首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 468 毫秒
1.
The vertebrate embryonic ventricle transforms from a smooth-walled single tube to trabeculated right ventricular (RV) and left ventricular (LV) chambers during cardiovascular morphogenesis. We hypothesized that ventricular contraction patterns change from globally isotropic to chamber-specific anisotropic patterns during normal morphogenesis and that these deformation patterns are influenced by experimentally altered mechanical load produced by chronic left atrial ligation (LAL). We measured epicardial RV and LV wall strains during normal development and left heart hypoplasia produced by LAL in Hamburger-Hamilton stage 21, 24, 27, and 31 chick embryos. Normal RV contracted isotropically until stage 24 and then contracted preferentially in the circumferential direction. Normal LV contracted isotropically at stage 21, preferentially in the longitudinal direction at stages 24 and 27, and then in the circumferential direction at stage 31. LAL altered both RV and LV strain patterns, accelerated the onset of preferential RV circumferential strain patterns, and abolished preferential LV longitudinal strain (P < 0.05 vs. normal). Mature patterns of anisotropic RV and LV deformation develop coincidentally with morphogenesis, and changes in these deformation patterns reflect altered cardiovascular function and/or morphogenesis.  相似文献   

2.
As a first step in investigating a control mechanism regulating stress and/or strain in the embryonic heart, this study tests the hypothesis that passive mechanical properties of left ventricular (LV) embryonic myocardium change with chronically increased pressure during the chamber septation period. Conotruncal banding (CTB) created ventricular pressure overload in chicks from Hamburger-Hamilton (HH) stage 21 (HH21) to HH27, HH29, or HH31. LV sections were cyclically stretched while biaxial strains and force were measured. Wall architecture was assessed with scanning electron microscopy. In controls, porosity-adjusted stress-strain relations decreased significantly from HH27 to HH31. CTB at HH21 resulted in significantly stiffer stress-strain relations by HH27, with larger increases at HH29 and HH31, and nearly constant wall thickness. Strain patterns, hysteresis, and loading-curve convergence showed few differences after CTB. Trabecular extent decreased with age, but neither extent nor porosity changed significantly after CTB. The stiffened stress-strain relations and constant wall thickness suggest that mechanical load may play a regulatory role in this response.  相似文献   

3.

Congenital heart defects (CHDs) are abnormalities in the heart structure present at birth. One important condition is hypoplastic left heart syndrome (HLHS) where severely underdeveloped left ventricle (LV) cannot support systemic circulation. HLHS usually initiates as localized tissue malformations with no underlying genetic cause, suggesting that disturbed hemodynamics contribute to the embryonic development of these defects. Left atrial ligation (LAL) is a surgical procedure on embryonic chick resulting in a phenotype resembling clinical HLHS. In this study, we investigated disturbed hemodynamics and deteriorated cardiac growth following LAL to investigate possible mechanobiological mechanisms for the embryonic development of HLHS. We integrated techniques such as echocardiography, micro-CT and computational fluid dynamics (CFD) for these analyses. Specifically, LAL procedure causes an immediate flow disturbance over atrioventricular (AV) cushions. At later stages after the heart septation, it causes hemodynamic disturbances in LV. As a consequence of the LAL procedure, the left-AV canal and LV volume decrease in size, and in the opposite way, the right-AV canal and right ventricle volume increase. According to our CFD analysis, LAL results in an immediate decrease in the left AV canal WSS levels for 3.5-day (HH21) pre-septated hearts. For 7-day post-septated hearts (HH30), LAL leads to further reduction in WSS levels in the left AV canal, and relatively increased WSS levels in the right AV canal. This study demonstrates the critical importance of the disturbed hemodynamics during the heart valve and ventricle development.

  相似文献   

4.
Acute and chronic alterations of right ventricular (RV) wall properties can change left ventricular (LV) performance. We investigated whether and how stiffening of the RV free wall alters LV diastolic distensibility. We used cross-circulated isolated hearts, in which the LV and RV were independently controllable. Stiffness of the RV free wall was altered by intramuscular injections of glutaraldehyde into the RV free wall after right coronary artery ligation. We measured circumferential and longitudinal regional lengths in the septum and LV free wall. During data acquisition, RV volume was held constant. After the RV free wall was stiffened by glutaraldehyde, the LV diastolic pressure-volume relation shifted upward and became steeper. Importantly, stiffening of the RV free wall increased the diastolic regional area in the septum and LV free wall under constant LV volume. The augmented regional dimensions may result in enhanced regional tension under constant LV volume and may be related to the observed increase in LV diastolic intracavitary pressure. The impaired LV diastolic distensibility by stiffening of the RV free wall may be at least partly explained by myocardial stretch, probably due to LV deformation.  相似文献   

5.
Right ventricular (RV) weight increases dependent on time after myocardial infarction (MI) and on MI size. The sequential changes in RV volume and hemodynamics and their relations to left ventricular (LV) remodeling after MI are unknown. We therefore examined the time course of RV remodeling in rats with LV MI. MI was produced by left coronary artery ligation. Four, eight, and sixteen weeks later, LV and RV hemodynamic measurements were performed and pressure-volume curves were obtained. For serial measurement of RV volumes and performance, cine-MRI was performed 2 and 8 wk after MI. The ratios of beta-myosin heavy chain (MHC) to alpha-MHC and skeletal to cardiac alpha-actin were determined for the RV and LV after large MI or sham operation. RV weight increased in rats with MI, as did RV volume. RV pressure-volume curves were shifted toward larger volumes 16 wk after large MI. RV systolic pressure increased gradually over time; however, the gain in RV weight was always in excess of RV systolic pressure. The ratios of skeletal to cardiac alpha-actin and beta-MHC to alpha-MHC were increased after MI in both ventricles in a similar fashion. Because RV wall stress was not increased after infarction, mechanical factors may not conclusively explain hypertrophy, which maintained balanced loading conditions for the RV even after large LV infarction.  相似文献   

6.
Enhanced left-ventricular (LV) compliance is a common adaptation to endurance training. This adaptation may have differential effects under conditions of altered venous return. The purpose of this investigation was to assess the effect of cardiac (un)loading on right ventricular (RV) cavity dimensions and LV volumes in endurance-trained athletes and normally active males. Eight endurance-trained (Vo(2max), 65.4 +/- 5.7 ml.kg(-1).min(-1)) and eight normally active (Vo(2max), 45.1 +/- 6.0 ml.kg(-1).min(-1)) males underwent assessments of the following: 1) Vo(2max), 2) orthostatic tolerance, and 3) cardiac responses to lower-body positive (0-60 mmHg) and negative (0 to -80 mmHg) pressures with echocardiography. In response to negative pressures, echocardiographic analysis revealed a similar decrease in RV end-diastolic cavity area in both groups (e.g., at -80 mmHg: normals, 21.4%; athletes, 20.8%) but a greater decrease in LV end-diastolic volume in endurance-trained athletes (e.g., at -80 mmHg: normals, 32.3%; athletes, 44.4%; P < 0.05). Endurance-trained athletes also had significantly greater decreases in LV stroke volume during lower-body negative pressure. During positive pressures, endurance-trained athletes showed larger increases in LV end-diastolic volume (e.g., at +60 mmHg; normals, 14.1%; athletes, 26.8%) and LV stroke volume, despite similar responses in RV end-diastolic cavity area (e.g., at +60 mmHg: normals, 18.2%; athletes, 24.2%; P < 0.05). This investigation revealed that in response to cardiac (un)loading similar changes in RV cavity area occur in endurance-trained and normally active individuals despite a differential response in the left ventricle. These differences may be the result of alterations in RV influence on the left ventricle and/or intrinsic ventricular compliance.  相似文献   

7.
During acute pulmonary hypertension, both the pericardium and the right ventricle (RV) constrain left ventricular (LV) filling; therefore, pericardiotomy should improve LV function. LV, RV, and pericardial pressures and RV and LV dimensions and LV stroke volume (SV) were measured in six anesthetized dogs. The pericardium was closed, the chest was left open, and the lungs were held away from the heart. Data were collected at baseline, during pulmonary artery constriction (PAC), and after pericardiotomy with PAC maintained. PAC decreased SV by one-half. RV diameter increased, and septum-to-LV free wall diameter and LV area (our index of LV end-diastolic volume) decreased. Compared with during PAC, pericardiotomy increased LV area and SV increased 35%. LV and RV compliance (pressure-dimension relations) and LV contractility (stroke work-LV area relations) were unchanged. Although series interaction accounts for much of the decreased cardiac output during acute pulmonary hypertension, pericardial constraint and leftward septal shift are also important. Pericardiotomy can improve LV function in the absence of other sources of external constraint to LV filling.  相似文献   

8.
During mechanical ventilation, increased pulmonary vascular resistance (PVR) may decrease right ventricular (RV) performance. We hypothesized that volume loading, by reducing PVR, and, therefore, RV afterload, can limit this effect. Deep anesthesia was induced in 16 mongrel dogs (8 oleic acid-induced acute lung injury and 8 controls). We measured ventricular pressures, dimensions, and stroke volumes during positive end-expiratory pressures of 0, 6, 12, and 18 cmH(2)O at three left ventricular (LV) end-diastolic pressures (5, 12, and 18 mmHg). Oleic acid infusion (0.07 ml/kg) increased PVR and reduced respiratory system compliance (P < 0.05). With positive end-expiratory pressure, PVR was greater at a lower LV end-diastolic pressure. Increased PVR was associated with a decreased transseptal pressure gradient, suggesting that leftward septal shift contributed to decreased LV preload, in addition to that caused by external constraint. Volume loading reduced PVR; this was associated with improved RV output and an increased transseptal pressure gradient, which suggests that rightward septal shift contributed to the increased LV preload. If PVR is used to reflect RV afterload, volume loading appeared to reduce PVR, thereby improving RV and LV performance. The improvement in cardiac output was also associated with reduced external constraint to LV filling; since calculated PVR is inversely related to cardiac output, increased LV output would reduce PVR. In conclusion, our results, which suggest that PVR is an independent determinant of cardiac performance, but is also dependent on cardiac output, improve our understanding of the hemodynamic effects of volume loading in acute lung injury.  相似文献   

9.
Cardiac atrophy after bed rest and spaceflight.   总被引:7,自引:0,他引:7  
Cardiac muscle adapts well to changes in loading conditions. For example, left ventricular (LV) hypertrophy may be induced physiologically (via exercise training) or pathologically (via hypertension or valvular heart disease). If hypertension is treated, LV hypertrophy regresses, suggesting a sensitivity to LV work. However, whether physical inactivity in nonathletic populations causes adaptive changes in LV mass or even frank atrophy is not clear. We exposed previously sedentary men to 6 (n = 5) and 12 (n = 3) wk of horizontal bed rest. LV and right ventricular (RV) mass and end-diastolic volume were measured using cine magnetic resonance imaging (MRI) at 2, 6, and 12 wk of bed rest; five healthy men were also studied before and after at least 6 wk of routine daily activities as controls. In addition, four astronauts were exposed to the complete elimination of hydrostatic gradients during a spaceflight of 10 days. During bed rest, LV mass decreased by 8.0 +/- 2.2% (P = 0.005) after 6 wk with an additional atrophy of 7.6 +/- 2.3% in the subjects who remained in bed for 12 wk; there was no change in LV mass for the control subjects (153.0 +/- 12.2 vs. 153.4 +/- 12.1 g, P = 0.81). Mean wall thickness decreased (4 +/- 2.5%, P = 0.01) after 6 wk of bed rest associated with the decrease in LV mass, suggesting a physiological remodeling with respect to altered load. LV end-diastolic volume decreased by 14 +/- 1.7% (P = 0.002) after 2 wk of bed rest and changed minimally thereafter. After 6 wk of bed rest, RV free wall mass decreased by 10 +/- 2.7% (P = 0.06) and RV end-diastolic volume by 16 +/- 7.9% (P = 0.06). After spaceflight, LV mass decreased by 12 +/- 6.9% (P = 0.07). In conclusion, cardiac atrophy occurs during prolonged (6 wk) horizontal bed rest and may also occur after short-term spaceflight. We suggest that cardiac atrophy is due to a physiological adaptation to reduced myocardial load and work in real or simulated microgravity and demonstrates the plasticity of cardiac muscle under different loading conditions.  相似文献   

10.
Cardiomyopathies indistinctly affect atrial and ventricular cardiac compartments with alterations of their mechanical and/or electrical activity. To understand the main mechanisms involved in these pathological alterations, a detailed knowledge of the physiology of the healthy heart is critical. In the present work, we utilize multidimensional protein identification technology to characterize the murine left ventricle (LV), right ventricle (RV), and atria (A) proteomes, identifying thousands of distinct proteins. Moreover, using multidimensional algorithm protein map tool, relative abundances of proteins among the heart chambers were investigated. In sum, we found 16 and 55 proteins were more abundant in LV compared to RV and A, respectively; 47 and 60 proteins were more abundant in RV than LV and A, respectively; and, 81 and 74 proteins were more abundant in A than LV and RV, respectively. This detailed characterization of myocardial compartment proteome represents an important advancement in the knowledge of heart physiology, and may contribute to the identification of key features underlying the onset of cardiomyopathy.  相似文献   

11.
We aimed to quantify kinetic energy (KE) during the entire cardiac cycle of the left ventricle (LV) and right ventricle (RV) using four-dimensional phase-contrast magnetic resonance imaging (MRI). KE was quantified in healthy volunteers (n = 9) using an in-house developed software. Mean KE through the cardiac cycle of the LV and the RV were highly correlated (r(2) = 0.96). Mean KE was related to end-diastolic volume (r(2) = 0.66 for LV and r(2) = 0.74 for RV), end-systolic volume (r(2) = 0.59 and 0.68), and stroke volume (r(2) = 0.55 and 0.60), but not to ejection fraction (r(2) < 0.01, P = not significant for both). Three KE peaks were found in both ventricles, in systole, early diastole, and late diastole. In systole, peak KE in the LV was lower (4.9 ± 0.4 mJ, P = 0.004) compared with the RV (7.5 ± 0.8 mJ). In contrast, KE during early diastole was higher in the LV (6.0 ± 0.6 mJ, P = 0.004) compared with the RV (3.6 ± 0.4 mJ). The late diastolic peaks were smaller than the systolic and early diastolic peaks (1.3 ± 0.2 and 1.2 ± 0.2 mJ). Modeling estimated the proportion of KE to total external work, which comprised ~0.3% of LV external work and 3% of RV energy at rest and 3 vs. 24% during peak exercise. The higher early diastolic KE in the LV indicates that LV filling is more dependent on ventricular suction compared with the RV. RV early diastolic filling, on the other hand, may be caused to a higher degree of the return of the atrioventricular plane toward the base of the heart. The difference in ventricular geometry with a longer outflow tract in the RV compared with the LV explains the higher systolic KE in the RV.  相似文献   

12.
The parallel conductance volume, created by the conductivity of structures surrounding the ventricular blood pool, can be estimated by using a saline dilution technique. This paper examines the use of a novel volume reduction method, during a standard vena caval preload reduction maneuver, as an alternative to the routinely used saline dilution method to calibrate conductance catheter measurements in the left (LV) and right ventricle (RV) of animals and humans. The serial reproducibility of both methods was examined by measurement of percent difference, and by assessing the coefficient of repeatability 1) between two measurements within the same subject, 2) between the two techniques, and 3) interobserver variability. The effect of ventricular size and contractile state on the volume reduction technique was also observed. It was essential to ensure the technique was not affected by inotropic state. The volume reduction technique and saline dilution method were repeated at three different loading states (baseline, 5, and 10 microg x kg(-1) x min(-1) of dobutamine). The coefficient of repeatability between serial measurements was similar for both the volume reduction and saline dilution methods, and good interobserver variability was demonstrated. The volume reduction technique was compared with the saline dilution technique over a large range of ventricular sizes. No significant difference was observed in the RV or LV of adult humans or in the LV of neonatal pigs and children. There was no significant effect on either the saline dilution or the volume reduction technique as the inotropic state increased. In conclusion, the volume reduction technique is neither affected by ventricular size nor contractile state, is repeatable between different observers, and can be used to substitute the saline dilution method when preload reduction of the ventricle is being employed.  相似文献   

13.
Altered pressure in the developing left ventricle (LV) results in altered morphology and tissue material properties. Mechanical stress and strain may play a role in the regulating process. This study showed that confocal microscopy, three-dimensional reconstruction, and finite element analysis can provide a detailed model of stress and strain in the trabeculated embryonic heart. The method was used to test the hypothesis that end-diastolic strains are normalized after altered loading of the LV during the stages of trabecular compaction and chamber formation. Stage-29 chick LVs subjected to pressure overload and underload at stage 21 were reconstructed with full trabecular morphology from confocal images and analyzed with finite element techniques. Measured material properties and intraventricular pressures were specified in the models. The results show volume-weighted end-diastolic von Mises stress and strain averaging 50–82 % higher in the trabecular tissue than in the compact wall. The volume-weighted-average stresses for the entire LV were 115, 64, and 147 Pa in control, underloaded, and overloaded models, while strains were 11, 7, and 4 %; thus, neither was normalized in a volume-weighted sense. Localized epicardial strains at mid-longitudinal level were similar among the three groups and to strains measured from high-resolution ultrasound images. Sensitivity analysis showed changes in material properties are more significant than changes in geometry in the overloaded strain adaptation, although resulting stress was similar in both types of adaptation. These results emphasize the importance of appropriate metrics and the role of trabecular tissue in evaluating the evolution of stress and strain in relation to pressure-induced adaptation.  相似文献   

14.
In many patients with congenital heart disease, the right ventricle (RV) is subjected to abnormal loading conditions. To better understand the state of compensated RV hypertrophy, which could eventually progress to decompensation, we studied the effects of RV pressure overload in rats. In the present study, we report the biventricular adaptation to 6 wk of pulmonary artery banding (PAB). PAB resulted in an RV pressure overload to approximately 60% of systemic level and a twofold increase in RV mass (P < 0.01). Systemic hemodynamic parameters were not altered, and overt signs of heart failure were absent. Load-independent measures of ventricular function (end-systolic pressure-volume relation, preload recruitable stroke work relation, maximum first time derivative of pressure divided by end-diastolic volume), assessed by means of pressure-volume (PV) loops, demonstrated a two- to threefold increase in RV contractility under baseline conditions in PAB rats. RV contractility increased in response to dobutamine stimulation (2.5 microg.kg(-1).min(-1)) both in PAB and sham-operated rats in a similar fashion, indicating preserved RV contractile reserve in PAB rats. Left ventricular (LV) contractility at baseline was unaffected in PAB rats, although LV volume in PAB rats was slightly decreased. LV contractility increased in response to dobutamine (2.5 microg.kg(-1).min(-1)), both in PAB and sham rats, whereas the response to a higher dose of dobutamine (5 microg.kg(-1).min(-1)) was blunted in PAB rats. RV pressure overload (6 wk) in rats resulted in a state of compensated RV hypertrophy with preserved RV contractile reserve, whereas LV contractile state at baseline was not affected. Furthermore, this study demonstrates the feasibility of performing biventricular PV-loop measurements in rats.  相似文献   

15.
A number of important differences can be found between the left ventricle (LV) and right ventricle (RV) of the heart under physiological conditions. In anatomy, the most important is probably the architecture of the atrioventricular valve and its annulus. The LV has a mitral valve (with two cusps) and a firm annulus, while the RV has a tricuspid valve with a greater total area, but relatively small cuspid areas, and an elastic annulus. The difference in the blood supply is important. Owing to high intramural pressure, the coronary flow in the wall of the LV occurs only during the diastole; in the RV it is limited only in the presence of a significant increase in intracavitary pressure. The LV myocardium is functionally "accustomed" to short-term marked changes in the systolic load (in extreme static exercise the arterial pressure rises for a short time to three times the normal value), while the RV is adapted to changes in the diastolic load (marked filling changes associated with deep breathing, for instance). The difference in the response to a long-term volume load is difficult to evaluate: between a defect of the interatrial septum and aortic insufficiency there are too many differences. A long-term pressure load seems to be tolerated better by the right ventricle: patients with severe pulmonary stenosis and a pressure six times higher than the physiological value have lived 25 years and patients with isolated corrected L-transposition of the great arteries can reach 35 years without any signs of impaired RV function.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

16.
Arterial pressure in most experimental and clinical hypertensions is exacerbated by salt. The effects of salt excess on right and left ventricular (RV and LV, respectively) functions and their respective coronary vasodilatory responses have been less explored. We therefore examined the effects of 8 wk of NaCl excess (8% in food) on arterial pressure, RV and LV functions (maximal rate of increase and decrease of ventricular pressure; dP/dt(max) and dP/dt(min)), coronary hemodynamics (microspheres), and collagen content (hydroxyproline assay and collagen volume fraction) in young adult normotensive Wistar-Kyoto (WKY) and spontaneously hypertensive rats (SHR), aged 16 wk by the end of the study. Prolonged salt excess in WKY and SHR elevated pressure only modestly, but it markedly increased LV mass, especially in SHR. Moreover, salt excess significantly impaired RV and LV diastolic function in SHR but only LV diastolic function in WKY rats. However, salt loading affected neither RV nor LV contractile function in both strains. Interstitial and perivascular collagen deposition was increased, whereas coronary vasodilatory responses to dipyridamole diminished in both ventricles in the salt-loaded SHR but not in WKY rats. Therefore, accumulation of ventricular collagen as well as altered myocardial perfusion importantly contributed to the development of salt-related RV and LV dysfunctions in this model of naturally occurring hypertension. The unique effects of salt loading on both ventricles in SHR, but not WKY rats, strongly suggest that nonhemodynamic mechanisms in hypertensive disease participate pathophysiologically with salt-loading hypertension. These findings point to the conclusion that the concept of "salt sensitivity" in hypertension is far more complex than simply its effects on arterial pressure or the LV.  相似文献   

17.
Exposure to chronic hypoxia (CH) induces elevated pulmonary artery pressure/resistance, leading to an eventual maladaptive right ventricular hypertrophy (RVH). Muscle RING finger-1 (MuRF1) is a muscle-specific ubiquitin ligase that mediates myocyte atrophy and has been shown to play a role in left ventricular hypertrophy and altered cardiac bioenergetics in pressure overloaded hearts. However, little is known about the contribution of MuRF1 impacting RVH in the setting of CH. Therefore, we hypothesized that MuRF1 deletion would enhance RVH compared to their wild-type littermates, while cardiac-specific overexpression would reduce hypertrophy following CH-induced pulmonary hypertension. We assessed right ventricular systolic pressure (RVSP), right ventricle to left ventricle plus septal weight ratio (RV/LV+S) and hematocrit (Hct) following a 3-wk isobaric CH exposure. Additionally, we conducted dual-isotope SPECT/CT imaging with cardiac function agent 201Tl-chloride and cell death agent 99mTc-annexin V. Predictably, CH induced pulmonary hypertension, measured by increased RVSP, RV/LV+S and Hct in WT mice compared to normoxic WT mice. Normoxic WT and MuRF1-null mice exhibited no significant differences in RVSP, RV/LV+S or Hct. CH-induced increases in RVSP were also similar between WT and MuRF1-null mice; however, RV/LV+S and Hct were significantly elevated in CH-exposed MuRF1-null mice compared to WT. In cardiac-specific MuRF1 overexpressing mice, RV/LV+S increased significantly due to CH exposure, even greater than in WT mice. This remodeling appeared eccentric, maladaptive and led to reduced systemic perfusion. In conclusion, these results are consistent with an atrophic role for MuRF1 regulating the magnitude of right ventricular hypertrophy following CH-induction of pulmonary hypertension.  相似文献   

18.
During ischemic heart diseases and when heart failure progresses depletion of myocardial energy stores occurs. D-Ribose (R) has been shown to improve cardiac function and energy status after ischemia. Folic acid (FA) is an essential cofactor in the formation of adenine nucleotides. Therefore, we assessed whether chronic R-FA administration during the development of hypertrophy resulted in an improved cardiac function and energy status. In Wistar rats (n = 40) compensatory right ventricular (RV) hypertrophy was induced by monocrotaline (30 mg/kg; MCT), whereas saline served as control. Both groups received a daily oral dose of either 150 mg.kg(-1).day(-1) dextrose (placebo) or R-FA (150 and 40 mg.kg(-1).day(-1), respectively). In Langendorff-perfused hearts, RV and left ventricular (LV) pressure development and collagen content as well as total RV adenine nucleotides (TAN), creatine content, and RV and LV collagen content were determined. In the control group R-FA had no effect. In the MCT-placebo group, TAN and creatine content were reduced, RV and LV diastolic pressure-volume relations were steeper, RV systolic pressures were elevated, RV and LV collagen content was increased, and RV-LV diastolic interaction was altered compared with controls. In the MCT-R-FA group, TAN, RV and LV diastolic stiffness, RV and LV collagen content, and RV-LV diastolic interaction were normalized to the values in the control group while creatine content remained depressed and RV systolic function remained elevated. In conclusion, the depression of energy status in compensated hypertrophic myocardium observed was partly prevented by chronic R-FA administration and accompanied by a preservation of diastolic function and collagen deposition.  相似文献   

19.
Diastolic function is a major determinant of ventricular performance, especially when loading conditions are altered. We evaluated biventricular diastolic function in lambs and studied possible load dependence of diastolic parameters [minimum first derivative of pressure vs. time (dP/dt(min)) and time constant of isovolumic relaxation (tau)] in normal (n = 5) and chronic right ventricular (RV) pressure-overloaded (n = 5) hearts by using an adjustable band on the pulmonary artery (PAB). Pressure-volume relations were measured during preload reduction to obtain the end-diastolic pressure-volume relationship (EDPVR). In normal lambs, absolute dP/dt(min) and tau were lower in the RV than in the left ventricle whereas the chamber stiffness constant (b) was roughly the same. After PAB, RV tau and dP/dt(min) were significantly higher compared with control. The RV EDPVR indicated impaired diastolic function. During acute pressure reduction, both dP/dt(min) and tau showed a relationship with end-systolic pressure. These relationships could explain the increased dP/dt(min) but not the increased tau-value after banding. Therefore, the increased tau after banding reflects intrinsic myocardial changes. We conclude that after chronic RV pressure overload, RV early relaxation is prolonged and diastolic stiffness is increased, both indicative of impaired diastolic function.  相似文献   

20.
Diastolic suction (DS) can be defined as that property of the ventricle by means of which it tends to refill itself during early diastole, independent of any force from the atrium. Although thought to be significant in the left ventricle (LV), DS in the right ventricle (RV) has received little attention, probably because of RV geometry. Our recent LV studies have shown that DS is related to both decreased elastance (i.e., tau, the relaxation time constant) and end-systolic volume (V(LVES)), thus reconciling the two mechanisms that have been used to explain the concept of DS. We hypothesized that RV DS would similarly depend on tau and V(RVES). In six anesthetized open-chest dogs, aortic, RV, right atrial (RA), pulmonary arterial (PA), and RV pericardial pressure, tricuspid velocity, and PA flow were measured. V(RVES) was calculated by measuring distances between eight ultrasonic crystals. An empirical index of relaxation, tau', and V(RVES) were manipulated by volume loading/caval constriction and isoproterenol/esmolol. We calculated the total energy (I(W-)) of the backward expansion wave generated during RV relaxation and that component causing DS [I(W-(DS))]; i.e., the energy remaining after tricuspid valve opening. I(W-) [I(W-(DS)) also] was found to be inversely related to tau' and to V(RVES) {i.e., I(W-) = -8.85.e((-0.0423tau')).e([-0.0665(%V(RVES))])}. Thus, as for the LV, the energy of the backward-going wave generated by the RV during relaxation depends on both the rate at which elastance decreases and the completeness of ejection. Despite the thin wall and nonspherical shape of the RV, DS appears to be an important mechanism.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号