首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Specific stress treatments (sucrose starvation, alone or combined with a heat shock) applied to isolated tobacco (Nicotiana tabacum L.) microspores irreversibly blocked normal gametophytic development and induced the formation of embryogenic cells, which developed subsequently into pollen-derived embryos by culture at 25°C in a sugar-containing medium. A cold shock at 4°C did not inhibit microspore maturation in vitro and did not induce cell division activity, even when combined with a starvation treatment. In the absence of sucrose, microspores isolated in the G1 phase of the cell cycle replicated their DNA and accumulated in G2. Late microspores underwent miotosis during the first day of culture which resulted in a mixed population of bicellular pollen grains and uninucleate microspores, both embryogenic. After the inductive stress treatments the origin of the first multicellular structures, formed in the sugar-containing medium, could be traced to divisions of the microspore cell or divisions of the vegetative cell of bicellular pollen, indicating that the symmetry of microspore mitosis in vitro is not important for embryogenic induction. These results represent a step forward towards a unified model of induction of embryogenesis from microspores/pollen which, within a relatively wide developmental window, are competent to deviate from normal gametophytic development and initiate the alternative sporophytic programme, in response to specific stress signals.Abbreviation DAPI 4,6-diamidino-2-phenylindole We acknowledge the help of Monica Boscaiu and Zarko Hrzenjak with the artwork, and Michaela Braun-Mayer for growing the tobacco plants. This project was financed by the Austrian Fonds zur Forderung der wissenschaftlichen Forschung, grant S6003-BIO.  相似文献   

2.
In an attempt to discover the biological basis of microspore derived embryogenesis, the effect of the antimicrotubule agent colchicine on anther and free microspore embryogenesis was investigated. The microtubule inhibitor colchicine promoted embryogenesis from cultured anthers, both with regard to the number of anthers responding and the number of embryos being produced per anther. A similar promotional response was also observed with cultured microspores. Although the parameters for cultured anthers and free microspores differed, administration of the drug for a short period immediately prior to pollen mitosis I seems to exert the maximum promotional effect. Of the five cultivars of Brassica napus studied, all responded to colchicine treatment. However, the drug did release more embryogenic potential in poor-responding varieties (i.e. Lirawell and Optima) than in the highest responding variety (Topas). Colchicine also resulted in increased embryogenic response in microspores cultured at lower temperatures.These results are considered in terms of models proposed to explain the switch in microspore development from a gametophytic to a sporophytic pathway. The use ofcolchicine as agent to promote embryogenesis in previously recalcitrant species other than Brassica is also discussed.  相似文献   

3.
Brassica napus L. microspores at the late uninucleate to early binucleate stage of development can be induced in vitro to alter their development from pollen to embryo formation. High temperatures or other stress treatments are required to initiate this redirection process. The critical period for induction of microspore embryogenesis is within the first 8 h of temperature-stress imposition. During this period, which precedes the first embryogenic nuclear division, the process regulating the induction and sustainment of microspore embryogenesis is activated. A number of mRNAs and proteins, some of them possibly heat-shock proteins, appear in microspores during the commitment phase of the induction process.Abbreviations SDS sodium dodecyl sulfate - PAGE polyacrylamide gel electrophoresis  相似文献   

4.
In this work, the cell architecture of the microspore following both gametophytic and embryogenic developmental pathways in vitro was compared with the gametophytic development in vivo in Brassica napus, at both light and electron microscopy level. The microspore reprogramming to embryogenesis involves defined changes affecting cell activities and structural organization which can be considered as markers of the microspore embryogenic pathway, but less is known about others developmental programmes followed by the microspore in vitro after both, inductive and non-inductive conditions. Low-temperature processing of the samples, cytochemical and immunocytochemical approaches to identify various cell components were performed. Differences in specific cellular features such as cellular size and shape, nuclear architecture, starch accumulation, presence of vacuoles and ribosomal population were studied to characterize sequential stages of microspore embryogenesis and other pathways occurring in vitro. The presence of abundant starch grains in a defined cytoplasmic region appeared as a specific feature of the in vitro gametophytic development, as well as of the non-induced microspores of in vitro cultures under embryogenic-inductive conditions.  相似文献   

5.
Scanning electron microscopy of microspore embryogenesis inBrassica spp.   总被引:1,自引:0,他引:1  
Scanning electron microscopy was employed to study and compare microspore embryogenesis in vitro with pollen development in planta inBrassica napus andB. oleracea. An exine with its specific pattern had already been formed, when microspores were released from tetrads. During subsequent pollen development, microspores increased in size and continued to strengthen the exine. Upon in vitro culture, all microspores, i.e., embryogenic and nonembryogenic, initially showed the same morphological features. After 24 h in culture, the microspores had increased in size. Thereafter, embryogenesis was indicated in some microspores by two different morphological changes. One featured an expansion in volume of the cell cluster around the germination aperture (type I), the other showed cell cluster volume expansion over the entire microspore surface (type II). Two-thirds of embryogenic microspores in bothB. napus andB. oleracea demonstrated type I development. When followed by fluorescence microscopy, in vitro culture of microspores revealed cultures with a high embryo frequency were those with a high frequency of symmetrical division.Abbreviations SEM Scanning electron microscopy - TEM Transmission electron microscopy  相似文献   

6.
Prior to this report, heat treatment (32.5°C, 24 h) was the method used to induce embryogenesis fromBrassica napus microspores. Continuous culture at 25°C results in pollen development. This study shows that colchicine alone, at the non-inductive temperature of 25°C, can induce embryogenesis, thus demonstrating that heat shock is not required for embryogenic induction inB. napus cv. Topas. Embryogenic frequencies of over 15% were obtained by culturing isolated microspores with 25 M colchicine for 42 h at 25°C. The microspore developmental stages responsive to colchicine were unicellular vacuolate and late unicellular, somewhat earlier stages than the population responsive to heat induction. Other groups have reported that heat-shock proteins are essential to the induction of embryogenesis. The present study offers a method of embryogenic induction without the use of heat which will allow discrimination between the factors associated with response to heat shock and those involved with changing cell development.Abbreviations LU Late-unicellular - PPB Preprophase band - UV unicellular-vacuolate The authors wish to thank C. Bornman for his interest and encouragement. We gratefully acknowledge support from the School of Graduate Studies and Research, Queen's University to J.-P. Z., from Hilleshog AB, Sweden to D.H.S., and from the Natural Sciences and Engineering Research Council of Canada to D.H.S. and W.N. Plant Research Centre contribution No. 1595.  相似文献   

7.
Brassica napus cv. Topas microspores can be diverted from pollen development toward haploid embryo formation in culture by subjecting them to a heat stress treatment. We show that this switch in developmental pathways is accompanied by the induction of high levels of napin seed storage protein gene expression. Changes in the plant growth or microspore culture conditions were not by themselves sufficient to induce napin gene expression. Specific members of the napin multigene family were cloned from a cDNA library prepared from microspores that had been induced to undergo embryogenesis. The majority of napin clones represented three members (BnmNAP2, BnmNAP3 and BnmNAP4) that, along with a previously isolated napin genomic clone (BngNAP1), constitute the highly conserved BnmNAP subfamily of napin genes. Both RNA gel blot analysis, using a subfamily-specific probe, and histochemical analysis of transgenic plants expressing a BngNAP1 promoter--glucuronidase gene fusion demonstrated that the BnmNAP subfamily is expressed in embryogenic microspores as well as during subsequent stages of microsporic embryo development.  相似文献   

8.
A number of factors influencing embryogenesis from isolated microspores of radish (Raphanus sativus) were examined. Of 11 genotypes evaluated, six produced embryos ranging from 8.3 embryos per 105 microspores for Chugoku-ao to 0.2 for Tenshun, but five genotypes were not responsive. An initial culture period at elevated temperature before incubation at 25°C was essential for induction of microspore embryogenesis. However, the optimum period of the treatment varied among genotypes and/or experiments. Bud size also influenced microspore embryogenesis. Though optimum bud size was different between genotypes, the microspore populations represented in these buds contained uninucleate and binucleate microspores. Selection of embryogenic microspores using percoll density gradient resulted in up to 1.3-fold increase of embryo yield. Though almost all embryos failed to develop directly into plantlets, plants were obtained by multiple subcultures. The regenerated plants had hyperploid chromosome numbers.  相似文献   

9.
10.
Summary Conditions favourable to embryogenesis from isolated microspores of Brassica rapa L. ssp. oleifera (canola quality) were identified. A population with enhanced responsiveness for microspore embryogenesis (C200) was synthesized by crossing individual plants showing microspore embryogenic potential. For optimal microspore embryogenesis, buds (2–3mm in length, containing mid-late uninucieate microspores) were collected from older plants (2 months old) and microspores isolated and washed in iron-free B5 medium. NLN medium with its iron content reduced to half was beneficial for initial microspore culture. An elevated temperature(33–35°C) during the first day of culture, followed by maintenance at 25°C resulted in dozens of embryos from each isolation (about 100 buds). Seeds were obtained from plants regenerated from microsporederived embryos after colchicine treatment.  相似文献   

11.
Androgenesis is a phenomenon in which microspores are made to bypass the sexual pathway and follow the sporophytic mode of development to generate new plants without the intervention of fertilization under specialized in vitro conditions. Microspore culture provides an ideal system, with a large, relatively uniform population of haploid cells, for use in mutant selection, genetic transformation and in studies on the molecular mechanism of induction of androgenesis and embryogenesis. This paper involves a study on establishing a reproducible and efficient protocol for microspore embryogenesis in various varieties of Brassica juncea. The genotype had a pronounced effect on androgenic response in microspore cultures. The cultivar Rajat exhibited the most response, producing around 3500 embryos/100 buds. The microspores of B. juncea cv. PR-45 from ed plants maintained at a day/night temperature of 10 °C/5 °C form embryos with suspensors with varied morphology. The microspore embryos germinated to produce plants with frequencies. These plants exhibited 52% survival and 74% fertility.  相似文献   

12.
The inherent potential to produce plants from microspores or immature pollen exists naturally in many plant species. Some genotypes in hexaploid wheat (Triticum aestivum L.) also exhibit the trait for androgenesis. Under most circumstances, however, an artificial manipulation, in the form of physical, physiological and/or chemical treatment, need to be employed to switch microspores from gametophytic development to a sporophytic pathway. Induced embryogenic microspores, characterized by unique morphological features, undergo organized cell divisions and differentiation that lead to a direct formation of embryoids. Embryoids `germinate' to give rise to haploid or doubled haploid plants. The switch from terminal differentiation of pollen grain formation to sporophytic development of embryoid production involves a treatment that halts gametogenesis and initiates sporogenesis showing predictable cellular and molecular events. In principle, the inductive treatments may act to release microspores from cell cycle control that ensures mature pollen formation hence overcome a developmental block to embryogenesis. Isolated microspore culture, genetic analyses, and studies of cellular and molecular mechanisms related to microspore embryogenesis have yielded useful information for both understanding androgenesis and improving the efficiency of doubled haploid production. The precise mechanisms for microspore embryogenesis, however, must await more research.  相似文献   

13.
Flow cytometry can be used to select and sort microspore subpopulations of Brassica napus cv. Topas. Data obtained from embryogenic microspore populations were used to identify potentially embryogenic microspores from developmentally heterogeneous microspore populations based on differences in forward light scatter and green autofluorescence. Culture enrichment for embryogenic microspores is possible. Frequencies of 8 and 14% microspore embryogenesis were obtained when selected 16 h and 72 h after culture initiation. This represents 5- and 13-fold increase in microspore embryogenesis compared to non-sorted controls.  相似文献   

14.
The correlation between the phenologic stage of the inflorescence and the microspore development stage was studied. Cytological examinations of the development of microspores during in vitro anther culture of cork oak (Quercus suber L.), were carried out during the first four weeks of culture. To observe the division occurring in the microspores, anthers were taken randomly from the cultures after heat shock treatment and were stained with DAPI. Most of the anthers responding to a heat stress treatment contained 91 % vacuolated microspores, indicating that this developmental stage is responsive to embryogenesis induction in cork-oak microspores. After the heat shock treatment some cork-oak microspores were induced and initiated the embryogenic pathway with the occurrence of numerous symmetric mitosis, producing structures with two to ten or more nuclei. These lead to the formation of high numbers of multicellular cork-oak microspores (pro-embryos). Twenty-forty days after induction, small white globular and cotyledonal embryos were observed, which further developed root and shoot, regenerating plantlets.  相似文献   

15.
Microspores of Brassica napus L. cv. Topas, undergo embryogenesis when cultured at 32.5 °C for the first 18–24 h and then at 25 °C. The first division in heat-treated microspores is a symmetric division in contrast to the asymmetric division found after the first pollen mitosis in-planta or in microspores cultured continuously at 25 °C. This asymmetric division is unique in higher plants as it results in daughter cells separated by a non-consolidated wall. The cytoskeleton has an important role in such morphological changes. We examined microtubule (MT) organization during the first 24 h of heat induction in the embryogenic B. napus cv. Topas and the non-embryogenic B. napus breeding line 0025. Preprophase bands (PPBs) of MTs appeared in cv. Topas microspores in late uninucleate microspores and in prophase figures after 4–8 h of heat treatment. However, more than 60% of the PPBs were not continuous bands. In contrast, PPBs were never observed in pollen mitosis; MT strands radiated from the surface of the nuclear envelope throughout microspore maturation to the end of prophase of pollen mitosis I, during in-planta development and in microspores cultured at 25 °C. Following 24 h of heat treatment, over 95% of the microspores appeared to have divided symmetrically as indicated by the similar size of the daughter nuclei, but only 7–16% of the microspores eventually formed embryos. Discontinuous walls were observed in more than 50% of the divisions and it is probable that the discontinuous PPBs gave rise to such wall abnormalities which may then obstruct embryo development. Preprophase bands were not formed in heat-treated microspores of the non-embryogenic line 0025 and the ensuing divisions showed discontinuous walls. It is concluded that the appearance of PPBs in heat-induced microspores marks sporophytic development and that continuous PPBs are required for cell wall consolidation and embryogenesis. It follows that induced structures with two equally condensed nuclei, do not necessarily denote symmetric divisions. Received: 22 October 1998 / Accepted: 28 November 1998  相似文献   

16.
Summary In microspore cultures of Brassica napus L. cv. Topas, embryo yield increases with culture density up to about 40,000 microspores per ml. A much higher density (100,000 per ml) appears inhibitory to embryogenesis. A relatively high culture density (30,000 or 40,000 per ml) for the first 2–4 days of culture is crucial for embryogenesis, after which cultures may be diluted to allow better embryo growth.Medium conditioned by culturing microspores at 30,000 or 40,000 per ml for 1 day improved microspore-embryo yield in low density cultures (3,000 or 4,000 per ml) more than 3-fold. In contrast, media conditioned with microspores from 1–4 days or 0–4 days of culture were inhibitory.Use of feeder cultures resulted in up to 10-fold increase of embryo yield in low density microspore cultures, depending on the method used. Filter papers and other membranes placed on top of feeders greatly inhibited embryogenesis in the feeder layer as well as microspores cultured on the feeder, possibly due to poorer gaseous exchange.  相似文献   

17.
Under specific stress treatments (cold, starvation), in vitro microspores can be induced to deviate from their gametophytic development and switch to embryogenesis, forming haploid embryos and homozygous breeding lines in a short period of time. The inductive stress produces reactive oxygen species (ROS) and nitric oxide (NO), signalling molecules mediating cellular responses, and cell death, modifying the embryogenic microspore response and therefore, the efficiency of the process. This work analysed cell death, caspase 3-like activity, and ROS and NO production (using fluorescence probes and confocal analysis) after inductive stress in barley microspore cultures and embryogenic suspension cultures, as an in vitro system which permitted easy handling for comparison. There was an increase in caspase 3-like activity and cell death after stress treatment in microspore and suspension cultures, while ROS increased in non-induced microspores and suspension cultures. Treatments of the cultures with a caspase 3 inhibitor, DEVD-CHO, significantly reduced the cell death percentages. Stress-treated embryogenic suspension cultures exhibited high NO signals and cell death, while treatment with S-nitrosoglutathione (NO donor) in control suspension cultures resulted in even higher cell death. In contrast, in microspore cultures, NO production was detected after stress, and, in the case of 4-day microspore cultures, in embryogenic microspores accompanying the initiation of cell divisions. Subsequent treatments of stress-treated microspore cultures with ROS and NO scavengers resulted in a decreasing cell death during the early stages, but later they produced a delay in embryo development as well as a decrease in the percentage of embryogenesis in microspores. Results showed that the ROS increase was involved in the stress-induced programmed cell death occurring at early stages in both non-induced microspores and embryogenic suspension cultures; whereas NO played a dual role after stress in the two in vitro systems, one involved in programmed cell death in embryogenic suspension cultures and the other in the initiation of cell division leading to embryogenesis in reprogrammed microspores.  相似文献   

18.
Studies were undertaken with one olive (Olea europaea L.) cultivar to identify buds with microspores competent to embryogenesis in vitro. Isolated microspore cultures were performed for the induction of gametic embryogenesis. Different pollen development stages and stress conditions (heat or cold shock) were evaluated. The correlation of inflorescence, anther morphology and the suitable stage of microspore development were analysed. The morphology of responsive buds was identified which corresponded with microspores from the late uni-nucleate to early bi-nucleate pollen stages. Symmetrical divisions of microspores as well as resulting multinucleate structures and pro-embryos were observed. In this paper, a new method of isolated microspore culture that leads to cell division and pro-embryos in olive, is reported.  相似文献   

19.
We have initiated embryogenic cell suspension cultures of barley (Hordeum vulgare L.) Igri from isolated microspore cultures. Data were obtained on the time required for establishment, frequency of establishment, i.e. number of calluses out of the total number of initiations giving rise to suspensions, and embryogenic capacity of the suspension cultures. For comparison, establishment of embryogenic cell suspensions from callus derived from immature zygotic embryos of Igri, Dissa and Golden Promise was also carried out. The results revealed that embryogenic suspension cultures were established in half the time and with a seven-fold higher frequency from microspore cultures than from zygotic embryo-derived calluses. The suspension cultures were still capable of embryo formation after two years. However, only albino plantlets were regenerated. For comparison, long term callus cultures derived from microspores, anthers and zygotic embryos were established. From the anther and zygotic embryo-derived callus cultures green plants were continuously regenerated, whereas the microspore-derived callus cultures lost this ability after the second subculture.  相似文献   

20.
Culture temperature determines the developmental fate of isolated microspores from Brassica napus L. At 18°C, tricellular pollen develops, whereas culture at 32°C for 8 h leads to the quantitative and synchronous induction of embryogenesis, and ultimately to the formation of embryos. We investigated the changes in protein synthesis that are associated with this 8-h inductive period by using in-situ [35S]methionine labeling, followed by two-dimensional (2-D) gel electrophoretic analysis of the radiolabeled proteins. Qualitative and quantitative computer analyses of 2-D [35S]methionine protein patterns showed six polypeptides specifically labeled under embryogenic culture conditions. Eighteen polypeptides incorporated [35S]methionine at a statistically significant higher rate under embryogenic culture conditions (32°C) than in the controls (18°C), whereas one protein was preferentially labeled under non-embryogenic culture conditions (18°C). These results indicate that only a limited number of proteins detectable in the 2-D gels of microspore extracts are associated with the early induction of embryogenesis. The reproducible identification of the differentially radiolabeled proteins in the 2-D gels allow the sequencing of representative peptides and the isolation of the corresponding cDNAs. This may lead to the identification and characterization of proteins associated with the very first stages of plant embryogenesis.Abbreviations 2-D two-dimensional We would like to thank Dr. H. Van Steeg (Rijks Instituut voor Milieubeheer (RIVM), Bilthoven, The Netherlands) for use of the PhosphorImager apparatus. This research was carried out as part of the EC-Bridge project Regulation of the inductive phase of microspore embryogenesis and EC-Science project The role of mitotic and cytoskeletal genes in the induction of plant cell division.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号