首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
If in a low ionic strength extract of Triton X-100-resistant residual cell structures derived from Ehrlich ascites tumour (EAT) cells Mg2+ was chelated by EDTA, vimentin became associated with unfolded ribosomal subunits. The first molecular characterization of this association has shown that (1) vimentin binds to the RNA moiety of the ribosomes, (2) vimentin has a higher affinity for unfolded small ribosomal subunits or 18S rRNA than for unfolded large ribosomal subunits or 28S rRNA, (3) the limited degradation of vimentin by the vimentin-specific, Ca2+-activated proteinase, with the formation of a 48 Kd breakdown product, abolishes its affinity for rRNA, (4) the association products are rather sensitive to moderate concentrations of KCl and Mg2+, and (5) reductive alkylation of vimentin with pyridoxal-5-phosphate and NaBH4 has no effect on the affinity of vimentin for rRNA. Actin and tubulin do not interact with EAT cell rRNA under the above ionic conditions.  相似文献   

2.
A novel, simple and relatively rapid method is described for the isolation of the intermediate-sized filament protein vimentin from eye lens tissue. Chromatofocusing is applied as the sole purification step. The apparent isoelectric point of the protein in 6 M urea and at 22°C is 4.9. Electrophoretic mobility on one- and two-dimensional polyacrylamide gels, solubility in 6 M urea and amino acid composition were used for identification  相似文献   

3.
Peptidylarginine deiminase (proteinarginine iminohydrolase, EC 3.5.3.15) converted some arginine residues to citrulline residues in soluble vimentin, in a micromolar Ca2+-dependent manner and resulted in the loss of polymerization competence of the intermediate filament protein. When about 8 mol of residues/mol of vimentin were deiminated, there was a complete loss of filament forming ability. This enzyme also deiminated vimentin filaments which had been polymerized, and deimination of vimentin filaments resulted in filament disassembly. Similar results were obtained with other intermediate filaments such as desmin and glial filaments. High performance liquid chromatography and amino acid analyses of lysine-specific protease-generated fragments from deiminated vimentin (about 8 mol of citrulline/mol of vimentin) showed a differential deimination of three structural domains. The head domain was predominant. These observations suggest that the head domain strongly influences integrity of the intermediate filament.  相似文献   

4.
J Ngai  T R Coleman  E Lazarides 《Cell》1990,60(3):415-427
We have assessed the mechanism of intermediate filament assembly by assaying the sites of incorporation of chicken vimentin subunits expressed under the control of an inducible promoter in transfected mouse fibroblasts. The localization of newly synthesized vimentin was determined by immunofluorescence and immunoelectron microscopy at short time periods of induced synthesis, using antibodies specific for chicken vimentin. Under conditions where neither the soluble subunit pools nor the steady-state distribution of endogenous filaments are affected, newly synthesized vimentin incorporates into the vimentin filament network at numerous and discrete sites throughout the cell. Over time, the pattern of newly assembled vimentin converts to a continuous array coincident with preexisting vimentin filaments. These results are consistent with a novel mechanism of intermediate filament assembly, whereby growth of intermediate filaments occurs by topographically restricted and localized subunit addition, necessitating a transient disruption of filament integrity.  相似文献   

5.
Membrane-associated proteins with specific binding properties to modified LDL were investigated in J774 macrophages and Mono Mac 6 sr cells. Ligand blotting of membrane proteins revealed a 54-kDa protein which bound oxidized and acetylated but not native LDL. The 54-kDa protein, isolated by 2D-PAGE, was identified as vimentin. (125)I-AcLDL bound to purified vimentin and desmin in a saturable manner, with an approximate K(d) of 1.7 x 10(-7) M (89 microgram/ml) and 8.0 x 10(-8) M (41 microgram/ml), respectively. Blots of vimentin mutant proteins with deletions in the positively charged N-terminal head domain showed that amino acids 26-39 are essential for the binding of AcLDL by vimentin. Taken together, our data indicate that vimentin binds modified LDL, but not native LDL, in a specific and saturable manner. Vimentin filaments extend throughout the cytoplasm as far as the inner surfaces of plasma and vesicular membranes. Vimentin may thus play a role in membrane-associated steps involved in the intracellular processing of oxidized LDL, contributing to its unregulated uptake and intracellular retention by cells of the atherogenic plaque.  相似文献   

6.
Plectin is a versatile cytolinker protein critically involved in the organization of the cytoskeletal filamentous system. The muscle-specific intermediate filament (IF) protein desmin, which progressively replaces vimentin during differentiation of myoblasts, is one of the important binding partners of plectin in mature muscle. Defects of either plectin or desmin cause muscular dystrophies. By cell transfection studies, yeast two-hybrid, overlay and pull-down assays for binding analysis, we have characterized the functionally important sequences for the interaction of plectin with desmin and vimentin. The association of plectin with both desmin and vimentin predominantly depended on its fifth plakin repeat domain and downstream linker region. Conversely, the interaction of desmin and vimentin with plectin required sequences contained within the segments 1A-2A of their central coiled-coil rod domain. This study furthers our knowledge of the interaction between plectin and IF proteins important for maintenance of cytoarchitecture in skeletal muscle. Moreover, binding of plectin to the conserved rod domain of IF proteins could well explain its broad interaction with most types of IFs.  相似文献   

7.
Epigallocatechin gallate (EGCG) is the major active polyphenol in green tea. Protein interaction with EGCG is a critical step in the effects of EGCG on the regulation of various key proteins involved in signal transduction. We have identified a novel molecular target of EGCG using affinity chromatography, two-dimensional electrophoresis, and mass spectrometry for protein identification. Spots of interest were identified as the intermediate filament, vimentin. The identification was confirmed by Western blot analysis using an anti-vimentin antibody. Experiments using a pull-down assay with [3H]EGCG demonstrate binding of EGCG to vimentin with a Kd of 3.3 nm. EGCG inhibited phosphorylation of vimentin at serines 50 and 55 and phosphorylation of vimentin by cyclin-dependent kinase 2 and cAMP-dependent protein kinase. EGCG specifically inhibits cell proliferation by binding to vimentin. Because vimentin is important for maintaining cellular functions and is essential in maintaining the structure and mechanical integration of the cellular space, the inhibitory effect of EGCG on vimentin may further explain its anti-tumor-promoting effect.  相似文献   

8.
S Ando  K Tanabe  Y Gonda  C Sato  M Inagaki 《Biochemistry》1989,28(7):2974-2979
We reported that stoichiometric phosphorylation by either cAMP-dependent protein kinase or protein kinase C induces disassembly of vimentin filaments [Inagaki, M., Nishi, Y., Nishizawa, K., Matsuyama, M., & Sato, C. (1987) Nature 328, 649-652; Inagaki, M., Gonda, Y., Matsuyama, M., Nishizawa, K., Nishi, Y., & Sato, C. (1988) J. Biol. Chem. 263, 5970-5978]. In the present work, we attempted to identify the sites of vimentin phosphorylated by each protein kinase. Sequential analysis of the purified phosphopeptides, together with the known primary sequence, revealed that Ser-8, Ser-9, Ser-20, Ser-25, Ser-33, and Ser-41 were specifically phosphorylated by protein kinase C, whereas Ser-46 was phosphorylated preferentially by cAMP-dependent protein kinase. Both kinases reacted with Ser-6, Ser-24, Ser-38, Ser-50, and Ser-65. Specific phosphorylation sites for protein kinase C are mostly located close to the amino-terminal side of arginine while those for cAMP-dependent protein kinase are located close to the carboxyl-terminal side of arginine. The phosphorylation sites exclusively occur in the amino-terminal non-alpha-helical head domain, particularly at the beta-turn region. These results provide clues to the molecular mechanisms of phosphorylation-dependent disassembly of vimentin filaments.  相似文献   

9.
The assembly of soluble vimentin subunits into intermediate filaments (IFs) is dependent on information located in the amino-terminal domain. Using site-directed mutagenesis of a Xenopus laevis vimentin cDNA and an Escherichia coli production system to obtain pure mutated protein, we have identified, in the head domain, a nine amino acid motif (SSYRRIFGG), evolutionarily conserved from amphibia to man, which plays an important role in the orderly formation of IFs. Exchanges in the central di-arginine and in the two aromatic residues interfere with IF assembly of vimentin in vitro: on assembly under standard assembly conditions (160 mM-NaCl) most of the protein is included in dense aggregates, with a variable and minor proportion of IFs, whereas at lower ionic concentrations short and incomplete IF-like structures are formed. The deletion of the whole motif results in a protein that under standard assembly conditions (e.g. 160 mM-NaCl) predominantly and rapidly precipitates into large aggregates of non-IF material, whereas at lower ionic strength (e.g. 50 mM-NaCl) both IFs and dense aggregates are formed simultaneously. Our results show that the mutated protein can assume different forms at the same time and under the same conditions. This motif alone is insufficient for the formation of normal IFs as demonstrated by a mutant in which the motif has been brought closer to the alpha-helical rod domain by deletion of 55 internal amino acid residues. Corresponding observations have been made, by immunofluorescence microscopy, upon transfection of cultured epithelial cells lacking vimentin IFs. The importance of the head domain motif for the assembly and higher-order arrangement of IFs is discussed.  相似文献   

10.
The Gram-positive bacterial pathogen Streptococcus pyogenes produces a C3 family ADP-ribosyltransferase designated SpyA (S. pyogenes ADP-ribosyltransferase). Our laboratory has identified a number of eukaryotic protein targets for SpyA, prominent among which are the cytoskeletal proteins actin and vimentin. Because vimentin is an unusual target for modification by bacterial ADP-ribosyltransferases, we quantitatively compared the activity of SpyA on vimentin and actin. Vimentin was the preferred substrate for SpyA (k(cat), 58.5 ± 3.4 min(-1)) relative to actin (k(cat), 10.1 ± 0.6 min(-1)), and vimentin was modified at a rate 9.48 ± 1.95-fold greater than actin. We employed tandem mass spectrometry analysis to identify sites of ADP-ribosylation on vimentin. The primary sites of modification were Arg-44 and -49 in the head domain, with several additional secondary sites identified. Because the primary sites are located in a domain of vimentin known to be important for the regulation of polymerization by phosphorylation, we investigated the effects of SpyA activity on vimentin polymerization, utilizing an in vitro NaCl-induced filamentation assay. SpyA inhibited vimentin filamentation, whereas a catalytic site mutant of SpyA had no effect. Additionally, we demonstrated that expression of SpyA in HeLa cells resulted in collapse of the vimentin cytoskeleton, whereas expression in RAW 264.7 cells impeded vimentin reorganization upon stimulation of this macrophage-like cell line with LPS. We conclude that SpyA modification of vimentin occurs in an important regulatory region of the head domain and has significant functional effects on vimentin assembly.  相似文献   

11.
We have developed a whole-mount immunocytochemical method for Xenopus and used it to map the expression of the intermediate filament protein vimentin during early embryogenesis. We used two monoclonal antibodies, 14h7 and RV202. Both label vimentin filaments in Xenopus A6 cells, RV202 reacts specifically with vimentin (Mr, 55 x 10(3] on Western blots of A6 cells and embryos. 14h7 reacts with vimentin and a second, insoluble polypeptide of 57 x 10(3) Mr found in A6 cells. The 57 x 10(3) Mr polypeptide appears to be an intermediate filament protein immunochemically related to vimentin. In the whole-mount embryo, we first found vimentin at the time of neural tube closure (stage 19) in cells located at the lateral margins of the neural tube. By stage 26, these cells, which are presumably radial glia, are present along the entire length of the neural tube and in the tail bud. Cells in the optic vesicles express vimentin by stage 24. Vimentin-expressing mesenchymal cells appear on the surface of the somites at stage 22/23; these cells appear first on anterior somites and on progressively more posterior somites as development continues. Beginning at stage 24, vimentin appears in mesenchymal cells located ventral to the somites and associated with the pronephric ducts; these ventral cells first appear below the anterior somites and later appear below more posterior somites. The dorsal fin mesenchyme expresses vimentin at stage 26. In the head, both mesodermally-derived and neural-crest-derived mesenchymal tissues express vimentin by stage 26. These include the mesenchyme of the branchial arches, the mandibular arch, the corneal epithelium, the eye, the meninges and mesenchyme surrounding the otic vesicle. By stage 33, vimentin-expressing mesenchymal cells are present in the pericardial cavity and line the vitelline veins. Vimentin expression appears to be a marker for the differentiation of a subset of central nervous system cells and of head and body mesenchyme in the early Xenopus embryo.  相似文献   

12.
The expression of the intermediate filament (IF) protein nestin is closely associated with rapidly proliferating progenitor cells during neurogenesis and myogenesis, but little is known about its function. In this study, we examine the effects of nestin expression on the assembly state of vimentin IFs in nestin-free cells. Nestin is introduced by transient transfection and is positively correlated with the disassembly of vimentin IFs into nonfilamentous aggregates or particles in mitotic but not interphase cells. This nestin-mediated disassembly of IFs is dependent on the phosphorylation of vimentin by the maturation/M-phase-promoting factor at ser-55 in the amino-terminal head domain. In addition, the disassembly of vimentin IFs during mitosis appears to be a unique feature of nestin-expressing cell types. Furthermore, when the expression of nestin is downregulated by the nestin-specific small interfering RNA in nestin-expressing cells, vimentin IFs remain assembled throughout all stages of mitosis. Previous studies suggest that nonfilamentous vimentin particles are IF precursors and can be transported rapidly between different cytoplasmic compartments along microtubule tracks. On the basis of these observations, we speculate that nestin may play a role in the trafficking and distribution of IF proteins and potentially other cellular factors to daughter cells during progenitor cell division.  相似文献   

13.
CD44 is a cell surface glycoprotein that functions as hyaluronan receptor. Mouse and human serum contain substantial amounts of soluble CD44, generated either by shedding or alternative splicing. During inflammation and in cancer patients serum levels of soluble CD44 are significantly increased. Experimentally, soluble CD44 overexpression blocks cancer cell adhesion to HA. We have previously found that recombinant CD44 hyaluronan binding domain (CD44HABD) and its non-HA-binding mutant inhibited tumor xenograft growth, angiogenesis, and endothelial cell proliferation. These data suggested an additional target other than HA for CD44HABD. By using non-HA-binding CD44HABD Arg41Ala, Arg78Ser, and Tyr79Ser-triple mutant (CD443MUT) we have identified intermediate filament protein vimentin as a novel interaction partner of CD44. We found that vimentin is expressed on the cell surface of human umbilical vein endothelial cells (HUVEC). Endogenous CD44 and vimentin coprecipitate from HUVECs, and when overexpressed in vimentin-negative MCF-7 cells. By using deletion mutants, we found that CD44HABD and CD443MUT bind vimentin N-terminal head domain. CD443MUT binds vimentin in solution with a Kd in range of 12-37 nM, and immobilised vimentin with Kd of 74 nM. CD443MUT binds to HUVEC and recombinant vimentin displaces CD443MUT from its binding sites. CD44HABD and CD443MUT were internalized by wild-type endothelial cells, but not by lung endothelial cells isolated from vimentin knock-out mice. Together, these data suggest that vimentin provides a specific binding site for soluble CD44 on endothelial cells.  相似文献   

14.
Whether the highly dynamic structure of the vimentin intermediate filament (IF) cytoskeleton responds to cues from cellular organelles, and what proteins might participate in such events is largely unknown. We have shown previously that the Golgi protein formiminotransferase cyclodeaminase (FTCD) binds to vimentin filaments in vivo and in vitro, and that overexpression of FTCD causes dramatic rearrangements of the vimentin IF cytoskeleton (Gao and Sztul, J. Cell Biol. 152, 877-894, 2001). Using real-time imaging, we now show that FTCD causes bundling of individual thinner vimentin filaments into fibers and that the bundling always originates at the Golgi. FTCD appears to be the molecular "glue" since FTCD cross-links vimentin filaments in vitro. To initiate the analysis of structural determinants required for FTCD function in vimentin dynamics, we used structure-based design to generate individual formiminotransferase (FT) and cyclodeaminase (CD) domains, and to produce an enzymatically inactive FTCD. We show that the intact octameric structure is required for FTCD binding to vimentin filaments and for promoting filament assembly, but that eliminating enzymatic activity does not affect FTCD effects on the vimentin cytoskeleton. Our findings indicate that the Golgi protein FTCD is a potent modulator of the vimentin IF cytoskeleton, and suggest that the Golgi might act as a reservoir for proteins that regulate cytoskeletal dynamics.  相似文献   

15.
Shoeman RL  Hartig R  Traub P 《Biochemistry》1999,38(51):16802-16809
Employing deletion mutant proteins and fluorescein-labeled oligodeoxyribonucleotides in a fluorescence polarization assay, the nucleic acid binding site of the intermediate filament (IF) subunit protein vimentin was localized to the middle of the arginine-rich, non-alpha-helical, N-terminal head domain. While deletion of the first few N-terminal residues (up to amino acid 17) had almost no effect, deletions of residues 25-64 or 25-68 essentially abolished the binding of nucleic acids by the respective proteins. Proteins with smaller deletions, of residues 25-39 or 43-68, were still able to bind nucleic acids quite well at low ionic strength, but only the proteins containing the first DNA-binding wing (residues 27-39) retained the ability to stably bind nucleic acids at physiological ionic strength. These results were confirmed by data obtained with two synthetic peptides whose sequences correspond to the smaller deletions. Nitration experiments showed that one or more of the tyrosines in the head domain are responsible for the stable binding by intercalation. Interestingly, the residues responsible for binding nucleic acids can be deleted without major influence on the in vivo polymerization properties of the mutant proteins. Only the protein with the largest internal deletion, of residues 25-68, failed to form filaments in vivo. Since the N-terminal head domains of IF proteins are largely exposed on the filament surface, but nevertheless essential for filament assembly, these results support the model that the middle of the head domain of vimentin may loop out from the filament surface and thus be available for interactions with other cellular structures or molecules.  相似文献   

16.
The intermediate filament protein nestin is expressed during early stages of development in the central nervous system and in muscle tissues. Nestin expression is associated with morphologically dynamic cells, such as dividing and migrating cells. However, little is known about regulation of nestin during these cellular processes. We have characterized the phosphorylation-based regulation of nestin during different stages of the cell cycle in a neuronal progenitor cell line, ST15A. Confocal microscopy of nestin organization and (32)P in vivo labeling studies show that the mitotic reorganization of nestin is accompanied by elevated phosphorylation of nestin. The phosphorylation-induced alterations in nestin organization during mitosis in ST15A cells are associated with partial disassembly of nestin filaments. Comparative in vitro and in vivo phosphorylation studies identified cdc2 as the primary mitotic kinase and Thr(316) as a cdc2-specific phosphorylation site on nestin. We generated a phosphospecific nestin antibody recognizing the phosphorylated form of this site. By using this antibody we observed that nestin shows constitutive phosphorylation at Thr(316), which is increased during mitosis. This study shows that nestin is reorganized during mitosis and that cdc2-mediated phosphorylation is an important regulator of nestin organization and dynamics during mitosis.  相似文献   

17.
The ability of the intermediate filament subunit protein vimentin to bind synthetic oligonucleotide telomere models containing repeat sequences from Oxytricha (T4G4), Saccharomyces (TGTGTG3), or Tetrahymena (T2G4) was investigated in vitro with a filter binding assay and a gel overlay assay. At low ionic strength, vimentin bound these oligonucleotides with high affinity. At higher ionic strength, the vimentin-oligonucleotide complex was less stable, such that approximately 30% of the initial binding remained at 150 mM KCl. One mole of vimentin tetramer bound approximately 1 mol of telomere oligonucleotide. Vimentin bound well oligonucleotides containing either a random duplex or random 3'-overhang, but showed a reduced affinity for a blunt-ended oligonucleotide. A control random sequence oligonucleotide was not bound by vimentin. The oligonucleotide-binding site of vimentin was shown to be localized in the non-alpha-helical N-terminal domain by assays employing purified proteolytic fragments of vimentin. Preliminary results in the gel overlay assay show that other members of the intermediate filament family, nuclear lamins A-C, all bind the synthetic oligonucleotide containing the telomere repeat sequence of Oxytricha.  相似文献   

18.
Characterization of dimer subunits of intermediate filament proteins   总被引:16,自引:0,他引:16  
The fundamental subunit of the various types of intermediate-sized filaments (IF) has been shown to be a tetramer that is thought to represent a double dimer, i.e. an array of two laterally packed coiled-coils of alpha-helices. The two-chain state of intact IF proteins had up to this point not been isolated and characterized as has been done for other fibrous alpha-helical coiled-coil proteins. Using buffers containing 3 M-guanidinium hydrochloride we prepared dimers by depolymerization of IF or by reconstitution from fully denatured molecules. Dimers of desmin (from chicken gizzard), vimentin (from bovine lens tissue and cultured human fibroblasts) and the neurofilament protein NF-L (from bovine brain) as well as in vitro formed homodimers of human and rat cytokeratins numbers 8 (A), 18 (D) and 19 ("40K"), are characterized by ultracentrifugation techniques (sedimentation velocity and equilibrium), electron microscopy and chemical cross-linking. The results show that IF proteins from discrete complexes of two polypeptide chains in parallel orientation and probably in coiled-coil configuration, which apparently have a high tendency to further associate into double dimers. Implications of these results for concepts of IF organization and IF protein assembly are discussed.  相似文献   

19.
The binding of the intermediate filament protein vimentin to a variety of naturally occurring RNAs and DNAs was studied. The relative capacities of the various nucleic acids to associate with pure [3H]vimentin were determined in competition experiments with 28 S rRNA from Ehrlich ascites tumor cells. The reaction products were analyzed by sucrose gradient centrifugation at low ionic strength and in the presence of EDTA. Under these ionic conditions, vimentin reacted preferentially with single-stranded nucleic acids, particularly with those of high (G + C) content. The vimentin binding potentials of single-stranded RNAs and DNAs were largely comparable. However, when the concentrations of mono- and divalent cations were raised to physiological and higher values, only single-stranded DNA retained its vimentin binding capacity. With increasing KCl concentrations at 0 to 1 mM Mg2+, increasing amounts of vimentin were detected in complexes which sedimented considerably faster than the bulk of the DNA, suggesting cooperative binding of vimentin. The salt optimum of this cooperativity was at 200 mM KCl. Thus, the capability of vimentin to discriminate between single-stranded RNA and DNA under physiological ionic conditions points to specificity of the interaction of vimentin with nucleic acids.  相似文献   

20.
A helical coiled-coil region of amino acid sequence surrounding the cysteine residue of desmin and vimentin shows a regular pattern of alternating positive and negative charges with periods close to 283 and 2810 residues. This suggests relationships with the charge distributions of myosin rod and alpha-keratin. The common features may reflect a similar pattern of three-dimensional packing in vivo for each of these molecules.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号