首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Postsynaptic potentials of 93 motoneurons of the masseter muscle evoked by stimulation of different branches of the trigeminal nerve were studied. Stimulation of the most excitable afferent fibers of the motor nerve of the masseter muscle evoked monosynaptic EPSPs with a latent period of 1.2–2.0 msec, changing into action potentials when the strength of stimulation was increased. A further increase in the strength of stimulation produced an antidromic action potential in the motoneurons with a latent period of 0.9 msec. In some motoneurons polysynaptic EPSPs and action potentials developed following stimulation of the motor nerve to the masseter muscle. The ascending phase of synaptic and antidromic action potentials was subdivided into IS and SD components, while the descending phase ended with definite depolarization and hyperpolarization after-potentials. Stimulation of cutaneous branches of the trigeminal nerve, and also of the motor nerve of the antagonist muscle (digastric) evoked IPSPs with a latent period of 2.7–3.5 msec in motoneurons of the masseter muscle. These results indicate the existence of functional connections between motoneurons of the masseter muscle and its proprioceptive afferent fibers, and also with proprioceptive afferent fibers of the antagonist muscle and cutaneous afferent fibers.A. A. Bogomolets Institute of Physiology, Academy of Sciences of the Ukrainian SSR, Kiev. Translated from Neirofiziologiya, Vol. 1, No. 3, pp. 262–268, November–December, 1969.  相似文献   

2.
The effect of stimulus intensity on subcortical and cortical somatosensory evoked potentials (SEPs) to posterior tibial nerve (PTN) stimulation were studied in 16 normal controls. Stimulus intensity was evaluated as a function of sensory threshold (S). Motor threshold (M) varied between 1 S and 2 S.The amplitude of N18 (afferent volley immediately before it enters the spinal canal) increased approximately linearly up to at least 4.5 S. N20 (dorsal cord potential) also demonstrated a linear increase up to at least 4 S but the rate of increase was significantly smaller. All central components (subcortical brain-stem components P27 and N30, and cortical components N1 and P2) showed an even smaller rate of increase which was non-linear and reached a plateau at 3 S.The relatively higher rate of increase of N18 as compared with N20 was most probably due to the recording of sensory impulses plus antidromic impulses in motor fibers. The smaller rate of increase and early saturation of all the central components compared with N20 suggests that all the afferent fibers generating N20 only the low threshold fibers participate in the generation of more central components.Stimulus intensities of 3 S are recommended for clinical studies of the central SEPs to PTN stimulation.  相似文献   

3.
Temporal and amplitude characteristics of evoked potentials of the sensomotor cortex in waking cats were studied during variation in the intensity of electrodermal stimulation. The results obtained in experiments on intact animals and on the same animals for several months after division of the spinocervical tracts at the cervical level were compared. After blocking of the inflow of afferent impulses along these tracts of the spinal cord, statistically significant changes in evoked potentials were observed, mainly in response to medium and strong stimulation. These changes were more clear in the motor and second somatosensory areas of the cortex. A decrease in sensitivity to pain also was found. During recovery of the motor functions, cutaneous sensation remained impaired and the amplitude characteristics of the evoked somatosensory activity were not restored. The results suggest that thinner fibers predominate among the primary afferent fibers of the spinocervical tract, and their projections are more widely represented in the second somatosensory and motor areas of the cortex.Institute of Higher Nervous Activity and Neurophysiology, Academy of Sciences of the USSR, Moscow. Translated from Neirofiziologiya, Vol. 4, No. 5, pp. 516–523, September–October, 1972.  相似文献   

4.
Elicited potentials of the sensorimotor cortex were investigated in chronic experiments before and after unilateral injury to the spinocervical tract at the C3 level. Such injury led to a considerable disturbance of tactile and proprioceptive reactions but did not lower the amplitude of potentials elicited in the cerebral cortex by irritation of a limb on the injured side. On the intact side, there was an increase in the amplitude of the early response components to irritation of the extremity on this side. In 1–2 months after the operation proprioceptive sensitivity and motor activity had returned to normal, but the reactions to tactile irritation failed to reappear. Apparently the presence of a high level of afferent input into the cerebral cortex is insufficient for retention of somatic sensitivity. It is suggested that an inflow over several channels plays a role in providing the spatial-temporal sequence required for activating cortical neurons.Institute of Higher Nervous Activity and Neurophysiology, Academy of Sciences, USSR, Moscow. Translated from Neirofiziologiya, Vol. 2, No. 5, pp. 469–474, September–October, 1970.  相似文献   

5.
The functional properties of the spinal-cord structures of experimental rats under a 7-day gravitational unloading were assessed using the method of transcranial magnetic stimulation. Hypogravity was modeled by hanging the animals by their tails in an antiorthostatic position. The gastrocnemius muscle potentials evoked by magnetic stimulation of the efferent structures of the spinal cord were registered. We found that gravitational unloading causes significant changes in motor-potential parameters and the central motor transmission time. We propose that the cause of the revealed transformations is afferent inflow limitation, first of all the motor type, as well as adaptation of the central nervous system to new conditions of motor activity.  相似文献   

6.
In decerebrated spinal cats, the effects of iontophoretically applied calcium antagonists, cobalt, manganese and verapamil, and of strontium, which reportedly can act like a calcium agonist, were tested on post-tetanic depression of group I afferent terminal excitability. The actions of these agents on the duration of action potentials in the afferent terminals were determined by a recently described method (8). The calcium antagonists reduced the maximum post-tetanic depression of the antidromic compound action potentials and accelerated the recovery of these potentials from the depression. Strontium, on the other hand, had the opposite effects. The duration of afferent terminal action potentials appeared to increase following a tetanic stimulation. This enhancement in the duration of the action potentials was facilitated by strontium and counteracted by calcium antagonists. These observations indicate that calcium influx into primary afferent terminals is increased following a tetanic stimulation and that post-tetanic hyperpolarization of primary afferent terminals may be, at least partly, dependent on the increased accumulation of calcium in the terminals.  相似文献   

7.
A comparative analysis was made of the kinematics of movement and EMG activity during different types of locomotion before and after bilateral deafferentation of segments L1-S2 of the rat spinal cord. It was found that deafferentation is accompanied by a reduction in the amplitude of locomotor movements and by a delay in both the initiation and increase in duration of flexion in the knee and ankle joints during the swing phase, without producing much effect on the time course of hip joint flexion. An increase in the F period of the swing phase, at its lowest during swimming and highest during stepping, was also discovered, which accordingly rose in step with increasingly deficient afferent inflow. Flexor activity rose especially noticeably during dragging on the limb in the swing phase post-deafferentation. The role of peripheral afferent influence in shaping the F (swing) phase is discussed.A. A. Bogomolets Institute of Physiology, Academy of Sciences of the Ukrainian SSR, Kiev. Translated from Neirofiziologiya, Vol. 19, No. 5, pp. 654–659, September–October, 1987.  相似文献   

8.
A study of activity recorded with intracellular micropipettes was undertaken in the caudal abdominal ganglion of the crayfish in order to gain information about central fiber to fiber synaptic mechanisms. This synaptic system has well developed integrative properties. Excitatory post-synaptic potentials can be graded, and synaptic potentials from different inputs can sum to initiate spike discharge. In most impaled units, the spike discharge fails to destroy the synaptic potential, thereby allowing sustained depolarization and multiple spike discharge following single pulse stimulation to an afferent input. Some units had characteristics which suggest a graded threshold for spike generation along the post-synaptic fiber membrane. Other impaled units responded to afferent stimulation with spike discharges of two distinct amplitudes. The smaller or "abortive" spikes in such units may represent non-invading activity in branches of the post-synaptic axon. On a few occasions one afferent input was shown to inhibit the spike discharge initiated by another presynaptic input.  相似文献   

9.
Ovsepyan  S. V.  Vesselkin  N. P. 《Neurophysiology》2001,33(6):356-364
We studied, on isolated preparations of the frog spinal cord, the effects of serotonin in different concentrations on the amplitude-temporal parameters of action potentials (AP) in primary afferent fibers, on the potentials reflecting depolarization of primary afferents (DPA), and on the properties of the membrane of these fibers. It was demonstrated that in a part of the dorsal root afferent fibers serotonin caused a drop in the AP amplitude (by 15-20%) and an increase in the AP duration (by 8-13%). Serotonin also significantly (by 70-90%) decreased the amplitude of DPA induced by stimulation of a neighboring dorsal root and noticeably reduced the input membrane resistance of afferent fibers. Serotonin-induced modulation of the AP parameters in the afferents and suppression of DPA under the influence of this amine are postulated as possible factors involved in the central control of afferentation.  相似文献   

10.
J Lu  H M Fishman 《Biophysical journal》1995,69(6):2458-2466
A steady, spontaneous current oscillation (1 nA p-p) occurs in voltage-clamped, isolated ampullary organs (canal, ampulla, and nerve) from skates (Raja). Spectral analysis showed that energy in the oscillation was confined to a narrow band of frequencies (3 Hz) about a fundamental frequency (32 Hz at 20 degrees C) and in harmonics. The frequency of the oscillation was temperature dependent (increasing from 21 to 33 Hz for increases in temperature from 13 degrees C to 21 degrees C). The addition of 0.5 microM tetrodotoxin to the basal side of the ampullary epithelium eliminated afferent nerve activity but had no effect on the epithelial oscillation, indicating that the oscillation is not generated or induced by afferent nerve activity. Nitrendipine (2 microM) added to the solution bathing the basal side of the ampullary epithelium abolished the oscillation rapidly (within minutes), but a steady-state negative conductance (i.e., real part of the complex admittance < 0) generated by the preparation remained for 36 min. Conversely, nitrendipine (50 microM) added to the perfusate (artificial sea water) of the apical side eliminated the negative conductance rapidly (18.5 min) but had no effect on the spontaneous oscillation for more than 1 h. The effect and the elapsed time for an effect of nitrendipine after separate applications to the basal and apical membrane surfaces of ampullary epithelium suggest that 1) the negative conductance and the oscillation are generated independently in apical and basal membranes, respectively, and 2) both processes involve L-type Ca channels. Furthermore, the addition of tetraethylammonium (2 mM) to the basal side eliminated both the oscillation and the postsynaptic response to voltage clamps (< or = 100 microV) of the ampullary epithelium in the operational voltage range of the afferent nerve. This result suggests that the basal membrane oscillation functions in neurotransmitter release from presynaptic (basal) membranes.  相似文献   

11.
Bakharev BV 《Biofizika》2008,53(5):874-878
A nonlinear voltage dependence between the membrane and excitatory postsynaptic potentials coming via corticocortical connections was derived based on literature data. The existence of a region of stability of oscillations with increasing mean value of nonspecific afferent input was shown. As the afferent input strongly increases, a high-frequency component of oscillations (40-60 Hz), appeas which may result in the instability of oscillations and initiation of abnormal brain activity.  相似文献   

12.
Networks of compartmental model neurons were used to investigate the biophysical basis of the synchronization observed between sparsely-connected neurons in neocortex. A model of a single column in layer 5 consisted of 100 model neurons: 80 pyramidal and 20 inhibitory. The pyramidal cells had conductances that caused intrinsic repetitive bursting at different frequencies when driven with the same input. When connected randomly with a connection density of 10%, a single model column displayed synchronous oscillatory action potentials in response to stationary, uncorrelated Poisson spike-train inputs. Synchrony required a high ratio of inhibitory to excitatory synaptic strength; the optimal ratio was 41, within the range observed in cortex. The synchrony was insensitive to variation in amplitudes of postsynaptic potentials and synaptic delay times, even when the mean synaptic delay times were varied over the range 1 to 7 ms. Synchrony was found to be sensitive to the strength of reciprocal inhibition between the inhibitory neurons in one column: Too weak or too strong reciprocal inhibition degraded intra-columnar synchrony. The only parameter that affected the oscillation frequency of the network was the strength of the external driving input which could shift the frequency between 35 to 60 Hz. The same results were obtained using a model column of 1000 neurons with a connection density of 5%, except that the oscillation became more regular.Synchronization between cortical columns was studied in a model consisting of two columns with 100 model neurons each. When connections were made with a density of 3% between the pyramidal cells of each column there was no inter-columnar synchrony and in some cases the columns oscillated 180° out of phase with each other. Only when connections from the pyramidal cells in each column to the inhibitory cells in the other column were added was synchrony between the columns observed. This synchrony was established within one or two cycles of the oscillation and there was on average less than 1 ms phase difference between the two columns. Unlike the intra-columnar synchronization, the inter-columnar synchronization was found to be sensitive to the synaptic delay: A mean delay of greater than 5 ms virtually abolished synchronization between columns.  相似文献   

13.
The cortical depression induced by the stimulation of some afferent fibers affects strychnine spikes elicited in two different ways: by direct electrical stimulation, and through the evoked potentials induced at the somatosensory area by single shocks to the radial nerve. The effects on these two types of responses were found to be very similar, which was taken to indicate that the site of action of the mechanism involved is the same, that is, the non-synaptic membranes of the dendrites of pyramidal neurons. It is suggested that the depressant action is mediated through the serotonergic neurons, since the previous administration of 5,6-Dihydroxytryptamine (5,6-DHT) blocked the changes. The 5-Hydroxytryptamine (5-HT) liberated would act as a neurohumoral agent, since the synaptic mechanisms do not seem to be involved and the effects are manifested in a diffuse manner.  相似文献   

14.
The combined removal of the labyrinthine sense organs and of the ganglion of Scarpa on one side (postganglionic section) resulted in a degeneration of afferent fibres in the eighth nerve of the frog (Rana temporaria) within 2–4 days. If the eighth nerve was sectioned more peripherally (preganglionic section) and its distal part was removed together with the labyrinthine organs degeneration of afferent fibres was absent or restricted to very few fibres. Electrical stimulation of vestibular afferents in vitro evoked monosynaptic field potentials in the ipsilateral and via commissural fibres di-and polysynaptic field potentials in the contralateral vestibular nuclei. Afferent-evoked field potentials recorded on the intact side of chronic frogs ( 60 days) with a preor postganglionic lesion and afferent-evoked field potentials recorded on the operated side of chronic frogs with a preganglionic lesion had amplitudes that were very similar to those recorded in control frogs. Commissurally evoked field potentials recorded on the operated side of chronic frogs with preor postganglionic lesions were significantly increased (by about 90%) with respect to control amplitudes. In both groups the time-course of this increase was very similar, started between 15 and 30 days and saturated for survival periods longer than 60 days. Unilateral inactivation of vestibular afferents, but not degeneration, is the likely common denominator of the central process leading to the reported neural changes. A reactive supersensitivity of central vestibular neurons on the operated side for glutamate as a possible mechanism is unlikely, since converging afferent and commissural inputs are both glutamatergic and only one of them, the commissural input, was potentiated. Comparison of the time-courses of neural changes in the vestibular nuclei and postural recovery in the same individuals excludes a causal relation between both phenomena.Abbreviations HL hemilabyrinthectomy - VNC vestibular nuclear complex - HRP horseradish peroxidase - N. VIII eighth nerve - N. IX ninth nerve  相似文献   

15.
Repeated inspiratory occlusions in humans elicit respiratory-related cortical potentials, the respiratory counterpart of somatosensory-evoked potentials. These potentials comprise early components (stimulus detection) and late components (cognitive processing). They are considered as the summation of several afferent activities from various part of the respiratory system. This study assesses the role of the upper airway as a determinant of the early and late components of the potentials, taking advantage of the presence of a tracheotomy in patients totally or partially deafferented. Eight patients who could breathe either through the mouth or through a tracheotomy orifice (whole upper airway bypassed) were studied (4 quadriplegic patients with phrenic pacing, 4 patients with various sources of inspiratory pump dysfunction). Respiratory-related evoked potentials were recorded in CZ-C3 and CZ-C4. They were consistently present after mouth occlusions, with a first positive P1 and a first negative N1 components of normal latencies (P1: 40.4 +/- 6.1 ms in CZ-C3 and 47.6 +/- 7.6 ms in CZ-C4; N1: 84.4 +/- 27.1 ms in CZ-C3 and 90.2 +/- 17.4 ms in CZ-C4) and amplitudes. Tracheal occlusions did not evoke any cortical activity. Therefore, in patients with inspiratory pump dysfunction, the activation of upper airway afferents is sufficient to produce the early components of the respiratory-related evoked cortical potentials. Per contra, in this setting, pulmonary afferents do not suffice to evoke these components.  相似文献   

16.
On the basis of spectral analysis of prolonged realizations (hundreds of seconds) of electrosubcorticograms of the amygdalar complexes of three dogs, the effect of increase in power of amygdalar rhythmic activity was found, at the change of motivation level in conditions of dominance of alimentary or defensive motivation independently of its kind. Resonance characteristics of the system responsible for the generation of the given rhythm remain unchanged; this allows to explain the increase of the spectral peak by the rise of the inflow of afferent impulse activity to the amygdala. At presence of competitive motivations no summation of their influences is observed; a more complex effect on the rhythm arises in the amygdala.  相似文献   

17.
Xylem cavitation is a frequent event, but since resistance to flow does not generally increase in vivo, reversal must also occur even under negative potentials. We demonstrated that this can occur in excised wood. Our results suggest that refilling of cavitated tracheids at negative water potentials may result from a change in equilibrium between gas concentrations, water potential and surface tension at the embolism interface. Excised branch-wood specimens from small trees of Pinus sylvestris were dried on the bench to a range of relative water contents and then rehydrated in a permeability apparatus using ultra-filtered, de-aerated water as permeant. Water inflow and outflow were measured gravimetrically by recording the gain or loss from two reservoirs held on balances. Flow was induced through the specimen by holding the balances at different levels, while an overall negative water potential could be imposed by raising the specimen above the inflow/outflow reservoirs. Changes in water content of the specimen were calculated as the difference between inflow and outflow. The time-course data for both relative water content and permeability were fitted to an exponential function to give initial and final estimates and a time constant. Rehydration occurred at all imposed water potentials, but the speed of recovery was affected at lower potentials. Where drying of the specimen was more protracted, permeability was initially lower but also recovered during permeation. Both flow and de-aeration were necessary for complete rehydration. A model requiring new information on gas concentrations and transport coefficients is suggested.  相似文献   

18.
The latent periods, amplitude, and duration of IPSPs arising in neurons in different parts of the cat cortex in response to afferent stimuli, stimulation of thalamocortical fibers, and intracortical microstimulation are described. The duration of IPSPs evoked in cortical neurons in response to single afferent stimuli varied from 20 to 250 msec (most common frequency 30–60 msec). During intracortical microstimulation of the auditory cortex, IPSPs with a duration of 5–10 msec also appeared. Barbiturates and chloralose increased the duration of the IPSPs to 300–500 msec. The latent period of 73% of IPSPs arising in auditory cortical neurons in response to stimulation of thalamocortical fibers was 1.2 msec longer than the latent period of monosynaptic EPSPs evoked in the same way. It is concluded from these data that inhibition arising in most neurons of cortical projection areas as a result of the arrival of corresponding afferent impulsation is direct afferent inhibition involving the participation of cortical inhibitory interneurons. A mechanism of recurrent inhibition takes part in the development of inhibition in a certain proportion of neurons. IPSPs arise monosynaptically in 2% of cells. A study of responses of cortical neurons to intracortical microstimulation showed that synaptic delay of IPSPs in these cells is 0.3–0.4 msec. The length of axons of inhibitory neurons in layer IV of the auditory cortex reaches 1.5 mm. The velocity of spread of excitation along these axons is 1.6–2.8 msec (mean 2.2 msec).A. A. Bogomolets Institute of Physiology, Academy of Sciences of the Ukrainian SSR, Kiev. Translated from Neirofiziologiya, Vol. 16, No. 3, pp. 394–403, May–June, 1984.  相似文献   

19.
Proprioception-related somatosensory evoked potentials (SEPs) to passive flexion movement of the middle finger at proximal interphalangeal joint were recorded in 7 patients with myoclonus of cortical origin who demonstrated enlarged electrical SEPs (giant SEPs). In 3 out of the 7 patients, the proprioception-related SEPs were also enlarged. The remaining 4 patients showed giant electrical SEPs without enhancement of proprioception-related SEPs. Long loop electromyographic response was recorded during the resting condition in all of the 3 patients with enlarged proprioception-related SEPs. We have previously reported that proprioception-related SEPs are mainly generated by muscle afferent inputs, though electrical SEPs are thought to reflect mostly cutaneous inputs with some contribution from muscle afferents. Therefore, it is concluded that hyperexcitability of the sensorimotor cortex in cortical myoclonus is modality-specific. Cortical excitability is exaggerated to both cutaneous and deep receptor inputs in some patients, but only to cutaneous input in others.  相似文献   

20.
1. The influence of electrical stimulation of the nucleus raphes magnus (RM) on spinal segmental systems were examined. 2. RM stimulation produced an initial increase and a subsequent suppression of the amplitude of both fiextor and extensor lumbar monosynaptic reflex potentials (MSRs). 3. Intracellular recordings were made from alpha-motoneurons of the common peroneal nerve (flexor) and the tibial nerve (extensor). RM stimulation evoked postsynaptic potentials with a time course similar to that of MSR facilitation. 4. RM stimulation inhibited the aggregate excitatory synaptic potential (EPSP) evoked by stimulation of group I afferent fibers without apparent changes in the motoneuronal membrane potential. 5. These data suggest that the RM-evoked biphasic effect on MSR consists of early facilitation due to EPSP, and late inhibition possibly due to presynaptic inhibition of group I afferent fibers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号