共查询到20条相似文献,搜索用时 0 毫秒
1.
Comparative study of glutamine synthetase bound lanthanide(III) ions using NMR relaxation and lanthanide(III) luminescence techniques 总被引:1,自引:0,他引:1
Changes in the intrinsic fluorescence intensity of glutamine synthetase induced by lanthanide(III) ion binding demonstrate the existence of three types of sites for these ions. The sites are populated sequentially during titrations of the enzyme, and the first two have a stoichiometry of 1 per enzyme subunit. The number of water molecules coordinated to Eu(III) bound to the first site was determined by luminescence lifetime techniques to be 4.1 +/- 0.5. The hydration of Gd(III) bound to the same site was studied by magnetic field dependent water proton longitudinal relaxation rate measurements, and by water proton and deuteron relaxation measurements of one sample at single magnetic fields. The magnetic resonance techniques also yield a value of 4 for the hydration number. 相似文献
2.
Time-resolved europium(III) luminescence excitation spectroscopy: characterization of calcium-binding sites of calmodulin 总被引:1,自引:0,他引:1
Pulsed-dye laser excitation and lifetime spectroscopy of the 7F0----5D0 transition of Eu3+ reveals details of the binding of this ion to the calcium-binding sites of calmodulin (labeled I-IV, starting at the N-terminus). For 10 microM calmodulin Eu3+ binds quantitatively at sites I and II and more weakly at sites III and IV with Kd values of approximately 0.5 microM and 1.0 microM at the latter sites. In D2O solution the time course of luminescence emission of Eu3+-loaded calmodulin can be separated into three exponential components with lifetimes of 2.50 (sites I and II) and 1.70 and 0.63 ms (sites III and IV). This finding permits the time resolution of the excitation spectrum by determination of the amplitudes of the three components as the excitation wavelength is scanned across the spectral profile in 0.1-nm increments. The amplitudes (intensities at time t = O) are plotted as a function of wavelength and the results fitted to three Lorentzian peaks centered at 579.20, 579.40, and 579.32 nm in order of decreasing lifetimes. In H2O solution only two exponential luminescence decay components are resolvable with lifetimes of 0.41 and 0.27 ms, corresponding to sites I and II and sites III and IV, respectively. These results indicate that two water molecules are coordinated to the Eu3+ ions at sites I and II and at either site III or site IV, with three water molecules at the remaining site.(ABSTRACT TRUNCATED AT 250 WORDS) 相似文献
3.
Metal ion binding sites of bacteriorhodopsin. Laser-induced lanthanide luminescence study 总被引:2,自引:0,他引:2
Laser-excited luminescence lifetimes of lanthanide ions bound to bacteriorhodopsin have been measured in deionized membranes. The luminescence titration curve, as well as the binding curve of apomembrane (retinal-free) with Eu3+, has shown that the removal of the retinal does not significantly affect the affinity of Eu3+ for the two high affinity sites of bacteriorhodopsin. The D2O effects on decay rate constants indicate that Eu3+ bound to the high affinity sites of native membrane or apomembrane is coordinated by about six ligands in the first coordination sphere. Tb3+ is shown to be coordinated by four ligands. The data indicate that metal ions bind to the protein with a specific geometry. From intermetal energy transfer experiments using Eu3+-Pr3+, Tb3+-Ho3+, and Tb3+-Er3+, the distance between the two high affinity sites is estimated to be 7-8 A. 相似文献
4.
5.
The effects of minor differences in the amino acid sequences between a vertebrate (bovine testes) and an invertebrate (octopus) calmodulin on metal ion binding were investigated via laser-induced Eu3+ and Tb3+ luminescence. Amino acid substitutions at residues which are coordinated to the metal ion do not produce any detectable changes in the 7F0----5D0 excitation spectrum of the Eu3+ ion bound to octopus calmodulin relative to bovine testes calmodulin; only minor differences in the excited-state lifetime values in D2O solution are observed. The dissociation constants for Eu3+ (1.0 +/- 0.2 microM) and Tb3+ (5 +/- 1 microM) from the weak lanthanide binding sites (III and IV, numbered from the amino terminus) of octopus calmodulin were measured using luminescence techniques. Both values agree well with those reported previously for bovine testes calmodulin [Mulqueen, P. M., Tingey, J. M., & Horrocks, W. D., Jr. (1985) Biochemistry 24, 6639-6645]. The measured dissociation constant of Eu3+ bound in the tight lanthanide binding sites (I and II) is 6 +/- 2 nM for octopus calmodulin and 12 +/- 2 nM for bovine testes calmodulin. The distances between sites I and II (12.4 +/- 0.5 A) and sites III and IV (11.7 +/- 0.8 A) were determined from F?rster-type energy transfer in D2O solutions of octopus calmodulin containing bound Eu3+ donor and Nd3+ acceptor ions. F?rster theory parameters for nonradiative energy transfer between Tyr138 and Tb3+ ions bound at sites III and IV of octopus calmodulin were comprehensively evaluated, including a dynamics simulation of the orientation factor kappa 2. This theory is found to account quantitatively for the observed energy-transfer efficiency as evaluated from the observed sensitized Tb3+ emission. 相似文献
6.
Laser Raman spectroscopy has been used to study calcium binding to calmodulin, Ca2+-dependent regulator protein. Cation binding accompanied by spectral changes of tyrosine residues in the regions of Fermi-resonance doublet and 1600-1620 cm-1, of some carboxylate-containing residues, amide I, III and C-C(N) skeletal vibrations. Amide III contour analysis and calculations of Amide I contours show that complexation causes peptide backbone conformational changes characterized mainly by increased alpha-helical content. 相似文献
7.
Conformation and ion binding properties of peptides related to calcium binding domain III of bovine brain calmodulin 总被引:1,自引:0,他引:1
The conformational and ion binding properties of the sequences 93-104, 96-104, and 93-98 of domain III of bovine brain calmodulin (CaM) have been studied by CD and Tb3+-mediated fluorescence. In aqueous solution the interaction of all fragments with Ca2+ and Mg2+ ions is very weak and without any effect on the peptide conformation, which remains always random. In trifluoroethanol the interaction is very strong and the different fragments exhibit very distinct binding properties. In particular, the dodecapeptide fragment 93-104, and its N-terminal hexapeptide 98-104, bind calcium and magnesium with a very high binding constant (Kb greater than 10(5) M-1), undergoing a substantial conformational change. The structural rearrangement is particularly evident in the hexapeptide fragment, which tend to form a beta-bend. The C-terminal nonapeptide fragment 96-104 interacts with calcium and magnesium more weakly, and the binding process causes a decrease of ordered structure. These results suggest that, even in the entire dodecapeptide sequence corresponding to the loop of domain III of CaM, the calcium binding site is shifted toward the N-terminal hexapeptide segment. This interpretation is consistent with the results of crystallographic studies of CaM, which show that the calcium ions are located toward the amino terminal portion of the loop. 相似文献
8.
We have examined the thermodynamics of lanthanide ion binding to adriamycin by monitoring the effects of variations in temperature on the dissociation constants of various lanthanide ion complexes of the drug. These constants were obtained by analyzing the extent of quenching of the fluorecence of adriamycin in the presence of lanthanide ions in terms of an equilibrium binding process. Our binding model included the following features, all of which are supported by evidence derived from previous published reports, vide infra. The lanthanides form 1:1 complexes with adriamycin. The binding is dependent on the pH of the solution, indicating that only the nonprotonated amine form of the drug participates in lanthanide ion binding. And finally the drug self-associates in solution to for a dimeric species. Our present results indicate that the binding process is almost completely independent of temperature, indicating that the enthalpy of complex formation is extremely small. The entropy terms are consistent with the formation of a complex in which the adriamycin acts as a bidentate ligand. Our results suggest that the lanthanide complexes are isostructural, at least as far as the adriamycin is concerned, throughout the lanthanide series. 相似文献
9.
M T Henzl W D McCubbin C M Kay E R Birnbaum 《The Journal of biological chemistry》1985,260(14):8447-8455
Luminescence methods were used to examine the interaction of Eu(III) and Tb(III) with parvalbumin isozyme III from pike (Esox lucius). The bound lanthanide ions were excited both directly, via laser irradiation, and indirectly, via fluorescence energy transfer from adjacent phenylalanine residues. At high (175 microM) protein concentrations, the lanthanide titration curves exhibited pronounced quenching of luminescence at Ln3+:parvalbumin ratios above 2:1, in agreement with earlier reports (Donato, H., Jr., and Martin, R. B. (1974) Biochemistry 13, 4575-4579). However, in experiments performed with lower concentrations (10 microM), the titrations were well behaved and indicated a lanthanide:protein stoichiometry of 2:1. Equilibrium dialysis measurements performed with Eu(III) ruled out the existence of a third strong binding site which could cause the quenching of the luminescence at high protein concentrations. Similarly, careful analysis of the spectrum that results from direct excitation of the 7F0----5D0 transition of parvalbumin-bound Eu3+ ion revealed no peak attributable to a third Ln3+-binding site. The peak which has been construed by others (Rhee, M.-J., Sudnick, D. R., Arkle, V. K., and Horrocks, W. DeW., Jr. (1981) Biochemistry 20, 3328-3334) as evidence for a third site was shown to result from a pH-dependent spectral transition involving the europium ions bound at the CD and EF sites. Luminescent lifetime measurements performed on Tb(III)/parvalbumin solutions follow Stern-Volmer quenching kinetics at terbium:protein ratios in excess of 2:1, suggesting that the quenching results from collisional deactivation of the tightly bound ions by excess terbium ion free in solution. 相似文献
10.
Wen‐Xian Li Yu Liu Ying‐Jie Li Shu‐Yan Feng Jing Zhang Bo‐Yang Ao Xiao‐Jun Sun Lahu Saiji 《Luminescence》2013,28(3):302-307
A novel ligand containing multiple coordinating groups (sulfinyl, carboxyl and carbonyl groups), acetophenonylcarboxymethyl sulphoxide, was synthesized. Its corresponding two lanthanide (III) binary complexes were synthesized and characterized by element analysis, molar conductivity, FT‐IR, TG‐DTA and UV spectroscopy. Results showed that the composition of these complexes was REL3L‐ (ClO4)2·3H2O (RE = Eu (III), Tb (III); L = C6H5COCH2SOCH2COOH; L‐ = C6H5COCH2SOCH2COO‐). FT‐IR results indicated that acetophenonylcarboxymethyl sulphoxide was bonded with an RE (III) ion by an oxygen atom of the sulfinyl and carboxyl groups and not by an oxygen atom of the carbonyl group due to high steric hinderance. Fluorescent spectra showed that the Tb (III) complex had excellent luminescence as a result of a transfer of energy from the ligand to the excitation state energy level (5D4) of Tb (III). The Eu (III) complex displayed weak luminescence, attributed to low energy transfer efficiency between the triplet state energy level of its ligand and the excited state (5D0) of Eu (III). As a result, the Tb (III) complex displayed a good antenna effect for luminescence. The fluorescence decay curves of Eu (III) and Tb (III) complexes were also measured. Copyright © 2012 John Wiley & Sons, Ltd. 相似文献
11.
Some lanthanide (Ln) complexes (Ln = Er, Nd, Yb) with an organic ligand, 6-diphenylamine carbonyl 2-pyridine carboxylic acid (HDPAP), have been synthesized. The crystal structure and near infrared luminescence of these complexes (Er-DPAP, Nd-DPAP and Yb-DPAP) have been investigated. The results showed that the lanthanide complexes have electroneutral structures and the near infrared (NIR) emission exhibits characteristic narrow emission of the lanthanide ions. The energy transfer mechanisms in the lanthanide complexes were discussed. 相似文献
12.
Direct laser excitation of aqueous Eu(III) bound to specific RNA fragments was used to probe the metal-binding sites of the anticodon loop of tRNA(Phe) from E. coli and of a tetraloop containing a GNRA consensus sequence. Binding of Mg(II) or Eu(III) to either RNA fragment resulted in a higher melting transition, but no global change in structure was observed. Aqueous Eu(III) exhibits a single weak excitation peak at 17273 cm(-1), the intensity of which increased upon addition of the tRNA loop fragment. Analysis of incremental increases in the luminescence intensity upon complexation with the tRNA loop indicated a stoichiometry of one high-affinity Eu(III)-binding site per loop fragment, with a Kd of 1.3 +/- 0.2 microM. Competition experiments between Eu(III) and Mg(II) were consistent with the two metal ions binding to a common site and with an approximately 30-fold lesser affinity of the tRNA loop for Mg(II) than for Eu(III). The rate of luminescence decay following excitation of Eu(III) bound to the tRNA loop corresponded to displacement of up to 4-5 (of a possible 9) waters of hydration on binding to the tRNA loop. By comparison, Eu(III) binds to the DNA analogue of the tRNA loop with an 8-fold lesser affinity and one fewer direct coordination site than to the RNA sequence, suggesting that a 2'OH of RNA is one of the direct ligands. In contrast with the absence of a shift in the excitation peak of aqueous Eu(III) upon formation of the tRNA loop complex, direct excitation of Eu(III) bound to a GNRA tetraloop fragment resulted in a substantially blue-shifted excitation peak (17290 cm(-1)). The tetraloop fragment also has a single Eu(III)-binding site, with a Kd of 12 +/- 3 microM. The bound Eu(III) was competed by Mg(II), although the relative affinity for Mg(II) was approximately 150-450-fold less than that for Eu(III). The Eu(III)-binding site of the tetraloop site is highly dehydrated, with approximately 7 water molecules displaced upon binding by RNA ligands, suggesting that the blue-shift of the excitation peak is the result of Eu(III) specifically bound in a nonpolar site within the GNRA loop structure. 相似文献
13.
A number of different experimental techniques have been used to probe the details of structural changes on the binding of Ca(II) to the large number of known calcium-binding proteins. The use of luminescent lanthanide(III) ions, especially terbium(III) and europium(III), as substitutional replacement for calcium(II), has led to a number of useful experiments from which important details concerning the metal ion coordination sites have been obtained. This work is concerned with the measurement of the circularly polarized luminescence (CPL) from the 5D4----7F5 transition of Tb(III) bound to the calcium binding sites of bovine trypsin, bovine brain calmodulin, and frog muscle parvalbumin. It is demonstrated that it is possible to make these polarization measurements from very dilute solutions (less than 20 microM) and monitor structural changes as equivalents of Tb(III) are added. It is shown that the two proteins that belong to the class of "EF-hand" structures (calmodulin and parvalbumin) possess quite similar CPL line shapes, whereas Tb(III) bound to trypsin has a much different band structure. CPL results following competitive and consecutive binding of Ca(II) and Tb(III) bound to calmodulin are also reported and yield information concerning known differences between the sequence of binding of these two species. 相似文献
14.
Investigating the effects of posttranslational adenylylation on the metal binding sites of Escherichia coli glutamine synthetase using lanthanide luminescence spectroscopy. 下载免费PDF全文
L. P. Reynaldo J. J. Villafranca W. D. Horrocks Jr 《Protein science : a publication of the Protein Society》1996,5(12):2532-2544
Lanthanide luminescence was used to examine the effects of posttranslational adenylylation on the metal binding sites of Escherichia coli glutamine synthetase (GS). These studies revealed the presence of two lanthanide ion binding sites of GS of either adenylylation extrema. Individual emission decay lifetimes were obtained in both H2O and D2O solvent systems, allowing for the determination of the number of water molecules coordinated to each bound Eu3+. The results indicate that there are 4.3 +/- 0.5 and 4.6 +/- 0.5 water molecules coordinated to Eu3+ bound to the n1 site of unadenylylated enzyme, GS0, and fully adenylylated enzyme, GS12, respectively, and that there are 2.6 +/- 0.5 water molecules coordinated to Eu3+ at site n2 for both GS0 and GS12. Energy transfer measurements between the lanthanide donor-acceptor pair Eu3+ and Nd3+, obtained an intermetal distance measurement of 12.1 +/- 1.5 A. Distances between a Tb3+ ion at site n2 and tryptophan residues were also performed with the use of single-tryptophan mutant forms of E. coli GS. The dissociation constant for lanthanide ion binding to site n1 was observed to decrease from Kd = 0.35 +/- 0.09 microM for GS0 to Kd = 0.06 +/- 0.02 microM for GS12. The dissociation constant for lanthanide ion binding to site n2 remained unchanged as a function of adenylylation state; Kd = 3.8 +/- 0.9 microM and Kd = 2.6 +/- 0.7 microM for GS0 and GS12, respectively. Competition experiments indicate that Mn2+ affinity at site n1 decreases as a function of increasing adenylylation state, from Kd = 0.05 +/- 0.02 microM for GS0 to Kd = 0.35 +/- 0.09 microM for GS12. Mn2+ affinity at site n2 remains unchanged (Kd = 5.3 +/- 1.3 microM for GS0 and Kd = 4.0 +/- 1.0 microM for GS12). The observed divalent metal ion affinities, which are affected by the adenylylation state, agrees with other steady-state substrate experiments (Abell LM, Villafranca JJ, 1991, Biochemistry 30:1413-1418), supporting the hypothesis that adenylylation regulates GS by altering substrate and metal ion affinities. 相似文献
15.
A series of coordination polymers constructed by sodium, lanthanide(III), and pyridine-2,6-dicarboxylate (dipic),NaLn(dipic)2 · 7H2O (Ln = Eu, Gd, Tb), have been prepared under a hydrothermal condition. The crystal structures of the three compounds which are isostructual were determined by single-crystal X-ray diffraction. The two-dimensional layers found in the compounds are built up from six-folded {NaO6} polyhedra and nine-folded {LnN2O7} polyhedra, these being edge-shared each other along the c axis and bridged by carboxylate groups of dipic along the b axis, respectively. This two-dimensional framework provides cavities inside the layer and interlayer spaces outside the layer for accommodation of the two dipic molecules coordinated to a lanthanide(III) ions. The dehydrated materials obtained by heating the as-synthesized crystals at 200 °C held their crystal structure, and absorbed the same amounts of water molecules as those of the as-synthesized crystals upon the exposure of 100% relative humidity at room temperature. The Eu and Tb compounds showed strong red and green emissions, respectively, due to an energy transfer from dipic molecules to trivalent emission ions. 相似文献
16.
Metal ion binding to calmodulin: NMR and fluorescence studies 总被引:13,自引:0,他引:13
Calmodulin is an important second messenger protein which is involved in a large variety of cellular path-ways.Calmodulin is sensitive to fluctuations in the intracellular Ca levels and is activated by the bindingof four Ca ions. In spite of the important role it plays in signal transduction pathways, it shows a surpris-inglybroad specificity for binding metal ions. Using 15N-Gly biosynthetically-labelled calmodulin, we havestudied the binding of different metal ions to calmodulin, including K+, Na+, Ca, Mg, Zn, Cd, Pb, Hg, Sr, La and Lu, by 1H, 15N HMQC NMR experiments. The effects of these ions on the substrate-bindingability of calmodulin have also been studied by fluorescence spectroscopy of the single tryptophan residue in a 22-residue synthetic peptide encompassing the skeletal muscle myosin light chain kinase calmod-ulin-binding domain. Most of these metal ions can activate a calmodulin target enzyme to some extent,though they bind to calmodulin in a different manner. Mg, which is of direct physiological interest, has adistinct site-preference for calmodulin, as it shows the highest affinity for site I in the N-terminal domain,while the C-terminal sites III and IV are the high affinity binding sites for Ca (as well as for Cd ). At ahigh concentration of Mg and a low concentration of Ca, calmodulin can bind Mg in its N-terminallobe while the C-terminal domain is occupied by Ca; this species could exist in resting cells in which the Mg level significantly exceeds that of Ca. Moreover, our data suggest that the toxicity of Pb-which,like Sr, binds with an equal and high affinity to all four sites-may be related to its capacity to tightlybind and improperly activate calmodulin. 相似文献
17.
Excitation spectroscopy of the 7F0----5D0 transition of Eu3+ and diffusion-enhanced energy transfer are used to study metal-binding characteristics of the calcium-binding protein parvalbumin from codfish. Energy is transferred from Eu3+ ions occupying the CD- and EF-binding sites to the freely-diffusing Co(III) coordination complex energy acceptors: [Co(NH3)6]3+, [Co(NH3)5H2O]3+, [CoF(NH3)5]2+, [CoCl(NH3)5]2+, [Co(NO2)3(NH3)3], and [Co(ox)3]3-. In the absence of these inorganic energy acceptors, the excited-state lifetimes of Eu3+ bound to the CD and EF sites are indistinguishable, even in D2O; however, in the presence of the positively charged energy acceptor complexes, the Eu3+ probes in the cod parvalbumin have different excited-state lifetimes due to a greater energy-transfer site from Eu3+ in the CD site than from this ion in the EF site. The observation of distinct lifetimes for Eu3+ in the two sites allows the study of the relative binding site affinities and selectivity, using other members of the lanthanide ion series. Our results indicate that during the course of a titration of the metal-free protein, Eu3+ fills the two sites simultaneously. Eu3+ is competitively displaced by other Ln3+ ions, with the CD site showing a preference for the larger Ln3+ ions while the EF site shows little, if any, competitive selectivity across the Ln3+ ion series. 相似文献
18.
19.
《Inorganica chimica acta》2006,359(4):1233-1238
Six new complexes [Eu(tta)3]2bpm, [Er(tta)3]2bpm, [Tb(tta)3]2bpm, [Er(tta)3]2dpp, Pr(tta)3bpm and Nd(tta)3bpm (tta = 4,4,4-trifluoro-1-(2-thienyl)-1,3-butanedione, bpm = 2,2′-bipyrimidine, dpp = 2,3-bis(2-pyridyl)pyrazine) were prepared and studied. The electronic absorption spectra of the complexes display tta π → π* transitions in the UV region. Cyclic voltammetry of the complexes show an irreversible reduction followed by a reversible reduction both associated with the tta ligand. Eu(III) reduction in the homodinuclear [Eu(tta)3]2bpm complex occurs as an irreversible reduction at less negative potentials than the tta-based reductions. Emission spectra of the Eu(III) and Tb(III) bimetallics are typical of this type of bonding motif with ligand centered (tta) absorptions resulting in 4f–4f transitions in the visible and near infrared region. 相似文献
20.
Heparan sulfate (HS) is a sulfated glycosaminoglycan attached to a core protein on the cell surface. Protein binding to cell surface HS is a key regulatory event for many cellular processes such as blood coagulation, cell proliferation, and migration. The concept whereby protein binding to HS is not random but requires a limited number of sulfation patterns is becoming clear. Here we describe a hydrophobic trapping assay for screening a library of heparin hexasaccharides for binders to antithrombin III (ATIII). The hexasaccharide compositions are defined with their building block content in the following format: (DeltaHexA:HexA:GlcN:SO 3:Ac). Of five initial compositions present in the library, (1:2:3:6:1), (1:2:3:7:1), (1:2:3:7:0), (1:2:3:8:0), and (1:2:3:9:0), only two are shown to bind ATIII, namely, (1:2:3:8:0) and (1:2:3:9:0). The use of amide hydrophilic interaction (HILIC) liquid chromatography-mass spectrometry permitted reproducible quantitative analysis of the composition of the initial library as well as that of the binding fraction. The specificity of the hexasaccharides binding ATIII was confirmed by assaying their ability to enhance ATIII-mediated inhibition of Factor Xa in vitro. 相似文献