (PP) before detergent extraction induced a decrease in maximum tension and MgATPase activity in WT fibers, whereas ET or PP increased maximum tension and stiffness in TG fibers. TG MgATPase activity was unchanged by ET but increased by PP. Measurement of protein phosphorylation revealed differential effects of agonists between WT and TG myofilaments and within the TG myofilaments. Our results demonstrate the importance of PKC-mediated phosphorylation of cTnI S43/S45 in the control of myofilament activation and cross-bridge cycling rate.  相似文献   

2.
Protein kinase C (PKC)-mediated phosphorylation of cardiac troponin I (cTnI) and troponin T (cTnT) has been shown to diminish maximum activation of myofilaments. The functional role of cTnI phosphorylation has been investigated. However, the impact of cTnT phosphorylation on myofilament force is not well studied. We tested the effect of endogenous PKC activation on steady-state tension development and Ca(2+) sensitivity in skinned fiber bundles from transgenic (TG) mouse hearts expressing fast skeletal TnT (fsTnT), which naturally lacks the PKC sites present in cTnT. The 12-O-tetradecanoylphorbol 13-acetate (TPA) treatment induced a 29% (46.1 +/- 2.5 vs. 33.4 +/- 2.6 mN/mm(2)) reduction in maximum tension in the nontransgenic (NTG) preparations (n = 7) and was inhibited with chelerythrine. However, TPA did not induce a change in the maximum tension in the TG preparations (n = 11). TPA induced a small but significant (P < 0.02) increase in Ca(2+) sensitivity (untreated pCa(50) = 5.63 +/- 0.01 vs. treated pCa(50) = 5.72 +/- 0.01) only in TG preparations. In TG preparations, (32)P incorporation was not evident in TnT and was also significantly diminished in cTnI, compared with NTG. Our data indicate that incorporation of fsTnT into the cardiac myofilament lattice blunts PKC-mediated depression of maximum tension. These data also suggest that cTnT may play an important role in amplifying the myofilament depression induced by PKC-mediated phosphorylation of cTnI.  相似文献   

3.
5'-AMP-activated protein kinase (AMPK) is a serine/threonine protein kinase that is activated when cellular AMP to ATP ratios rise, potentially serving as a key regulator of cellular energetics. Among the known targets of AMPK are catabolic and anabolic enzymes, but little is known about the ability of this kinase to phosphorylate myofilament proteins and thereby regulating the contractile apparatus of striated muscles. Here, we demonstrate that troponin I isoforms of cardiac (cTnI) and fast skeletal (fsTnI) muscles are readily phosphorylated by AMPK. For cTnI, two highly conserved serine residues were identified as AMPK sites using a combination of high-resolution top-down electron capture dissociation mass spectrometry, (32) P-incorporation, synthetic peptides, phospho-specific antibodies, and site-directed mutagenesis. These AMPK sites in cTnI were Ser149 adjacent to the inhibitory loop and Ser22 in the cardiac-specific N-terminal extension, at the level of cTnI peptides, the intact cTnI subunit, whole cardiac troponin complexes and skinned cardiomyocytes. Phosphorylation time-course experiments revealed that Ser149 was the preferred site, because it was phosphorylated 12-16-fold faster than Ser22 in cTnI. Ser117 in fsTnI, analogous to Ser149 in cTnI, was phosphorylated with similar kinetics as cTnI Ser149. Hence, the master energy-sensing protein AMPK emerges as a possibly important regulator of cardiac and skeletal contractility via phosphorylation of a preferred site adjacent to the inhibitory loop of the thin filament protein TnI.  相似文献   

4.
In skinned myocardium, cyclic AMP-dependent protein kinase A (PKA)-catalyzed phosphorylation of cardiac myosin-binding protein C (cMyBP-C) and cardiac troponin I (cTnI) is associated with a reduction in the Ca(2+) responsiveness of myofilaments and an acceleration in the kinetics of cross-bridge cycling, although the respective contribution of these two proteins remains controversial. To further examine the relative roles that cTnI and cMyBP-C phosphorylation play in altering myocardial function, we determined the Ca(2+) sensitivity of force (pCa(50)) and the activation dependence of the rate of force redevelopment (k(tr)) in control and PKA-treated mouse myocardium (isolated in the presence of 2,3-butanedione monoxime) expressing: (a) phosphorylatable cTnI and cMyBP-C (wild type [WT]), (b) phosphorylatable cTnI on a cMyBP-C-null background (cMyBP-C(-/-)), (c) nonphosphorylatable cTnI with serines(23/24/43/45) and threonine(144) mutated to alanines (cTnI(Ala5)), and (d) nonphosphorylatable cTnI on a cMyBP-C-null background (cTnI(Ala5)/cMyBP-C(-/-)). Here, PKA treatment decreased pCa(50) in WT, cTnI(Ala5), and cMyBP-C(-/-) myocardium by 0.13, 0.08, and 0.09 pCa units, respectively, but had no effect in cTnI(Ala5)/cMyBP-C(-/-) myocardium. In WT and cTnI(Ala5) myocardium, PKA treatment also increased k(tr) at submaximal levels of activation; however, PKA treatment did not have an effect on k(tr) in cMyBP-C(-/-) or cTnI(Ala5)/cMyBP-C(-/-) myocardium. In addition, reconstitution of cTnI(Ala5)/cMyBP-C(-/-) myocardium with recombinant cMyBP-C restored the effects of PKA treatment on pCa(50) and k(tr) reported in cTnI(Ala5) myocardium. Collectively, these results indicate that the attenuation in myofilament force response to PKA occurs as a result of both cTnI and cMyBP-C phosphorylation, and that the reduction in pCa(50) mediated by cMyBP-C phosphorylation most likely arises from an accelerated cross-bridge cycling kinetics partly as a result of an increased rate constant of cross-bridge detachment.  相似文献   

5.
In a tail suspension rat model, we investigated changes in myofilament protein during cardiac adaptation in simulated microgravity. Contractile force and velocity of cardiac muscle were decreased in the tail suspension rats as compared with the control. Ca(2+)-dependent actomyosin ATPase activity was also decreased; however, sensitivity of cardiac muscle to Ca(2+) activation was unchanged. There was no change in expression of myosin heavy chain, tropomyosin, troponin T, or troponin I isoforms in hearts of tail suspension rats. A novel finding is a fragment of cardiac troponin I (cTnI) that had increased amounts in the heart of tail suspension rats. Binding of this cTnI fragment by a monoclonal antibody that specifically recognizes the COOH terminus indicates an intact COOH terminus. NH(2)-terminal sequence analysis of the cTnI fragment revealed truncations primarily of amino acids 1-26 and 1-27 and smaller amounts of 1-30, including Ser(23) and Ser(24), which are substrates of protein kinase A phosphorylation. This cTnI fragment is present in normal cardiac muscle and incorporated into myofibrils, indicating a role in regulating contractility. This proteolytic modification of cTnI up-regulated during simulated microgravity suggests a potential role of the NH(2)-terminal segment of cTnI in functional adaptations of cardiac muscle.  相似文献   

6.
There is evidence that multi-site phosphorylation of cardiac troponin I (cTnI) by protein kinase C is important in both long- and short-term regulation of cardiac function. To determine the specific functional effects of these phosphorylation sites (Ser-43, Ser-45, and Thr-144), we measured tension and sliding speed of thin filaments in reconstituted preparations in which endogenous cTnI was replaced with cTnI phosphorylated by protein kinase C-epsilon or mutated to cTnI-S43E/S45E/T144E, cTnI-S43E/S45E, or cTnI-T144E. We used detergent-skinned mouse cardiac fiber bundles to measure changes in Ca(2+)-dependence of force. Compared with controls, fibers reconstituted with phosphorylated cTnI, cTnI-S43E/S45E/T144E, or cTnI-S43E/S45E were desensitized to Ca(2+), and maximum tension was as much as 27% lower, whereas fibers reconstituted with cTnI-T144E showed no change. In the in vitro motility assay actin filaments regulated by troponin complexes containing phosphorylated cTnI or cTnI-S43E/S45E/T144E showed both a decrease in Ca(2+) sensitivity and maximum sliding speed compared with controls, whereas filaments regulated by cTnI-S43E/S45E showed only decreased maximum sliding speed and filaments regulated by cTnI-T144E demonstrated only desensitization to Ca(2+). Our results demonstrate novel site specificity of effects of PKC phosphorylation on cTnI function and emphasize the complexity of modulation of the actin-myosin interaction by specific changes in the thin filament.  相似文献   

7.
Cardiac troponin I is a phosphorylation target for endothelin-activated protein kinase C. Earlier work in cardiac myocytes expressing nonphosphorylatable slow skeletal troponin I provided evidence that protein kinase C-mediated cardiac troponin I phosphorylation accelerates relaxation. However, replacement with the slow skeletal isoform also alters the myofilament pH response and the Ca2+ transient, which could influence endothelin-mediated relaxation. Here, differences in the Ca2+ transient could not explain the divergent relaxation response to endothelin in myocytes expressing cardiac versus slow skeletal troponin I nor could activation of Na+/H+ exchange. Three separate clusters within cardiac troponin I are phosphorylated by protein kinase C, and we set out to determine the contribution of the Thr144 and Ser23/Ser24 clusters to the endothelin-mediated contractile response. Myocyte replacement with a cardiac troponin I containing a Thr144 substituted with the Pro residue found in slow skeletal troponin I resulted in prolonged relaxation in response to acute endothelin compared with control myocytes. Ser23/Ser24 also is a target for protein kinase C phosphorylation of purified cardiac troponin I, and although this cluster was not acutely phosphorylated in intact myocytes, significant phosphorylation developed within 1 h after adding endothelin. Replacement of Ser23/Ser24 with Ala indicated that this cluster contributes significantly to relaxation during more prolonged endothelin stimulation. Overall, results with these mutants provide evidence that Thr144 plays an important role in the acute acceleration of relaxation, whereas Ser23/Ser24 contributes to relaxation during more prolonged activation of protein kinase C by endothelin.  相似文献   

8.
Alteration in myofilament response to Ca2+ is a major mechanism for depressed cardiac function after ischemia-reperfusion (I/R) dysfunction. We tested the hypothesis that hearts with increased myofilament response to Ca2+ are less susceptible to I/R. In one approach, we studied transgenic (TG) mice with a constitutive increase in myofilament Ca2+ sensitivity in which the adult form of cardiac troponin I (cTnI) is stoichiometrically replaced with the embryonic/neonatal isoform, slow skeletal TnI (ssTnI). We also studied mouse hearts with EMD-57033, which acts specifically to enhance myofilament response to Ca2+. We subjected isolated, perfused hearts to an I/R protocol consisting of 25 min of no-flow ischemia followed by 30 min of reperfusion. After I/R, developed pressure and rates of pressure change were significantly depressed and end-diastolic pressure was significantly elevated in nontransgenic (NTG) control hearts. These changes were significantly blunted in TG hearts and in NTG hearts perfused with EMD-57033 during reperfusion, with function returning to nearly baseline levels. Ca2+- and cross bridge-dependent activation, protein breakdown, and phosphorylation in detergent-extracted fiber bundles were also investigated. After I/R NTG fiber bundles exhibited a significant depression of cross bridge-dependent activation and Ca2+-activated tension and length dependence of activation that were not evident in TG preparations. Only NTG hearts demonstrated a significant increase in cTnI phosphorylation. Our results support the hypothesis that specific increases in myofilament Ca2+ sensitivity are able to diminish the effect of I/R on cardiac function.  相似文献   

9.
Cardiac troponin I (cTnI), the inhibitory subunit of the thin filament troponin-tropomyosin regulatory complex, is required for heart muscle relaxation during the cardiac cycle. Expressed only in cardiac muscle, cTnI is widely used in the clinic as a serum biomarker of cardiac injury. In vivo function of cTnI is influenced by phosphorylation and proteolysis; therefore analysis of post-translational modifications of the intact protein should greatly facilitate the understanding of cardiac regulatory mechanisms and may improve cTnI as a disease biomarker. cTnI (24 kDa, pI approximately 9.5) contains twelve serine, eight threonine, and three tyrosine residues, which presents a challenge for unequivocal identification of phosphorylation sites and quantification of positional isomers. In this study, we used top down electron capture dissociation and electron transfer dissociation MS to unravel the molecular complexity of cTnI purified from human heart tissue. High resolution MS spectra of human cTnI revealed a high degree of heterogeneity, corresponding to phosphorylation, acetylation, oxidation, and C-terminal proteolysis. Thirty-six molecular ions of cTnI were detected in a single ESI/FTMS spectrum despite running as a single sharp band on SDS-PAGE. Electron capture dissociation of monophosphorylated cTnI localized two major basal phosphorylation sites: a well known site at Ser(22) and a novel site at Ser(76)/Thr(77), each with partial occupancy (Ser(22): 53%; Ser(76)/Thr(77): 36%). Top down MS(3) analysis of diphosphorylated cTnI revealed occupancy of Ser(23) only in diphosphorylated species consistent with sequential (or ordered) phosphorylation/dephosphorylation of the Ser(22/23) pair. Top down MS of cTnI provides unique opportunities for unraveling its molecular complexity and for quantification of phosphorylated positional isomers thus allowing establishment of the relevance of such modifications to physiological functions and disease status.  相似文献   

10.
We present here the solution structure for the bisphosphorylated form of the cardiac N-extension of troponin I (cTnI(1-32)), a region for which there are no previous high-resolution data. Using this structure, the X-ray crystal structure of the cardiac troponin core, and uniform density models of the troponin components derived from neutron contrast variation data, we built atomic models for troponin that show the conformational transition in cardiac troponin induced by bisphosphorylation. In the absence of phosphorylation, our NMR data and sequence analyses indicate a less structured cardiac N-extension with a propensity for a helical region surrounding the phosphorylation motif, followed by a helical C-terminal region (residues 25-30). In this conformation, TnI(1-32) interacts with the N-lobe of cardiac troponin C (cTnC) and thus is positioned to modulate myofilament Ca2+-sensitivity. Bisphosphorylation at Ser23/24 extends the C-terminal helix (residues 21-30) which results in weakening interactions with the N-lobe of cTnC and a re-positioning of the acidic amino terminus of cTnI(1-32) for favorable interactions with basic regions, likely the inhibitory region of cTnI. An extended poly(L-proline)II helix between residues 11 and 19 serves as the rigid linker that aids in re-positioning the amino terminus of cTnI(1-32) upon bisphosphorylation at Ser23/24. We propose that it is these electrostatic interactions between the acidic amino terminus of cTnI(1-32) and the basic inhibitory region of troponin I that induces a bending of cTnI at the end that interacts with cTnC. This model provides a molecular mechanism for the observed changes in cross-bridge kinetics upon TnI phosphorylation.  相似文献   

11.
12.
Protein kinase C phosphorylation of cardiac troponin, the Ca(2+)-sensing switch in muscle contraction, is capable of modulating the response of cardiac muscle to a Ca(2+) ion concentration. The N-domain of cardiac troponin I contains two protein kinase C phosphorylation sites. Although the physiological consequences of phosphorylation at Ser(43)/Ser(45) are known, the molecular mechanisms responsible for these functional changes have yet to be established. In this work, NMR was used to identify conformational and dynamic changes in cardiac troponin C upon binding a phosphomimetic troponin I, having Ser(43)/Ser(45) mutated to Asp. Chemical shift perturbation mapping indicated that residues in helix G were most affected. Smaller chemical shift changes were observed in residues located in the Ca(2+)/Mg(2+)-binding loops. Amide hydrogen/deuterium exchange rates in the C-lobe of troponin C were compared in complexes containing either the wild-type or phosphomimetic N-domain of troponin I. In the presence of a phosphomimetic domain, exchange rates in helix G increased, whereas a decrease in exchange rates for residues mapping to Ca(2+)/Mg(2+)-binding loops III and IV was observed. Increased exchange rates are consistent with destabilization of the Thr(129)-Asp(132) helix capping box previously characterized in helix G. The perturbation of helix G and metal binding loops III and IV suggests that phosphorylation alters metal ion affinity and inter-subunit interactions. Our studies support a novel mechanism for protein kinase C signal transduction, emphasizing the importance of C-lobe Ca(2+)/Mg(2+)-dependent troponin interactions.  相似文献   

13.
In vivo and in vitro analysis of cardiac troponin I phosphorylation   总被引:2,自引:0,他引:2  
Adrenergic stimulation induces positive changes in cardiac contractility and relaxation. Cardiac troponin I is phosphorylated at different sites by protein kinase A and protein kinase C, but the effects of these post-translational modifications on the rate and extent of contractility and relaxation during beta-adrenergic stimulation in the intact animal remain obscure. To investigate the effect(s) of complete and chronic cTnI phosphorylation on cardiac function, we generated transgenic animals in which the five possible phosphorylation sites were replaced with aspartic acid, mimicking a constant state of complete phosphorylation (cTnI-AllP). We hypothesized that chronic and complete phosphorylation of cTnI might result in increased morbidity or mortality, but complete replacement with the transgenic protein was benign with no detectable pathology. To differentiate the effects of the different phosphorylation sites, we generated another mouse model, cTnI-PP, in which only the protein kinase A phosphorylation sites (Ser(23)/Ser(24)) were mutated to aspartic acid. In contrast to the cTnIAllP, the cTnI-PP mice showed enhanced diastolic function under basal conditions. The cTnI-PP animals also showed augmented relaxation and contraction at higher heart rates compared with the nontransgenic controls. Nuclear magnetic resonance amide proton/nitrogen chemical shift analysis of cardiac troponin C showed that, in the presence of cTnI-AllP and cTnI-PP, the N terminus exhibits a more closed conformation, respectively. The data show that protein kinase C phosphorylation of cTnI plays a dominant role in depressing contractility and exerts an antithetic role on the ability of protein kinase A to increase relaxation.  相似文献   

14.
We used transgenic (TG) mice overexpressing mutant alpha-tropomyosin [alpha-Tm(Asp175Asn)], linked to familial hypertrophic cardiomyopathy (FHC), to test the hypothesis that this mutation impairs cardiac function by altering the sensitivity of myofilaments to Ca(2+). Left ventricular (LV) pressure was measured in anesthetized nontransgenic (NTG) and TG mice. In control conditions, LV relaxation was 6,970 +/- 297 mmHg/s in NTG and 5,624 +/- 392 mmHg/s in TG mice (P < 0.05). During beta-adrenergic stimulation, the rate of relaxation increased to 8,411 +/- 323 mmHg/s in NTG and to 6,080 +/- 413 mmHg/s in TG mice (P < 0.05). We measured the pCa-force relationship (pCa = -log [Ca(2+)]) in skinned fiber bundles from LV papillary muscles of NTG and TG hearts. In control conditions, the Ca(2+) concentration producing 50% maximal force (pCa(50)) was 5.77 +/- 0.02 in NTG and 5.84 +/- 0.01 in TG myofilament bundles (P < 0.05). After protein kinase A-dependent phosphorylation, the pCa(50) was 5.71 +/- 0.01 in NTG and 5.77 +/- 0. 02 in TG myofilament bundles (P < 0.05). Our results indicate that mutant alpha-Tm(Asp175Asn) increases myofilament Ca(2+)-sensitivity, which results in decreased relaxation rate and blunted response to beta-adrenergic stimulation.  相似文献   

15.
An altered cardiac myofilament response to activating Ca(2+) is a hallmark of human heart failure. Phosphorylation of cardiac troponin I (cTnI) is critical in modulating contractility and Ca(2+) sensitivity of cardiac muscle. cTnI can be phosphorylated by protein kinase A (PKA) at Ser(22/23) and protein kinase C (PKC) at Ser(22/23), Ser(42/44), and Thr(143). Whereas the functional significance of Ser(22/23) phosphorylation is well understood, the role of other cTnI phosphorylation sites in the regulation of cardiac contractility remains a topic of intense debate, in part, due to the lack of evidence of in vivo phosphorylation. In this study, we utilized top-down high resolution mass spectrometry (MS) combined with immunoaffinity chromatography to determine quantitatively the cTnI phosphorylation changes in spontaneously hypertensive rat (SHR) model of hypertensive heart disease and failure. Our data indicate that cTnI is hyperphosphorylated in the failing SHR myocardium compared with age-matched normotensive Wistar-Kyoto rats. The top-down electron capture dissociation MS unambiguously localized augmented phosphorylation sites to Ser(22/23) and Ser(42/44) in SHR. Enhanced Ser(22/23) phosphorylation was verified by immunoblotting with phospho-specific antibodies. Immunoblot analysis also revealed up-regulation of PKC-α and -δ, decreased PKCε, but no changes in PKA or PKC-β levels in the SHR myocardium. This provides direct evidence of in vivo phosphorylation of cTnI-Ser(42/44) (PKC-specific) sites in an animal model of hypertensive heart failure, supporting the hypothesis that PKC phosphorylation of cTnI may be maladaptive and potentially associated with cardiac dysfunction.  相似文献   

16.
In experiments reported here, we compared tension and thin filament Ca(2+) signaling in preparations containing either wild-type cardiac troponin I (cTnI) or a mutant cTnI with an R146G mutation [cTnI(146G)] linked to familial hypertrophic cardiomyopathy. Myofilament function is altered in association with cTnI phosphorylation by protein kinase C (PKC), which is activated in hypertrophy. Whether there are differential effects of PKC phosphorylation on cTnI compared to cTnI(146G) remains unknown. We therefore also studied cTnI and cTnI(146G) with PKC sites mutated to Glu, which mimics phosphorylation. Compared to cTnI controls, binary complexes with either cTnI(146G) or cTnI(43E/45E/144E) had a small effect on Ca(2+)-dependent structural opening of the N-terminal regulatory domain of cTnC as measured using F?rster resonance energy transfer. However, this structural change was significantly reduced in the cTnC-cTnI(43E/45E/144E/146G) complex. Exchange of cTnI in skinned fiber bundles with cTnI(146G) induced enhanced Ca(2+) sensitivity and an elevated resting tension. Exchange of cTnI with cTnI(43E/45E/144E) induced a depression in Ca(2+) sensitivity and maximum tension. However, compared to cTnI(146G), cTnI(43E/45E/144E/146G) had little additional effects on myofilament response to Ca(2+). By comparing activation of tension to the open state of the N-domain of cTnC with variations in the state of cTnI, we were able to provide data supporting the hypothesis that activation of cardiac myofilaments is tightly coupled to the open state of the N-domain of cTnC. Our data also support the hypothesis that pathological effects of phosphorylation are influenced by mutations in cTnI.  相似文献   

17.
Our study identifies tyrosine phosphorylation as a novel protein kinase Cdelta (PKCdelta) activation mechanism that modifies PKCdelta-dependent phosphorylation of cardiac troponin I (cTnI), a myofilament regulatory protein. PKCdelta phosphorylates cTnI at Ser23/Ser24 when activated by lipid cofactors; Src phosphorylates PKCdelta at Tyr311 and Tyr332 leading to enhanced PKCdelta autophosphorylation at Thr505 (its activation loop) and PKCdelta-dependent cTnI phosphorylation at both Ser23/Ser24 and Thr144. The Src-dependent acquisition of cTnI-Thr144 kinase activity is abrogated by Y311F or T505A substitutions. Treatment of detergent-extracted single cardiomyocytes with lipid-activated PKCdelta induces depressed tension at submaximum but not maximum [Ca2+] as expected for cTnI-Ser23/Ser24 phosphorylation. Treatment of myocytes with Src-activated PKCdelta leads to depressed maximum tension and cross-bridge kinetics, attributable to a dominant effect of cTnI-Thr144 phosphorylation. Our data implicate PKCdelta-Tyr311/Thr505 phosphorylation as dynamically regulated modifications that alter PKCdelta enzymology and allow for stimulus-specific control of cardiac mechanics during growth factor stimulation and oxidative stress.  相似文献   

18.
The R21C substitution in cardiac troponin I (cTnI) is the only identified mutation within its unique N-terminal extension that is associated with hypertrophic cardiomyopathy (HCM) in man. Particularly, this mutation is located in the consensus sequence for β-adrenergic-activated protein kinase A (PKA)-mediated phosphorylation. The mechanisms by which this mutation leads to heart disease are still unclear. Therefore, we generated cTnI knock-in mouse models carrying an R21C mutation to evaluate the resultant functional consequences. Measuring the in vivo levels of incorporated mutant and WT cTnI, and their basal phosphorylation levels by top-down mass spectrometry demonstrated: 1) a dominant-negative effect such that, the R21C+/- hearts incorporated 24.9% of the mutant cTnI within the myofilament; and 2) the R21C mutation abolished the in vivo phosphorylation of Ser(23)/Ser(24) in the mutant cTnI. Adult heterozygous (R21C+/-) and homozygous (R21C+/+) mutant mice activated the fetal gene program and developed a remarkable degree of cardiac hypertrophy and fibrosis. Investigation of cardiac skinned fibers isolated from WT and heterozygous mice revealed that the WT cTnI was completely phosphorylated at Ser(23)/Ser(24) unless the mice were pre-treated with propranolol. After propranolol treatment (-PKA), the pCa-tension relationships of all three mice (i.e. WT, R21C+/-, and R21C+/+) were essentially the same. However, after treatment with propranolol and PKA, the R21C cTnI mutation reduced (R21C+/-) or abolished (R21C+/+) the well known decrease in the Ca(2+) sensitivity of tension that accompanies Ser(23)/Ser(24) cTnI phosphorylation. Altogether, the combined effects of the R21C mutation appear to contribute toward the development of HCM and suggest that another physiological role for the phosphorylation of Ser(23)/Ser(24) in cTnI is to prevent cardiac hypertrophy.  相似文献   

19.
Our experiments investigated associations of specific isoforms of protein kinase C (PKC) with individual proteins in the cardiac troponin complex. Troponin I (cTnI) associated with PKCepsilon and zeta and troponin T (cTnT) associated with PKC alpha, delta, and epsilon. Based on its association with cTnI, we hypothesized that PKCzeta is a major regulator of myofilament protein phosphorylation. To test this, we infected adult cardiac myocytes with adenoviral constructs containing DsRed monomer-tagged wild type (WT) and the following constitutively active forms of PKCzeta: the pseudo-substrate region (A119E), 3'-phospho-inositide-dependent kinase-1 (T410E), and auto-phosphorylation (T560E). The A119E and T410E mutants displayed increased localization to the Z-discs compared with WT and T560E. Immunoprecipitations were performed in myocytes expressing PKCzeta using PKC phospho-motif antibodies to determine the phosphorylation of cTnI, cTnT, tropomyosin, myosin-binding protein C, and desmin. We did not find serine (Ser) phosphorylation of cTnI or cTnT. However, we observed a significant decrease in threonine (Thr) phosphorylation of cTnI and cTnT notably by PKCzeta T560E. Ser phosphorylation of tropomyosin was increased by all three active mutants of PKCzeta. Ser/Thr phosphorylation of myosin-binding protein C increased primarily by PKCzeta A119E. Both PKCzeta A119E and T410E mutants increased desmin Ser/Thr phosphorylation. To explain the apparent Thr dephosphorylation of cTnI and cTnT, we hypothesized that PKCzeta exists as a complex with p21-activated kinase-1 (Pak1) and protein phosphatase 2A (PP2A), and this was confirmed by immunoprecipitation Western blot. Our data demonstrate that PKCzeta is a novel regulator of myofilament protein phosphorylation.  相似文献   

20.
Recent studies have found that selective stimulation of troponin (Tn)I protein kinase A (PKA) phosphorylation enhances heart rate-dependent inotropy and blunts relaxation delay coupled to increased afterload. However, in failing hearts, TnI phosphorylation by PKA declines while protein kinase C (PKC) activity is enhanced, potentially augmenting TnI PKC phosphorylation. Accordingly, we hypothesized that these site-specific changes deleteriously affect both rate-responsive cardiac function and afterload dependence of relaxation, both prominent phenotypic features of the failing heart. A transgenic (TG) mouse model was generated in which PKA-TnI sites were mutated to mimic partial dephosphorylation (Ser22 to Ala; Ser23 to Asp) and dominant PKC sites were mutated to mimic constitutive phosphorylation (Ser42 and Ser44 to Asp). The two highest-expressing lines were further characterized. TG mice had reduced fractional shortening of 34.7 +/- 1.4% vs. 41.3 +/- 2.0% (P = 0.018) and slight chamber dilation on echocardiography. In vivo cardiac pressure-volume studies revealed near doubling of isovolumic relaxation prolongation with increasing afterload in TG animals (P < 0.001), and this remained elevated despite isoproterenol infusion (PKA stimulation). Increasing heart rate from 400 to 700 beats/min elevated contractility 13% in TG hearts, nearly half the response observed in nontransgenic animals (P = 0.005). This blunted frequency response was normalized by isoproterenol infusion. Abnormal TnI phosphorylation observed in cardiac failure may explain exacerbated relaxation delay in response to increased afterload and contribute to blunted chronotropic reserve.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号