共查询到20条相似文献,搜索用时 15 毫秒
1.
A functional homologue of human DNA glycosylase NEIL1 (hNEIL1) in mouse has recently been cloned, isolated, characterized, and named mouse NEIL1 (mNEIL1). This enzyme exhibited specificity for excision of oxidatively modified pyrimidine bases such as thymine glycol, 5,6-dihydrouracil, and 5-hydroxypyrimidines, using oligonucleotides with a single base lesion incorporated at a specific site. It also acted upon AP sites; however, no significant excision of 8-hydroxyguanine was observed [Rosenquist, T. A., Zaika, E., Fernandes, A. S., Zharkov, D. O., Miller, H., and Grollman, A. P. (2003) DNA Repair 2, 581-591]. We investigated the substrate specificity and excision kinetics of mNEIL1 for excision of oxidatively modified bases from high-molecular weight DNA with multiple lesions, which were generated by exposure of DNA in aqueous solution to ionizing radiation. Among a large number of pyrimidine- and purine-derived lesions detected and quantified in DNA, only purine-derived lesions 2,6-diamino-4-hydroxy-5-formamidopyrimidine and 4,6-diamino-5-formamidopyrimidine were significantly excised. This finding establishes that mNEIL1 and its functional homologue hNEIL1 possess common substrates, namely, 2,6-diamino-4-hydroxy-5-formamidopyrimidine and 4,6-diamino-5-formamidopyrimidine. Measurement of excision kinetics showed that mNEIL1 possesses equal specificity for these two formamidopyrimidines. This enzyme also excised thymine-derived lesions thymine glycol and 5-hydroxy-5-methylhydantoin, albeit at a much lower rate. A comparison of the specificity and excision kinetics of mNEIL1 with other DNA glycosylases shows that this enzyme is as efficient as those DNA glycosylases, which specifically remove the formamidopyrimidines from DNA. 相似文献
2.
Morales-Ruiz T Birincioglu M Jaruga P Rodriguez H Roldan-Arjona T Dizdaroglu M 《Biochemistry》2003,42(10):3089-3095
A functional homologue of eukaryotic Ogg1 proteins in the model plant Arabidopsis thalianahas recently been cloned, isolated, and characterized [Garcia-Ortiz, M. V., Ariza, R. R., and Roldan-Arjona, T. (2001) Plant Mol. Biol. 47, 795-804]. This enzyme (AtOgg1) exhibits a high degree of sequence similarity in several highly conserved regions with Saccharomyces cerevisiae, Drosophila melanogaster, and human Ogg1 proteins. We investigated the substrate specificity and kinetics of AtOgg1 for excision of modified bases from oxidatively damaged DNA that contained multiple pyrimidine- and purine-derived lesions. Two different DNA substrates prepared by exposure to ionizing radiation in aqueous solution under N2O or air were used for this purpose. Gas chromatography/isotope-dilution mass spectrometry was applied to identify and quantify modified bases in DNA samples. Of the 17 modified bases identified in DNA samples, only 8-hydroxyguanine and 2,6-diamino-4-hydroxy-5-formamidopyrimidine were significantly excised from both DNA substrates. This is in agreement with the substrate specificities of other eukaryotic Ogg1 proteins that had previously been studied under identical conditions. Excision depended on incubation time, enzyme concentration, and substrate concentration and followed Michaelis-Menten kinetics. A significant dependence of excision on the nature of DNA substrate was observed in accord with previous studies on other DNA glycosylases. A comparison of excision kinetics pointed to significant differences between AtOgg1 and other Ogg1 proteins. We also investigated the effect of base-pairing on the excision using double-stranded oligodeoxynucleotides that contained 8-OH-Gua paired with each of the four DNA bases. The activity of AtOgg1 was most effective on the 8-OH-Gua:C pair with some or very low activity on other pairs in agreement with the activity of other Ogg1 proteins. The results unequivocally show that AtOgg1 possesses common substrates with other eukaryotic Ogg1 proteins albeit significant differences between their excision kinetics. 相似文献
3.
Formamidopyrimidine-DNA glycosylase, Fpg protein from Escherichia coli, initiates base excision repair in DNA by removing a wide variety of oxidized lesions. In this study, we perform thermodynamic analysis of the multi-stage interaction of Fpg with specific DNA-substrates containing 7,8-dihydro-8-oxoguanosine (oxoG), or tetrahydrofuran (THF, an uncleavable abasic site analog) and non-specific (G) DNA-ligand based on stopped-flow kinetic data. Pyrrolocytosine, highly fluorescent analog of the natural nucleobase cytosine, is used to record multi-stage DNA lesion recognition and repair kinetics over a temperature range (10-30°C). The kinetic data were used to obtain the standard Gibbs energy, enthalpy and entropy of the specific stages using van't Hoff approach. The data suggest that not only enthalpy-driven exothermic oxoG recognition, but also the desolvation-accompanied entropy-driven enzyme-substrate complex adjustment into the catalytically active state play equally important roles in the overall process. 相似文献
4.
5.
Lingaraju GM Davis CA Setser JW Samson LD Drennan CL 《The Journal of biological chemistry》2011,286(15):13205-13213
Reactive oxygen and nitrogen species, generated by neutrophils and macrophages in chronically inflamed tissues, readily damage DNA, producing a variety of potentially genotoxic etheno base lesions; such inflammation-related DNA damage is now known to contribute to carcinogenesis. Although the human alkyladenine DNA glycosylase (AAG) can specifically bind DNA containing either 1,N(6)-ethenoadenine (εA) lesions or 3,N(4)-ethenocytosine (εC) lesions, it can only excise εA lesions. AAG binds very tightly to DNA containing εC lesions, forming an abortive protein-DNA complex; such binding not only shields εC from repair by other enzymes but also inhibits AAG from acting on other DNA lesions. To understand the structural basis for inhibition, we have characterized the binding of AAG to DNA containing εC lesions and have solved a crystal structure of AAG bound to a DNA duplex containing the εC lesion. This study provides the first structure of a DNA glycosylase in complex with an inhibitory base lesion that is induced endogenously and that is also induced upon exposure to environmental agents such as vinyl chloride. We identify the primary cause of inhibition as a failure to activate the nucleotide base as an efficient leaving group and demonstrate that the higher binding affinity of AAG for εC versus εA is achieved through formation of an additional hydrogen bond between Asn-169 in the active site pocket and the O(2) of εC. This structure provides the basis for the design of AAG inhibitors currently being sought as an adjuvant for cancer chemotherapy. 相似文献
6.
Exposure of DNA to oxidative stress produces a variety of DNA lesions including the formamidopyrimidines, which are derived from the purines. These lesions may play important roles in carcinogenesis. We achieved the first chemical syntheses of a monomeric form of Fapy-dA (1) and oligonucleotides containing this lesion or Fapy-dG at a defined site. Monomeric Fapy-dA readily epimerized at 25 degrees C in phosphate buffer (pH 7.5). The beta-anomer was favored by a ratio of 1.33:1.0, and equilibration was achieved in less than 7 h. Deglycosylation of Fapy-dA in the monomer follows first-order kinetics from 37 to 90 degrees C. The rate constants for deglycosylation of Fapy-dA in the monomeric and oligonucleotide substrates were measured at a common temperature (55 degrees C) and found to be the same within experimental error (t(1/2) = 20.5 h). Implementation of the activation parameters measured for the deglycosylation of 1 indicates that the half-life for deglycosylation of Fapy-dA at 37 degrees C is approximately 103 h. Analysis of the rate constant for deglycosylation of Fapy-dG in an oligonucleotide, revealed that this lesion is approximately 25 times more resistant to hydrolysis than Fapy-dA at 55 degrees C. These results indicate that Fapy-dA and Fapy-dG will be sufficiently long-lived in DNA so as to warrant investigation of their genotoxicity, and both anomers will be present during this time. 相似文献
7.
Structural insights into lesion recognition and repair by the bacterial 8-oxoguanine DNA glycosylase MutM 总被引:4,自引:0,他引:4
MutM is a bacterial 8-oxoguanine glycosylase responsible for initiating base-excision repair of oxidized guanine residues in DNA. Here we report five different crystal structures of MutM-DNA complexes that represent different steps of the repair reaction cascade catalyzed by the protein and also differ in the identity of the base opposite the lesion (the 'estranged' base). These structures reveal that the MutM active site performs the multiple steps of base-excision and 3' and 5' nicking with minimal rearrangement of the DNA backbone. 相似文献
8.
Lee S Tsai YC Mattera R Smith WJ Kostelansky MS Weissman AM Bonifacino JS Hurley JH 《Nature structural & molecular biology》2006,13(3):264-271
Rabex-5 is an exchange factor for Rab5, a master regulator of endosomal trafficking. Rabex-5 binds monoubiquitin, undergoes covalent ubiquitination and contains an intrinsic ubiquitin ligase activity, all of which require an N-terminal A20 zinc finger followed immediately by a helix. The structure of the N-terminal portion of Rabex-5 bound to ubiquitin at 2.5-A resolution shows that Rabex-5-ubiquitin interactions occur at two sites. The first site is a new type of ubiquitin-binding domain, an inverted ubiquitin-interacting motif, which binds with approximately 29-microM affinity to the canonical Ile44 hydrophobic patch on ubiquitin. The second is a diaromatic patch on the A20 zinc finger, which binds with approximately 22-microM affinity to a polar region centered on Asp58 of ubiquitin. The A20 zinc-finger diaromatic patch mediates ubiquitin-ligase activity by directly recruiting a ubiquitin-loaded ubiquitin-conjugating enzyme. 相似文献
9.
10.
Cytokinins are classic hormones that orchestrate plant growth and development and the integrity of stem cell populations. Cytokinin receptors are eukaryotic sensor histidine kinases that are activated by both naturally occurring adenine-type cytokinins and urea-based synthetic compounds. Crystal structures of the Arabidopsis thaliana histidine kinase 4 sensor domain in complex with different cytokinin ligands now rationalize the hormone-binding specificity of the receptor and may spur the design of new cytokinin ligands. 相似文献
11.
12.
Structural basis for ligand recognition by integrins 总被引:1,自引:0,他引:1
Takagi J 《Current opinion in cell biology》2007,19(5):557-564
Integrins, the major cell surface receptors mediating cell-extracellular matrix (ECM) adhesion, are central to the basic physiology underlying all multicellular organisms. As the complexity of animal body architecture increased, integrins were forced to acquire recognition capabilities toward the wide variety of ECM ligands and cell surface counter-receptors that emerged during evolution. Structural determination of the integrin-ligand complexes for both I domain-containing and non-I domain-containing integrins revealed two fundamentally different types of integrin-binding surfaces. In addition, recent advances in the biochemical and pharmacological characterization of the integrin-ligand interactions are beginning to reveal how integrins achieve specific recognition of wide variety of ligands using a small binding cleft at the subunit interface common to all integrins. 相似文献
13.
Baburajendran N Jauch R Tan CY Narasimhan K Kolatkar PR 《Nucleic acids research》2011,39(18):8213-8222
Smad proteins form multimeric complexes consisting of the 'common partner' Smad4 and receptor regulated R-Smads on clustered DNA binding sites. Deciphering how pathway specific Smad complexes multimerize on DNA to regulate gene expression is critical for a better understanding of the cis-regulatory logic of TGF-β and BMP signaling. To this end, we solved the crystal structure of the dimeric Smad4 MH1 domain bound to a palindromic Smad binding element. Surprisingly, the Smad4 MH1 forms a constitutive dimer on the SBE DNA without exhibiting any direct protein-protein interactions suggesting a DNA mediated indirect readout mechanism. However, the R-Smads Smad1, Smad2 and Smad3 homodimerize with substantially decreased efficiency despite pronounced structural similarities to Smad4. Therefore, intricate variations in the DNA structure induced by different Smads and/or variant energetic profiles likely contribute to their propensity to dimerize on DNA. Indeed, competitive binding assays revealed that the Smad4/R-Smad heterodimers predominate under equilibrium conditions while R-Smad homodimers are least favored. Together, we present the structural basis for DNA recognition by Smad4 and demonstrate that Smad4 constitutively homo- and heterodimerizes on DNA in contrast to its R-Smad partner proteins by a mechanism independent of direct protein contacts. 相似文献
14.
Murzina NV Pei XY Zhang W Sparkes M Vicente-Garcia J Pratap JV McLaughlin SH Ben-Shahar TR Verreault A Luisi BF Laue ED 《Structure (London, England : 1993)》2008,16(7):1077-1085
RbAp46 and RbAp48 (pRB-associated proteins p46 and p48, also known as RBBP7 and RBBP4, respectively) are highly homologous histone chaperones that play key roles in establishing and maintaining chromatin structure. We report here the crystal structure of human RbAp46 bound to histone H4. RbAp46 folds into a seven-bladed beta propeller structure and binds histone H4 in a groove formed between an N-terminal alpha helix and an extended loop inserted into blade six. Surprisingly, histone H4 adopts a different conformation when interacting with RbAp46 than it does in either the nucleosome or in the complex with ASF1, another histone chaperone. Our structural and biochemical results suggest that when a histone H3/H4 dimer (or tetramer) binds to RbAp46 or RbAp48, helix 1 of histone H4 unfolds to interact with the histone chaperone. We discuss the implications of our findings for the assembly and function of RbAp46 and RbAp48 complexes. 相似文献
15.
16.
Xie J Reverdatto S Frolov A Hoffmann R Burz DS Shekhtman A 《The Journal of biological chemistry》2008,283(40):27255-27269
The receptor for advanced glycated end products (RAGE) is a multiligand receptor that is implicated in the pathogenesis of various diseases, including diabetic complications, neurodegenerative disorders, and inflammatory responses. The ability of RAGE to recognize advanced glycated end products (AGEs) formed by nonenzymatic glycoxidation of cellular proteins places RAGE in the category of pattern recognition receptors. The structural mechanism of AGE recognition was an enigma due to the diversity of chemical structures found in AGE-modified proteins. Here, using NMR spectroscopy we showed that the immunoglobulin V-type domain of RAGE is responsible for recognizing various classes of AGEs. Three distinct surfaces of the V domain were identified to mediate AGE-V domain interactions. They are located in the positively charged areas of the V domain. The first interaction surface consists of strand C and loop CC ', the second interaction surface consists of strand C ', strand F, and loop FG, and the third interaction surface consists of strand A ' and loop EF. The secondary structure elements of the interaction surfaces exhibit significant flexibility on the ms-micros time scale. Despite highly specific AGE-V domain interactions, the binding affinity of AGEs for an isolated V domain is low, approximately 10 microm. Using in-cell fluorescence resonance energy transfer we show that RAGE is a constitutive oligomer on the plasma membrane. We propose that constitutive oligomerization of RAGE is responsible for recognizing patterns of AGE-modified proteins with affinities less than 100 nm. 相似文献
17.
Andrea L. Edwards Francis E. Reyes Annie Héroux Robert T. Batey 《RNA (New York, N.Y.)》2010,16(11):2144-2155
S-adenosyl-(L)-homocysteine (SAH) riboswitches are regulatory elements found in bacterial mRNAs that up-regulate genes involved in the S-adenosyl-(L)-methionine (SAM) regeneration cycle. To understand the structural basis of SAH-dependent regulation by RNA, we have solved the structure of its metabolite-binding domain in complex with SAH. This structure reveals an unusual pseudoknot topology that creates a shallow groove on the surface of the RNA that binds SAH primarily through interactions with the adenine ring and methionine main chain atoms and discriminates against SAM through a steric mechanism. Chemical probing and calorimetric analysis indicate that the unliganded RNA can access bound-like conformations that are significantly stabilized by SAH to direct folding of the downstream regulatory switch. Strikingly, we find that metabolites bearing an adenine ring, including ATP, bind this aptamer with sufficiently high affinity such that normal intracellular concentrations of these compounds may influence regulation of the riboswitch. 相似文献
18.
Hirano Y Hatano T Takahashi A Toriyama M Inagaki N Hakoshima T 《The EMBO journal》2011,30(13):2734-2747
Myosin-X is an important unconventional myosin that is critical for cargo transportation to filopodia tips and is also utilized in spindle assembly by interacting with microtubules. We present a series of structural and biochemical studies of the myosin-X tail domain cassette, consisting of myosin tail homology 4 (MyTH4) and FERM domains in complex with its specific cargo, a netrin receptor DCC (deleted in colorectal cancer). The MyTH4 domain is folded into a helical VHS-like structure and is associated with the FERM domain. We found an unexpected binding mode of the DCC peptide to the subdomain C groove of the FERM domain, which is distinct from previously reported β-β associations found in radixin-adhesion molecule complexes. We also revealed direct interactions between the MyTH4-FERM cassette and tubulin C-terminal acidic tails, and identified a positively charged patch of the MyTH4 domain, which is involved in tubulin binding. We demonstrated that both DCC and integrin bindings interfere with microtubule binding and that DCC binding interferes with integrin binding. Our results provide the molecular basis by which myosin-X facilitates alternative dual binding to cargos and microtubules. 相似文献
19.
Structural basis for the specific recognition of methylated histone H3 lysine 4 by the WD-40 protein WDR5 总被引:2,自引:0,他引:2
The WD40 repeat protein WDR5 specifically associates with the K4-methylated histone H3 in human cells. To investigate the structural basis for this specific recognition, we have determined the structure of WDR5 in complex with a dimethylated H3-K4 peptide at 1.9 A resolution. Unlike the chromodomain that recognizes the methylated H3-K4 through a hydrophobic cage, the specificity of WDR5 for methylated H3-K4 is conferred by the nonconventional hydrogen bonds between the two zeta-methyl groups of the dimethylated Lys4 and the carboxylate oxygen of Glu322 in WDR5. The three amino acids Ala-Arg-Thr preceding Lys4 form most of the specific contacts with WDR5, with Ala1 forming intermolecular hydrogen bonds and salt bridges, and the side chain of Arg2 inserting into the central channel of WDR5. Both structural and biochemical studies presented here suggest another mode of recognition for the methylated histone tail. 相似文献
20.
Colicin E5—a tRNase toxin—specifically cleaves QUN (Q: queuosine) anticodons of the Escherichia coli tRNAs for Tyr, His, Asn and Asp. Here, we report the crystal structure of the C-terminal ribonuclease domain (CRD) of E5 complexed with a substrate analog, namely, dGpdUp, at a resolution of 1.9 Å. Thisstructure is the first to reveal the substrate recognition mechanism of sequence-specific ribonucleases. E5-CRD realized the strict recognition for both the guanine and uracil bases of dGpdUp forming Watson–Crick-type hydrogen bonds and ring stacking interactions, thus mimicking the codons of mRNAs to bind to tRNA anticodons. The docking model of E5-CRD with tRNA also suggests its substrate preference for tRNA over ssRNA. In addition, the structure of E5-CRD/dGpdUp along with the mutational analysis suggests that Arg33 may play an important role in the catalytic activity, and Lys25/Lys60 may also be involved without His in E5-CRD. Finally, the comparison of the structures of E5-CRD/dGpdUp and E5-CRD/ImmE5 (an inhibitor protein) complexes suggests that the binding mode of E5-CRD and ImmE5 mimics that of mRNA and tRNA; this may represent the evolutionary pathway of these proteins from the RNA–RNA interaction through the RNA–protein interaction of tRNA/E5-CRD. 相似文献