首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 36 毫秒
1.
The relationship of the biochemical states to the mechanical events in contraction of smooth muscle cross-bridges is reviewed. These studies use direct measurements of the kinetics of Pi and ADP release. The rate of release of Pi from thiophosphorylated cycling cross-bridges held isometric was biphasic with turnovers of 1.8 s-1 and 0.3 s-1, reflecting properties and forces directly acting on cross-bridges through mechanisms such as positive strain and inhibition by high-affinity MgADP binding. Fluorescent transients reporting release of an ADP analogue 3'-deac-edaADP were significantly faster in phasic than in tonic smooth muscles. Thiophosphorylation of myosin regulatory light chains (RLCs) increased and positive strain decreased the release rate around twofold. The rates of ADP release from rigor cross-bridges and the steady-state Pi release from cycling isometric cross-bridges are similar, indicating that the ADP-release step or an isomerization preceding it may limit the ATPase rate. Thus ADP release in phasic and tonic smooth muscles is a regulated step with strain- and dephosphorylation-dependence. High affinity of cross-bridges for ADP and slow ADP release prolong the fraction of the duty cycle occupied by strongly bound AM.ADP state(s) and contribute to the high economy of force that is characteristic of smooth muscle. RLC thiophosphorylation led to structural changes in smooth muscle cross-bridges consistent with our findings that thiophosphorylation and strain modulate product release.  相似文献   

2.
Inorganic phosphate (Pi) release was determined by means of a fluorescent Pi-probe in single permeabilized rabbit soleus and psoas muscle fibers. Measurements of Pi release followed photoliberation of approximately 1.5 mM ATP by flash photolysis of NPE-caged ATP in the absence and presence of Ca2+ at 15 degrees C. In the absence of Ca2+, Pi release occurred with a slow rate of 11 +/- 3 microM . s-1 (n = 3) in soleus fibers and 23 +/- 1 microM . s-1 (n = 10) in psoas fibers. At saturating Ca2+ concentrations (pCa 4.5), photoliberation of ATP was followed by rapid force development. The initial rate of Pi release was 0.57 +/- 0.05 mM . s-1 in soleus (n = 13) and 4.7 +/- 0.2 mM . s-1 in psoas (n = 23), corresponding to a rate of Pi release per myosin head of 3.8 s-1 in soleus and 31.5 s-1 in psoas. Pi release declined at a rate of 0.48 s-1 in soleus and of 5.2 s-1 in psoas. Pi release in soleus was slightly faster in the presence of an ATP regenerating system but slower when 0.5 mM ADP was added. The reduction in the rate of Pi release results from an initial redistribution of cross-bridges over different states and a subsequent ADP-sensitive slowing of cross-bridge detachment.  相似文献   

3.
The effects of laser-flash photolytic release of ATP from caged ATP [P3-1(2-nitrophenyl)ethyladenosine-5'-triphosphate] on stiffness and tension transients were studied in permeabilized guinea pig protal vein smooth muscle. During rigor, induced by removing ATP from the relaxed or contracting muscles, stiffness was greater than in relaxed muscle, and electron microscopy showed cross-bridges attached to actin filaments at an approximately 45 degree angle. In the absence of Ca2+, liberation of ATP (0.1-1 mM) into muscles in rigor caused relaxation, with kinetics indicating cooperative reattachment of some cross-bridges. Inorganic phosphate (Pi; 20 mM) accelerated relaxation. A rapid phase of force development, accompanied by a decline in stiffness and unaffected by 20 mM Pi, was observed upon liberation of ATP in muscles that were released by 0.5-1.0% just before the laser pulse. This force increment observed upon detachment suggests that the cross-bridges can bear a negative tension. The second-order rate constant for detachment of rigor cross-bridges by ATP, in the absence of Ca2+, was estimated to be 0.1-2.5 X 10(5) M-1s-1, which indicates that this reaction is too fast to limit the rate of ATP hydrolysis during physiological contractions. In the presence of Ca2+, force development occurred at a rate (0.4 s-1) similar to that of intact, electrically stimulated tissue. The rate of force development was an order of magnitude faster in muscles that had been thiophosphorylated with ATP gamma S before the photochemical liberation of ATP, which indicates that under physiological conditions, in non-thiophosphorylated muscles, light-chain phosphorylation, rather than intrinsic properties of the actomyosin cross-bridges, limits the rate of force development. The release of micromolar ATP or CTP from caged ATP or caged CTP caused force development of up to 40% of maximal active tension in the absence of Ca2+, consistent with cooperative attachment of cross-bridges. Cooperative reattachment of dephosphorylated cross-bridges may contribute to force maintenance at low energy cost and low cross-bridge cycling rates in smooth muscle.  相似文献   

4.
Kinetics of the cross-bridge cycle in insect fibrillar flight muscle have been measured using laser pulse photolysis of caged ATP and caged inorganic phosphate (Pi) to produce rapid step increases in the concentration of ATP and Pi within single glycerol-extracted fibers. Rapid photochemical liberation of 100 microM-1 mM ATP from caged ATP within a fiber caused relaxation in the absence of Ca2+ and initiated an active contraction in the presence of approximately 30 microM Ca2+. The apparent second order rate constant for detachment of rigor cross-bridges by ATP was between 5 x 10(4) and 2 x 10(5) M-1s-1. This rate is not appreciably sensitive to the Ca2+ or Pi concentrations or to rigor tension level. The value is within an order of magnitude of the analogous reaction rate constant measured with isolated actin and insect myosin subfragment-1 (1986. J. Muscle Res. Cell Motil. 7:179-192). In both the absence and presence of Ca2+ insect fibers showed evidence of transient cross-bridge reattachment after ATP-induced detachment from rigor, as found in corresponding experiments on rabbit psoas fibers. However, in contrast to results with rabbit fibers, tension traces of insect fibers starting at different rigor tensions did not converge to a common time course until late in the transients. This result suggests that the proportion of myosin cross-bridges that can reattach into force-generating states depends on stress or strain in the filament lattice. A steady 10-mM concentration of Pi markedly decreased the transient reattachment phase after caged ATP photolysis. Pi also decreased the amplitude of stretch activation after step stretches applied in the presence of Ca2+ and ATP. Photolysis of caged Pi during stretch activation abruptly terminated the development of tension. These results are consistent with a linkage between Pi release and the steps leading to force production in the cross-bridge cycle.  相似文献   

5.
The suppression of tension development by orthovanadate (Vi) was studied in mechanical experiments and by measuring the binding of radioactive Vi and nucleotides to glycerol-extracted rabbit muscle fibers. During active contractions, Vi bound to the cross-bridges and suppressed tension with an apparent second-order rate constant of 1.34 X 10(3) M-1s-1. The half-saturation concentration for tension suppression was 94 microM Vi. The incubation of fibers in Vi relaxing or rigor solutions prior to initiation of active contractions had little effect on the initial rise of active tension. The addition of adenosine diphosphate (ADP) and Vi to fibers in rigor did not cause relaxation. Suppression of tension only developed during cross-bridge cycling. After slow relaxation from rigor in 1 mM Vi and low (50 microM) MgATP concentration (0 Ca2+), radioactive Vi and ADP were trapped within the fiber. This finding indicated the formation of a stable myosin X ADP X Vi complex, as has been reported in biochemical experiments with isolated myosin. Vi and ADP trapped within the fibers were released only by subsequent cross-bridge attachment. Vi and ADP were preferentially trapped under conditions of cross-bridge cycling in the presence of ATP rather than in relaxed fibers or in rigor with ADP. These results indicate that in the normal cross-bridge cycle, inorganic phosphate (Pi) is released from actomyosin before ADP. The resulting actomyosin X ADP intermediate can bind Vi and Pi. This intermediate probably supports force. Vi behaves as a close analogue of Pi in muscle fibers, as it does with isolated actomyosin.  相似文献   

6.
In the field of muscle regulation, there is still controversy as to whether Ca2+, alone, is able to shift muscle from the relaxed to the fully active state or whether cross-bridge binding also contributes to turning on muscle contraction. Our previous studies on the binding of myosin subfragment 1 (S-1) to the troponin-tropomyosin-actin complex (regulated actin) in the absence of ATP suggested that, even in Ca2+, the binding of rigor cross-bridges is necessary to turn on regulated actin fully. In the present study, we demonstrate that this is also the case for the turning on of the acto.S-1 ATPase activity. By itself, Ca2+ does not fully turn on the acto.S-1 ATPase activity; at low actin concentration, there is almost a 10-fold increase in ATPase activity when the regulated actin is fully turned on by the binding of rigor cross-bridges in the presence of Ca2+. This large increase in ATPase activity does not occur because the binding of S-1.ATP to actin is increased; the binding of S-1.ATP is almost the same to maximally turned-off and maximally turned-on regulated actin. The increase in ATPase activity occurs because of a marked increase in the rate of Pi release so that when the regulated actin is fully turned on, Pi release becomes so rapid that the rate-limiting step precedes the Pi release step. These results suggest that, while Ca2+, alone, does not fully turn on the regulated actin filament in solution, the binding of rigor cross-bridges can turn it on fully. If force-producing cross-bridges play the same role in vivo as rigor cross-bridges in vitro, there may be a synergistic effect of Ca2+ and cross-bridge binding in turning on muscle contraction which could greatly sharpen the response of the muscle fiber to Ca2+.  相似文献   

7.
The process of phosphate dissociation during the muscle cross-bridge cycle has been investigated by photoliberation of inorganic phosphate (Pi) within skinned fibers of rabbit psoas muscle. This permitted a test of the idea that Ca2+ controls muscle contraction by regulating the Pi release step of the cycle. Photoliberation of Pi from structurally distinct "caged" Pi precursors initiated a rapid tension decline of up to 12% of active tension, and this was followed by a slower tension decline. The apparent rate constant of the fast phase, kPi, depended on both [Pi] and [Ca2+], whereas the slow phase generally occurred at 2-4 s-1. At maximal Ca2+, kPi increased in a nonlinear manner from 43 +/- 2 s-1 to 118 +/- 7 s-1, as Pi was raised from 0.9 to 12 mM. This was analyzed in terms of a three-state kinetic model in which a force-generating transition is coupled to Pi dissociation from the cross-bridge. As Ca(2+)-activated tension was reduced from maximal (Pmax) to 0.1 Pmax, (i) kPi decreased by up to 2.5-fold, (ii) the relative amplitude of the rapid phase increased 2-fold, and (iii) the relative amplitude of the slow phase increased about 6-fold. Changes in the rapid phase are compatible with Ca2+ influencing an apparent equilibrium constant for the force-generating transition. By comparison, kPi was faster than the rate constant of tension redevelopment, ktr, and was influenced less by Ca2+. Ca2+ effects on the caged Pi transient cannot account for the large effects of Ca2+ on actomyosin ATPase rates or cross-bridge cycling kinetics but may be a manifestation of reciprocal interactions between the thin filament and force-generating cross-bridges, and may represent Ca2+ regulation of the distribution of cross-bridges between non-force-and force-generating states.  相似文献   

8.
Muscle fiber contraction involves the cyclical interaction of myosin cross-bridges with actin filaments, linked to hydrolysis of ATP that provides the required energy. We show here the relationship between cross-bridge states, force generation, and Pi release during ramp stretches of active mammalian skeletal muscle fibers at 20°C. The results show that force and Pi release respond quickly to the application of stretch: force rises rapidly, whereas the rate of Pi release decreases abruptly and remains low for the duration of the stretch. These measurements show that biochemical change on the millisecond timescale accompanies the mechanical and structural responses in active muscle fibers. A cross-bridge model is used to simulate the effect of stretch on the distribution of actomyosin cross-bridges, force, and Pi release, with explicit inclusion of ATP, ADP, and Pi in the biochemical states and length-dependence of transitions. In the simulation, stretch causes rapid detachment and reattachment of cross-bridges without release of Pi or ATP hydrolysis.  相似文献   

9.
The effects of myosin regulatory light chain (RLC) phosphorylation and strain on adenosine diphosphate (ADP) release from cross-bridges in phasic (rabbit bladder (Rbl)) and tonic (femoral artery (Rfa)) smooth muscle were determined by monitoring fluorescence transients of the novel ADP analog, 3'-deac-eda-ADP (deac-edaADP). Fluorescence transients reporting release of 3'-deac-eda-ADP were significantly faster in phasic (0.57 +/- 0.06 s(-1)) than tonic (0.29 +/- 0.03 s(-1)) smooth muscles. Thiophosphorylation of regulatory light chains increased and strain decreased the release rate approximately twofold. The calculated (k-ADP/k+ADP) dissociation constant, Kd of unstrained, unphosphorylated cross-bridges for ADP was 0.6 microM for rabbit bladder and 0.3 microM for femoral artery. The rates of ADP release from rigor bridges and reported values of Pi release (corresponding to the steady-state adenosine triphosphatase (ATPase) rate of actomyosin (AM)) from cross-bridges during a maintained isometric contraction are similar, indicating that the ADP-release step or an isomerization preceding it may be limiting the adenosine triphosphatase rate. We conclude that the strain- and dephosphorylation-dependent high affinity for and slow ADP release from smooth muscle myosin prolongs the fraction of the duty cycle occupied by strongly bound actomyosin.ADP state(s) and contributes to the high economy of force.  相似文献   

10.
Isolated skinned frog skeletal muscle fibers were activated (increasing [Ca2+]) and then relaxed (decreasing [Ca2+]) with solution changes, and muscle force and stiffness were recorded during the steady state. To investigate the actomyosin cycle, the biochemical species were changed (lowering [MgATP] and elevating [H2PO4-]) to populate different states in the actomyosin ATPase cycle. In solutions with 200 microM [MgATP], compared with physiological [MgATP], the slope of the plot of relative steady state muscle force vs. stiffness was decreased. At low [MgATP], cross-bridge dissociation from actin should be reduced, increasing the population of the last cross-bridge state before dissociation. These data imply that the last cross-bridge state before dissociation could be an attached low-force-producing or non-force-producing state. In solutions with 10 mM total Pi, compared to normal levels of MgATP, the maximally activated muscle force was reduced more than muscle stiffness, and the slope of the plot of relative steady state muscle force vs. stiffness was reduced. Assuming that in elevated Pi, Pi release from the cross-bridge is reversed, the state(s) before Pi release would be populated. These data are consistent with the conclusion that the cross-bridges are strongly bound to actin before Pi release. In addition, if Ca2+ activates the ATPase by allowing for the strong attachment of the myosin to actin in an A.M.ADP.Pi state, it could do so before Pi release. The calcium sensitivity of muscle force and stiffness in solutions with 4 mM [MgATP] was bracketed by that measured in solutions with 200 microM [MgATP], where muscle force and stiffness were more sensitive to calcium, and 10 mM total Pi, where muscle force and stiffness were less sensitive to calcium. The changes in calcium sensitivity were explained using a model in which force-producing and rigor cross-bridges can affect Ca2+ binding or promote the attachment of other cross-bridges to alter calcium sensitivity.  相似文献   

11.
We have used the technique of phosphate: water oxygen exchange to measure the rate of ATP and Pi release and Pi binding to myosin subfragment 1 and actomyosin subfragment 1 from rabbit skeletal muscle. The oxygen exchange distributions for ATP and Pi release fit a simple kinetic model with a single set of rate constants for each step. For actomyosin subfragment 1 (20 degrees C, pH 7.0, I = 50 mM), the rate constant governing ATP release is approximately 8 s-1, Pi release is at approximately 60 s-1 and Pi rebinds to an ADP state at greater than 120 M-1 s-1. These rate constants are similar to those that may occur for undistorted cross-bridges within glycerinated rabbit psoas fibers (Bowater, R., Webb, M. R., and Ferenczi, M. A. (1989) J. Biol. Chem. 264, 7193-7201.  相似文献   

12.
In airway smooth muscle (ASM), ACh induces propagating intracellular Ca2+ concentration ([Ca2+]i) oscillations (5-30 Hz). We hypothesized that, in ASM, coupling of elevations and reductions in [Ca2+]i to force generation and relaxation (excitation-contraction coupling) is slower than ACh-induced [Ca2+]i oscillations, leading to stable force generation. When we used real-time confocal imaging, the delay between elevated [Ca2+]i and contraction in intact porcine ASM cells was found to be approximately 450 ms. In beta-escin-permeabilized ASM strips, photolytic release of caged Ca2+ resulted in force generation after approximately 800 ms. When calmodulin (CaM) was added, this delay was shortened to approximately 500 ms. In the presence of exogenous CaM and 100 microM Ca2+, photolytic release of caged ATP led to force generation after approximately 80 ms. These results indicated significant delays due to CaM mobilization and Ca2+-CaM activation of myosin light chain kinase but much shorter delays introduced by myosin light chain kinase-induced phosphorylation of the regulatory myosin light chain MLC20 and cross-bridge recruitment. This was confirmed by prior thiophosphorylation of MLC20, in which force generation occurred approximately 50 ms after photolytic release of caged ATP, approximating the delay introduced by cross-bridge recruitment alone. The time required to reach maximum steady-state force was >15 s. Rapid chelation of [Ca2+]i after photolytic release of caged diazo-2 resulted in relaxation after a delay of approximately 1.2 s and 50% reduction in force after approximately 57 s. We conclude that in ASM cells agonist-induced [Ca2+]i oscillations are temporally and spatially integrated during excitation-contraction coupling, resulting in stable force production.  相似文献   

13.
The force-generation and phosphate-release steps of the cross-bridge cycle in rabbit soleus slow-twitch muscle fibers (STF) were investigated using sinusoidal analysis, and the results were compared with those of rabbit psoas fast-twitch fibers (FTF). Single fiber preparations were activated at pCa 4.40 and ionic strength 180 mM at 20 degrees C. The effects of inorganic phosphate (Pi) concentrations on three exponential processes, B, C, and D, were studied. Results are consistent with the following cross-bridge scheme: [formula: see text] where A is actin, M is myosin, D is MgADP, and P is inorganic phosphate. The values determined are k4 = 5.7 +/- 0.5 s-1 (rate constant of isomerization step, N = 9, mean +/- SE), k-4 = 4.5 +/- 0.5 s-1 (rate constant of reverse isomerization), K4 = 1.37 +/- 0.13 (equilibrium constant of the isomerization), and K5 = 0.18 +/- 0.01 mM-1 (Pi association constant). The isomerization step (k4) in soleus STF is 20 times slower, and its reversal (k-4) is 20 times slower than psoas fibers. Consequently, the equilibrium constant of the isomerization step (K4) is the same in these two types of fibers. The Pi association constant (K5) is slightly higher in STF than in FTF, indicating that Pi binds to cross-bridges slightly more tightly in STF than FTF. By correlating the cross-bridge distribution with isometric tension, it was confirmed that force is generated during the isomerization (step 4) of the AMDP state and before Pi release in soleus STF.  相似文献   

14.
Effects of MgATP, MgADP, and Pi on actin movement by smooth muscle myosin.   总被引:4,自引:0,他引:4  
To test the idea that the in vitro motility assay is a simplified model system for muscle contraction, the MgATP-dependent movement of actin filaments by thiophosphorylated smooth muscle myosin was characterized in the presence of the products MgADP and inorganic phosphate. The dependence of actin filament velocity on MgATP concentration was hyperbolic with a maximum velocity of 0.6 micron/s and an apparent Km = 40 microM (30 degrees C). MgADP competitively inhibited actin movement by MgATP with a Ki = 0.25 mM. Inorganic phosphate did not affect actin filament velocity in the presence of 1 mM MgATP, but competitively inhibited movement in the presence of 50 microM MgATP with a Ki = 9.5 mM. The effects of ADP and Pi on velocity agree with fiber mechanical studies, confirming that the motility assay is an excellent system to investigate the molecular mechanisms of force generation and shortening in smooth muscle. The rate at which rigor cross-bridges can be recruited to move actin filaments was observed by initiating cross-bridge cycling from rigor by flash photolysis of caged MgATP. Following the flash, which results in a rapid increase in MgATP concentration, actin filaments experienced a MgATP-dependent delay prior to achieving steady state velocity. The delay at low MgATP concentrations was interpreted as evidence that motion generating cross-bridges are slowed by a load due to a transiently high percentage of rigor cross-bridges immediately following MgATP release.  相似文献   

15.
Force development in smooth muscle, as in skeletal muscle, is believed to reflect recruitment of force-generating myosin cross-bridges. However, little is known about the events underlying cross-bridge recruitment as the muscle cell approaches peak isometric force and then enters a period of tension maintenance. In the present studies on single smooth muscle cells isolated from the toad (Bufo marinus) stomach muscularis, active muscle stiffness, calculated from the force response to small sinusoidal length changes (0.5% cell length, 250 Hz), was utilized to estimate the relative number of attached cross-bridges. By comparing stiffness during initial force development to stiffness during force redevelopment immediately after a quick release imposed at peak force, we propose that the instantaneous active stiffness of the cell reflects both a linearly elastic cross-bridge element having 1.5 times the compliance of the cross-bridge in frog skeletal muscle and a series elastic component having an exponential length-force relationship. At the onset of force development, the ratio of stiffness to force was 2.5 times greater than at peak isometric force. These data suggest that, upon activation, cross-bridges attach in at least two states (i.e., low-force-producing and high-force-producing) and redistribute to a steady state distribution at peak isometric force. The possibility that the cross-bridge cycling rate was modulated with time was also investigated by analyzing the time course of tension recovery to small, rapid step length changes (0.5% cell length in 2.5 ms) imposed during initial force development, at peak force, and after 15 s of tension maintenance. The rate of tension recovery slowed continuously throughout force development following activation and slowed further as force was maintained. Our results suggest that the kinetics of force production in smooth muscle may involve a redistribution of cross-bridge populations between two attached states and that the average cycling rate of these cross-bridges becomes slower with time during contraction.  相似文献   

16.
The dependence of the isometric tension, the velocity of unloaded shortening, and the steady-state rate of MgATP hydrolysis on the MgATP concentration (range 0.01-5 mM MgATP) was studied in Ca-activated skinned Limulus muscle fibers. With increasing MgATP concentration the isometric tension increased to a peak at approximately 0.1 mM, and slightly decreased in the range up to 5 mM MgATP. The velocity of unloaded shortening depended on the MgATP concentration roughly according to the Michaelis-Menten law of saturation kinetics with a Michaelis-Menten constant Kv = 95 microM and a maximum shortening velocity of 0.07 muscle lengths s-1; the detachment rate of the cross-bridges during unloaded shortening was 24 s-1. The rate of MgATP splitting also depended hyperbolically on the MgATP concentration with a Michaelis-Menten constant Ka = 129 microM and a maximum turnover frequency of 0.5-1 s-1. The results are discussed in terms of a cross-bridge model based on a biochemical scheme of ATP hydrolysis by actin and myosin in solution.  相似文献   

17.
Based on our recent finding that cardiac myosin binding protein C (cMyBP-C) phosphorylation affects muscle contractility in a site-specific manner, we further studied the force per cross-bridge and the kinetic constants of the elementary steps in the six-state cross-bridge model in cMyBP-C mutated transgenic mice for better understanding of the influence of cMyBP-C phosphorylation on contractile functions. Papillary muscle fibres were dissected from cMyBP-C mutated mice of ADA (Ala273-Asp282-Ala302), DAD (Asp273-Ala282-Asp302), SAS (Ser273-Ala282-Ser302), and t/t (cMyBP-C null) genotypes, and the results were compared to transgenic mice expressing wide-type (WT) cMyBP-C. Sinusoidal analyses were performed with serial concentrations of ATP, phosphate (Pi), and ADP. Both t/t and DAD mutants significantly reduced active tension, force per cross-bridge, apparent rate constant (2πc), and the rate constant of cross-bridge detachment. In contrast to the weakened ATP binding and enhanced Pi and ADP release steps in t/t mice, DAD mice showed a decreased ADP release without affecting the ATP binding and the Pi release. ADA showed decreased ADP release, and slightly increased ATP binding and cross-bridge detachment steps, whereas SAS diminished the ATP binding step and accelerated the ADP release step. t/t has the broadest effects with changes in most elementary steps of the cross-bridge cycle, DAD mimics t/t to a large extent, and ADA and SAS predominantly affect the nucleotide binding steps. We conclude that the reduced tension production in DAD and t/t is the result of reduced force per cross-bridge, instead of the less number of strongly attached cross-bridges. We further conclude that cMyBP-C is an allosteric activator of myosin to increase cross-bridge force, and its phosphorylation status modulates the force, which is regulated by variety of protein kinases.  相似文献   

18.
The rotation of the lever arm of myosin cross-bridges is believed to be responsible for muscle contraction. To resolve details of this rotation, it is necessary to observe a single cross-bridge. It is still impossible to do so in muscle fiber, but it is possible to investigate a small population of cross-bridges by simultaneously activating myosin in a femtoliter volume by rapid release of caged ATP. In earlier work, in which the number of observed cross-bridges was limited to approximately 600 by confocal microscopy, we were able to measure the rates of cross-bridge detachment and rebinding. However, we were unable to resolve the power stroke. We speculated that the reason for this was that the number of observed cross-bridges was too large. In an attempt to decrease this number, we used two-photon microscopy which permitted observation of approximately 1/2 as many cross-bridges as before with the same signal/noise ratio. With the two-photon excitation, the number of cross-bridges was small enough to resolve the beginning of the power stroke. The results indicated that the power stroke begins approximately 170 ms after the rigor cross-bridge first binds ATP.  相似文献   

19.
The effect of Ca2+ on the interaction of bovine cardiac myosin subfragment 1 (S-1) with actin regulated by cardiac troponin-tropomyosin was evaluated. The ratios of actin to troponin and to tropomyosin were adjusted to optimize the Ca2+-dependent regulation of the steady-state actin-activated magnesium adenosinetriphosphatase (MgATPase) rate of myosin S-1. At 25 degrees C, pH 6.9, 16 mM ionic strength, the extrapolated values for maximal adenosine 5'-triphosphate (ATP) turnover rate at saturating actin, Vmax, were 6.5 s-1 in the presence of Ca2+ and 0.24 s-1 in the absence of Ca2+. In contrast to this 27-fold regulation of ATP hydrolysis, there was negligible Ca2+-dependent regulation of cardiac myosin S-1 binding to actin. In the presence of ATP, the dissociation constant of regulated actin and cardiac myosin S-1 was 32 microM in the presence of Ca2+ and 40 microM in the presence of [ethylenebis(oxyethylenenitrilo)]tetraacetic acid. These dissociation constants are indistinguishable from the concentrations of actin needed to reach half-saturation of the myosin S-1 MgATPase rates, 37 microM actin in the presence of Ca2+ and 53 microM in its absence. Although there may be Ca2+-dependent regulation of cross-bridge binding in the intact heart, the present biochemical studies suggest that cardiac regulation critically involves other parts of the cross-bridge cycle, evidenced here by almost complete Ca2+-mediated control of the myosin S-1 MgATPase rate even when the myosin S-1 is actin-bound.  相似文献   

20.
Chin L  Yue P  Feng JJ  Seow CY 《Biophysical journal》2006,91(10):3653-3663
Muscle contraction underlies many essential functions such as breathing, heart beating, locomotion, regulation of blood pressure, and airway resistance. Active shortening of muscle is the result of cycling of myosin cross-bridges that leads to sliding of myosin filaments relative to actin filaments. In this study, we have developed a computer program that allows us to alter the rates of transitions between any cross-bridge-states in a stochastic cycle. The cross-bridge states within the cycle are divided into six attached (between myosin cross-bridges and actin filaments) states and one detached state. The population of cross-bridges in each of the states is determined by the transition rates throughout the cycle; differential equations describing the transitions are set up as a cyclic matrix. A method for rapidly obtaining steady-state exact solutions for the cyclic matrix has been developed to reduce computation time and avoid the divergence problem associated with numerical solutions. In the seven-state model, two power strokes are assumed for each cross-bridge cycle, one before the release of inorganic phosphate, and one after. The characteristic hyperbolic force-velocity relationship observed in muscle contraction can be reproduced by the model. Deviation from the single hyperbolic behavior at low velocities can be mimicked by allowing the rate of cross-bridge-attachment to vary with velocity. The effects of [ATP], [ADP], and [P(i)] are simulated by changing transition rates between specific states. The model has revealed new insights on how the force-velocity characteristics are related to the state transitions in the cross-bridge cycle.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号