首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The addition of glucagon to hepatocytes in primary culture produced a rapid and sustained increase in the Km (1.27 mM phosphoenol pyruvate) of pyruvate kinase. The low Km (0.4 mM) form of the enzyme was seen when cells were retreated with insulin, demonstrating a short-term regulation mechanism. Injections of insulin, glucagon or glucagon followed by insulin demonstrated that a similar mechanism occurs invivo. Results from longer times after injection indicated that another mechanism occurs when altered activity was the result of changes in Vmax and not Km. Thus, a dual mechanism for regulation of pyruvate kinase occurs. A rapid responding system functions by modification of the enzyme, while a long-term system functions by altering the rate of synthesis, thus changing the amount of enzyme present.  相似文献   

2.
A two stage assay for detecting insulin mediator based upon its stimulation of soluble pyruvate dehydrogenase (PDH) phosphatase to activate soluble pyruvate dehydrogenase complex (PDC) has been developed. This coupled assay determines the activation of PDC by monitoring production of [14C]CO2 from [1-14C]pyruvic acid. In addition to being more sensitive than the rat liver mitoplast assay previously used, it allows for the separation and investigation of the effects of mediator on the PDH phosphatases individually. It has been previously shown that the insulin mediator stimulates the most abundant PDH phosphatase, the divalent cation dependent PDH phosphatase, by decreasing the phosphatase's metal requirement (1). A metal independent PDH phosphatase has been found in bovine heart mitochondria. This phosphatase is not immunoprecipitated by antiphosphatase 2A antibody, it is not inhibited by okadaic acid, and it is not stimulated by spermine. However, it is stimulated (more than threefold) by insulin mediator prepared from isolated rat liver membranes. It is inhibited by Mg-ATP, with half-maximal inhibition at 0.3 mM; however, this inhibition is overcome by the insulin mediator.  相似文献   

3.
Purified bovine heart pyruvate dehydrogenase complex was used to investigate the effects of monovalent cations and alpha-ketoisovalerate on pyruvate dehydrogenase (PDH) kinase inhibition by thiamin pyrophosphate. Initial velocity patterns for thiamin pyrophosphate inhibition were consistent with hyperbolic non-competitive or hyperbolic uncompetitive inhibition at various K+ concentrations between 0 and 120 mM. The Kis, Kid, and Kin for thiamin pyrophosphate were in the range of 0.009 to 5.1 microM over the range of K+ concentrations tested. In the absence of K+, 1 mM alpha-ketoisovalerate had no effect on PDH kinase inhibition by thiamin pyrophosphate, whereas in the presence of 20 mM K+, alpha-ketoisovalerate stimulated PDH kinase activity almost 2-fold over the range of 0-80 microM thiamin pyrophosphate. Half-maximal stimulation by alpha-ketoisovalerate occurred at about 200 microM in the presence of 100 microM thiamin pyrophosphate and 20 mM K+. Similar but less extensive changes occurred in the presence of 100 microM thiamin pyrophosphate and 1 mM NH4+. Initial velocity patterns for PDH kinase inhibition by thiamin pyrophosphate in the presence of 2 mM alpha-ketoisovalerate were mixed noncompetitive, but alpha-ketoisovalerate increased the Vm and Km for adenosine 5'-triphosphate in the presence of inhibitor. In the presence of thiamin pyrophosphate, PDH kinase remained stimulated after chromatography on Sephadex G-25 to remove alpha-ketoisovalerate. The results indicate that acylation of pyruvate dehydrogenase complex by alpha-ketoisovalerate results in PDH kinase stimulation but only in the presence of monovalent cations and thiamin pyrophosphate.  相似文献   

4.
The effects of monovalent ions on endogenous pyruvate dehydrogenase (PDH) kinase activity in purified bovine heart pyruvate dehydrogenase complex were investigated. Activity of PDH kinase was stimulated 1.9-, 1.95-, 1.65-, and 1.4-fold by 10 mM K+, Rb+, NH+4, and Cs+, respectively, whereas Na+ and Li+ had no effect on PDH kinase activity. The crystal radii of stimulatory ions were in the range of 1.33 to 1.69 A while the crystal radii of nonstimulatory ions were in the range of 0.6 to 0.94 A. Stimulation of PDH kinase by monovalent ions was not pH dependent. Protein dilution studies showed that monovalent ion stimulation was measurable within 10 s after protein addition to PDH kinase assays. Furthermore, stimulation occurred at all protein concentrations tested. At ATP concentrations from 12.5 to 25 microM, K+ and NH+4 stimulation was constant from 0 to 110 and 0 to 30 mM, respectively. At higher ATP concentrations, from 50 to 500 microM, K+ and NH+4 stimulation peaked at approximately 30 and 3 mM, respectively, and thereafter declined as the ion concentration increased. Maximal PDH kinase stimulation by K+ or NH+4 also declined as Na+ was increased from 0 to 120 mM, but at a fixed salt concentration of 120 mM, both K+ and NH+4 stimulated PDH kinase activity. Phosphopeptide analysis demonstrated that K+ and NH+4 stimulated phosphorylation at sites 1 and 2, but that site 3 phosphorylation was relatively constant under all conditions. Thiamin pyrophosphate and 5,5'-dithiobis-(2-nitrobenzoate) blocked monovalent ion stimulation half-maximally at 4 and 6 microM, respectively. However, neither thiamin pyrophosphate nor 5,5'-dithiobis-(2-nitrobenzoate) significantly inhibited PDH kinase activity in the absence of monovalent ions. The results indicate that heart PDH kinase stimulation by monovalent ions does not occur by changing the binding equilibrium between PDH and dihydrolipoyl transacetylase core. Instead, monovalent ions bind and exert their regulatory effects at or near the active site of PDH kinase.  相似文献   

5.
The Ras guanylnucleotide exchange protein SOS undergoes feedback phosphorylation and dissociation from Grb2 following insulin receptor kinase activation of Ras. To determine the serine/threonine kinase(s) responsible for SOS phosphorylation in vivo, we assessed the role of mitogen-activated, extracellular-signal-regulated protein kinase kinase (MEK), extracellular-signal-regulated protein kinase (ERK), and the c-JUN protein kinase (JNK) in this phosphorylation event. Expression of a dominant-interfering MEK mutant, in which lysine 97 was replaced with arginine (MEK/K97R), resulted in an inhibition of insulin-stimulated SOS and ERK phosphorylation, whereas expression of a constitutively active MEK mutant, in which serines 218 and 222 were replaced with glutamic acid (MEK/EE), induced basal phosphorylation of both SOS and ERK. Although expression of the mitogen-activated protein kinase-specific phosphatase (MKP-1) completely inhibited the insulin stimulation of ERK activity both in vitro and in vivo, SOS phosphorylation and the dissociation of the Grb2-SOS complex were unaffected. In addition, insulin did not activate the related protein kinase JNK, demonstrating the specificity of insulin for the ERK pathway. The insulin-stimulated and MKP-1-insensitive SOS-phosphorylating activity was reconstituted in whole-cell extracts and did not bind to a MonoQ anion-exchange column. In contrast, ERK1/2 protein was retained by the MonoQ column, eluted with approximately 200 mM NaCl, and was MKP-1 sensitive. Although MEK also does not bind to MonoQ, immunodepletion analysis demonstrated that MEK is not the insulin-stimulated SOS-phosphorylating activity. Together, these data demonstrate that at least one of the kinases responsible for SOS phosphorylation and functional dissociation of the Grb2-SOS complex is an ERK-independent but MEK-dependent insulin-stimulated protein kinase.  相似文献   

6.
7.
The activation of muscle pyruvate kinase by divalent cations was studied by steady-state kinetics. Under experimental conditions the enzyme exhibits activation by Mg2+, Co2+, Mn2+, Ni2+, and Zn2+ in descending order of maximal velocity. Combinations of cations were also studied. A synergistic activation was observed with a fixed concentration of Mg2+ and varying concentrations of Mn2+ or of Co2+. This synergism indicates at least two roles for the cations for enzymatic activation and a differential specificity among the cations for the separate functions. Synergistic activation was also observed with fixed Co2+ and varying Mn2+. These results are consistent with a cation specifically required to activate the enzyme and a cation which serves as a cation-nucleotide complex which is a substrate for the reaction. The response observed suggests that Mn2+ is a better activator of the enzyme than is Mg2+, however, MgADP is a better substrate than is MnADP. The lack of a synergistic effect by Ni2+ or Zn2+ with Mg2+ suggests that Ni2+ and Zn2+ are poor activators either because they serve one catalytic function poorly but bind to that site tightly or they serve both catalytic functions poorly in contrast to Mg2+. These studies yield the first simple kinetic evidence that muscle pyruvate kinase, under catalytic conditions of the overall reaction, has a dual divalent cation requirement for activity.  相似文献   

8.
9.
10.
It has been proposed that "Glu238" within the N-box of pyruvate dehydrogenase kinase (PDK) is a base catalyst. The pH dependence of k(cat) of Arabidopsis thaliana PDK indicates that ionizable groups with pK values of 6.2 and 8.4 are necessary for catalysis, and the temperature dependence of these values suggests that the acidic pK is due to a carboxyl- or imidazole-group. The E238 and K241 mutants had elevated K(m,ATP) values. The acidic pK value of the E238A mutant was shifted to 5.5. The H233A, L234H, and L234A mutants had the same pK values as wild-type AtPDK, contrary to the previous proposal of a "Glu-polarizing" His. Instead, we suggest that the conserved Glu, Lys, and Asn residues of the N-box contribute to coordinating Mg2+ in a position critical for formation of the PDK-MgATP-substrate ternary complex.  相似文献   

11.
1. Yeast pyruvate kinase (EC 2.7.1.40) catalyzes, in addition to the primary, physiologically important reaction, three secondary kinase reactions, the ATP-dependent phosphorylations of fluoride (fluorokinase), hydroxylamine (hydroxylamine kinase) and glycolate (glycolate kinase). 2. These reactions are accelerated by fructose-1,6-bisphosphate, the allosteric activator of the primary reaction. Wth Mg2+ as the required divalent cation, none of these reactions are observed in the absence of fructose-biphosphate. With Mn2+, fructose-bisphosphate is required for the glycolate kinase reaction, but merely stimulates the other reactions. 3. The effect of other divalent cations and pH on three secondary kinase reactions was also examined. 4. Results are compared with those obtained from muscle pyruvate kinase and the implications of the results for the mechanism of the yeast enzyme are discussed.  相似文献   

12.
We have reexamined the concept that glucagon controls gluconeogenesis from lactate-pyruvate in isolated rat hepatocytes almost entirely by inhibition of flux through pyruvate kinase, thereby making gluconeogenesis more efficient. 1. We tested and refined the 14C-tracer technique that has previously yielded the opposite conclusion, that is, that inhibition of pyruvate kinase is a relatively unimportant mechanism. The tracer procedure, as used by us, was found to be insensitive to the size of the pyruvate pool, and experiments using modifications of the technique to obviate a number of other potential errors support the earlier conclusion that control of pyruvate kinase is not the predominant mechanism. 2. Any stimulation of formation of glucose that results from inhibition of pyruvate kinase is the consequence of elevation of the steady-state concentrations of phosphoenolpyruvate and all subsequent intermediates in the gluconeogenic pathway. During ongoing stimulation of glucose synthesis by glucagon in isolated hepatocytes, the concentrations of all measured intermediate compounds between phosphoenolpyruvate and glucose were elevated except triose phosphates and fructose 1,6-bisphosphate. The failure of these compounds to rise above control levels indicates that not all gluconeogenic reactions beyond pyruvate kinase were accelerated thermodynamically as would occur with predominant control at pyruvate kinase. We conclude, therefore, that although glucagon inhibits flux through the pyruvate kinase reaction, this does not account for most of the stimulation of gluconeogenesis. Major control sites are also within the pyruvate-phosphoenolpyruvate segment and the fructose 1,6-bisphosphate cycle.  相似文献   

13.
Site-directed mutagenesis was used to change Lys 240 of yeast pyruvate kinase (Lys 269 in muscle PK) to Met. K240M has an absolute requirement for FBP for catalysis. K240M is 100- and 1000-fold less active than wild-type YPK in the presence of Mn(2+) and Mg(2+), respectively. Steady-state fluorescence titration data suggest that the substrate PEP binds to K240M with the same affinity as it does to wild-type YPK. The rate of phosphoryl transfer in K240M has been decreased >1000-fold compared to wild-type YPK. The detritiation of 3-[(3)H]pyruvate catalyzed by YPK occurs at a rate significantly greater than the spontaneous rate. Detritiation of pyruvate by wild-type YPK occurs as a divalent metal- and FBP-dependent process requiring ATP. There is no detectable detritiation of pyruvate catalyzed by K240M. The solvent deuterium isotope effect on k(cat) is 2.7 +/- 0.2 and 1.6 +/- 0.1 for the wild type and for K240M YPK, respectively. This suggests that the isotope sensitive step in the PK reaction does not involve Lys 240 and that the enolpyruvate intermediate is still protonated by K240M. Isotope trapping was used to characterize enolpyruvate protonation by K240M. While there was enrichment of the methyl protons of pyruvate from labeled solvent formed by catalysis with muscle PK and wild-type YPK, only background levels of tritium were trapped with K240M. In K240M, the proton donor exchanges protons with the solvent at a higher rate relative to turnover than does the proton donor in wild-type YPK. The pH-rate profile of K240M exhibits the loss of a pK(a) value of 8. 8 observed with wild-type YPK. The above data and recent crystal structure data suggest that Lys 240 interacts with the phosphoryl group of phosphoenolpyruvate and helps to stabilize the pentavalent phosphate transition state during phosphoryl transfer. Phosphoryl transfer is highly coupled to proton transfer, or Lys 240 also affects enolate protonation.  相似文献   

14.
In tissue culture of hepatocytes, insulin (0.1-1 munits/ml for 4 h) reversed completely the effects of starvation of rats to decrease the activity of pyruvate dehydrogenase (PDH) complex and to increase the activities of PDH kinase and PDH kinase activator protein. It had no effect in hepatocytes from fed rats. Significant effects of insulin were detected with 0.01 munit/ml after 4 h, and in 1-2 h with 1 munit/ml.  相似文献   

15.
16.
Preincubation of rat hepatocytes with EGF (epidermal growth factor) caused a stimulation of gluconeogenesis from alanine. The effect was maximal after preincubation of 20 min, and a half-maximal effect of EGF was obtained at 10 nM. EGF also stimulated gluconeogenesis from lactate and asparagine, but not from glutamine or from proline. Preincubation of hepatocytes with EGF caused a stable inactivation of pyruvate kinase, which may account, at least in part, for the observed effects of EGF on gluconeogenesis.  相似文献   

17.
Pyruvate kinase acts as an allosteric enzyme, playing a crucial role in the catalysis of the final step of the glycolytic pathway. In this study, site-specific mutagenesis and tryptophan fluorescence quenching were used to probe the catalytic allosteric mechanism of rabbit muscle pyruvate kinase. Movement of the B domain was found to be essential for the catalytic reaction. Rotation of the B domain in the opening of the cleft between domains B and A induced by the binding of activating cations allows substrates to bind, whereas substrate binding shifts the rotation of the B domain in the closure of the cleft. Trp-157 accounts for the differences in tryptophan fluorescence signal with and without activating cations and substrates. Trp-481 and Trp-514 are brought into an aqueous environment after phenylalanine binding.  相似文献   

18.
1. The mechanism of rabbit muscle pyruvate kinase was investigated by measurements of fluxes, isotope trapping, steady-state velocity and binding of the substrates. All measurements were made at pH8.5 in Tris/HCl buffer and at 5mm-free Mg(2+). 2. Methods of preparing [(32)P]phosphoenolpyruvate from [(32)P]P(i) in high yield and determining [(32)P]-phosphoenolpyruvate and [8-(14)C]ADP are described. 3. The ratio Flux of ATP to ADP/Flux of ATP to phosphoenolpyruvate (measured at equilibrium) increased hyperbolically with ADP concentration from unity to about 2.1 at 2mm-ADP, but was unaffected by phosphoenolpyruvate concentration. Since the ratio is greater than unity, one pathway for the addition of substrates must involve phosphoenolpyruvate adding first to the enzyme in a rate-limiting step. However, the substrates must also add in the alternative order, because of the non-linear increase in the ratio with ADP concentration and because the rate of increase is very much less than that predicted from the steady-state velocity data for an ordered addition. The lack of influence of phosphoenolpyruvate on the ratio is consistent with the rapid addition of ADP in the alternative pathway. At low ADP concentrations the alternative pathway contributes less than 33% to the total reaction. 4. Isotope trapping was observed with [(32)P]phosphoenolpyruvate, confirming that when phosphoenolpyruvate adds first to the enzyme it is in a rate-limiting step. The release of phosphoenolpyruvate from the ternary complex must also be a slow step. Trapping was not observed with [8-(14)C]ADP, hence the addition of ADP to the free enzyme must be rapid unless its dissociation constant is very large (>20mm). 5. Binding studies showed that 4mol of [(32)P]phosphoenolpyruvate binds to 1mol of the enzyme, probably unligated to Mg(2+), with a dissociation constant appropriate to the mechanism indicated above. Binding of [8-(14)C]ADP could not be detected, and hence the binding of ADP occurs by a low-affinity step. The latter is also demanded by the steady-state velocity data. 6. The ratio Flux of phosphoenolpyruvate to ATP/Flux of phosphoenolpyruvate to pyruvate (determined from the incorporation of label into phosphoenolpyruvate from [3-(14)C]-pyruvate or [gamma-(32)P]ATP during the forward reaction) did not differ significantly from unity. Steady-state velocity data predicted grossly different flux ratios for ordered dissociations of the products, and the results indicate that the dissociation must be rapid and random. The data also exclude a Ping-Pong mechanism. 7. Permissible rate constants for the above mechanism are calculated. The results indicate a high degree of cooperativity in binding, whatever the order of addition of substrate.  相似文献   

19.
Autophagy is a catabolic membrane-trafficking mechanism conserved in all eukaryotic cells. In addition to the nonselective transport of bulk cytosol, autophagy is responsible for efficient delivery of the vacuolar enzyme Ape1 precursor (prApe1) in the budding yeast Saccharomyces cerevisiae, suggesting the presence of a prApe1 sorting machinery. Sequential interactions between Atg19-Atg11 and Atg19-Atg8 pairs are thought responsible for targeting prApe1 to the vesicle formation site, the preautophagosomal structure (PAS), and loading it into transport vesicles, respectively. However, the different patterns of prApe1 transport defect seen in the atg11Delta and atg19Delta strains seem to be incompatible with this model. Here we report that prApe1 could not be targeted to the PAS and failed to be delivered into the vacuole in atg8Delta atg11Delta double knockout cells regardless of the nutrient conditions. We postulate that Atg19 mediates a dual interaction prApe1-sorting mechanism through independent, instead of sequential, interactions with Atg11 and Atg8. In addition, to efficiently deliver prApe1 to the vacuole, a proper interaction between Atg11 and Atg9 is indispensable. We speculate that Atg11 may elicit a cargo-loading signal and induce Atg9 shuttling to a specific PAS site, where Atg9 relays the signal and recruits other Atg proteins to induce vesicle formation.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号