首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Because pulmonary edema has been associated clinically with airway obstruction, we sought to determine whether decreased intrathoracic pressure, created by selective inspiratory obstruction, would affect lung fluid balance. We reasoned that if decreased intrathoracic pressure caused an increase in the transvascular hydrostatic pressure gradient, then lung lymph flow would increase and the lymph-to-plasma protein concentration ratio (L/P) would decrease. We performed experiments in six awake sheep with chronic lung lymph cannulas. After a base-line period, we added an inspiratory load (20 cmH2O) and allowed normal expiration at atmospheric pressure. Inspiratory loading was associated with a 12-cmH2O decrease in mean central airway pressure. Mean left atrial pressure fell 11 cmH2O, and mean pulmonary arterial pressure was unchanged; calculated microvascular pressure decreased 8 cmH2O. The changes that occurred in lung lymph were characteristic of those seen after other causes of increased transvascular hydrostatic gradient, such as increased intravascular pressure. Lung lymph flow increased twice base line, and L/P decreased. We conclude that inspiratory loading is associated with an increase in the pulmonary transvascular hydrostatic gradient, possibly by causing a greater fall in interstitial perimicrovascular pressure than in microvascular pressure.  相似文献   

2.
We compared the effect of crystalloid to colloid fluid infusion on extravascular lung water (EVLW) in hypoproteinemic dogs. Plasmapheresis was used to decrease plasma colloid osmotic pressure (COP) to less than 40% of its base-line level. Five animals were then infused with 0.9% sodium chloride (saline), five with 5% human serum albumin (albumin), and five with 6% hydroxyethyl starch (hetastarch) to increase the pulmonary arterial occlusive pressure by 10 Torr in comparison to the postplasmapheresis level for a 5-h study interval. On completion of the procedure, the lungs were harvested and EVLW measured by the blood-free gravimetric technique. Three to six times the volume of saline compared with albumin or hetastarch (P less than 0.001) was infused. In the saline animals, COP was decreased to 3.3 +/- 1.3 Torr, whereas COP was increased to 18.1 +/- 1.4 Torr in albumin animals (P less than 0.001) and 20.1 +/- 1.6 Torr in the hetastarch group (P less than 0.001). The saline-treated dogs developed gross signs of systemic edema. The EVLW was 8.1 +/- 0.9 ml/kg in saline animals compared with 5.3 +/- 2.1 ml/kg in the albumin (P less than 0.05) and 4.1 +/- 1.4 ml/kg in the hetastarch (P less than 0.01) groups. These data indicate that crystalloid fluid infusion during hypoproteinemia is associated with the development of both systemic and pulmonary edema.  相似文献   

3.
Physiological and pharmacological evidence for the regulation of permeability   总被引:12,自引:0,他引:12  
Local intraarterial infusions of histamine-type mediators produce increases in microvascular pressure (Pmv), protein efflux, and net fluid filtration that promote edema formation. The rise in Pmv is not the primary determinant of edema formation inasmuch as mediator-stimulated edema formation develops without an increase in Pmv. The inflammatory mediators increase the hydraulic conductivity of the microvascular membrane as evidenced by a large increase in the capillary filtration coefficient (CFC) subsequent to an increase in permeability. The development of inflammatory edema is primarily attributable to the increase in protein efflux, which decreases the lymph-to-plasma total-protein ratio (L/P ratio), virtually eliminating the transmural colloid osmotic pressure gradient. Hence, fluid filtration is increased at almost any level of Pmv. Noninflammatory vasodilators and venous occlusion produce increases in Pmv and protein clearance, but fail to increase the L/P ratio. The increase in protein efflux and L/P ratio is attributable to a nonhemodynamic action of the inflammatory mediators, an increase in microvascular permeability to macromolecules. The increase in protein efflux, CFC, and net fluid filtration produced by various inflammatory mediators is largely inhibited by cooling, treatment with endothelial cell stabilizers, or perfusion with blood from hemorrhaged animals. This inhibition is independent of changes in hemodynamics and must be ascribed to a direct effect on the microvascular membrane, providing evidence for a variable macromolecular transport pathway. In contrast, increases in protein clearance produced by increasing Pmv are not inhibited by these maneuvers, which provides evidence for a static macromolecular transport pathway. These findings correlate well with those from microscopic studies supporting the concept that macromolecular permeability may be directly regulated at the level of the venular endothelial cell subsequent to the modulation of interendothelial cell junction gap size.  相似文献   

4.
Myocardial edema occurs in many pathological conditions. We hypothesized that protein washdown at the myocardial microvascular exchange barrier would change the distribution of interstitial proteins from large to small molecules and diminish the effect of washdown on the colloid osmotic pressure (COP) of interstitial fluid and lymph. Dogs were instrumented with coronary sinus balloon-tipped catheters and myocardial lymphatic cannulas to manipulate myocardial lymph flow and to collect lymph. Myocardial venous pressure was elevated by balloon inflation to increase transmicrovascular fluid flux and myocardial lymph flow. COP of lymph was measured directly and was also calculated from protein concentration. Decreases occurred in both protein concentration and COP of lymph. The proportion of lymph protein accounted for by albumin increased significantly, whereas that accounted for by beta-lipoprotein decreased significantly. The change in the calculated plasma-to-lymph COP gradient was significantly greater than the change in the measured COP gradient. We conclude that the change in the distribution of interstitial fluid protein species decreases the effect of protein washdown on interstitial fluid COP and limits its effectiveness as a defense mechanism against myocardial edema formation.  相似文献   

5.
We measured the flow rate and protein concentration of lymph collected from a digital lymphatic in eight anesthetized ponies. Additionally, we recorded systemic arterial pressure (Part), and small vein pressure (Psv). Control lymph flow averaged 0.068 ml/min, and contained 3.11 g/100 ml of protein with albumin/globulin ratio of 0.75. Twenty-minute local intra-arterial infusion of acetylcholine (10 mug/min.) elevated Psv but did not increase lymph flow rate or protein concentration. A 60-min local intra-arterial infusion of histamine (10 mug/min) produced a marked sustained increase in Psv and both lymph flow and protein concentration. Edema developed in the digit receiving histamine. These data support the conclusion that in the horse, as in other species, histamine edema is due primarily to a decreased transcapillary colloid osmotic pressure gradient rather than an increased transcapillary hydrostatic pressure gradient.  相似文献   

6.
Neurogenic pulmonary edema (NPE) may develop in individuals with head trauma or seizures and is generally thought to have a hydrostatic basis in the severe degree of pulmonary hypertension that occurs. Recently, it has been suggested that vascular pressures may rise to levels that damage the vessels, leaving the patient at risk for further edema development. The objective of this study was to determine if pulmonary vascular protein permeability is increased in a canine isolated perfused left lower lung lobe (LLL) preparation by pressure transients that may occur in NPE. Venous pressure (Pv) was transiently raised to values ranging from 8 to 102 Torr in 19 LLL. One Pv transient was studied per LLL. After Pv was returned to normal, the osmotic reflection coefficient (sigma d) for total proteins was determined by the hematocrit-protein double indicator technique. No reduction in sigma d was observed until microvascular pressure exceeded 70 Torr. The average sigma d for the 11 LLL in which the peak microvascular pressure was less than 70 Torr was 0.74 +/- 0.03 (SE). Above this level sigma d fell linearly with increasing Pv, with a value of 0.26 being observed after the highest Pv transient. These results suggest that protein permeability may increase in patients with NPE who develop very large increases in pulmonary vascular pressures but may not be a universal occurrence in this disorder.  相似文献   

7.
The growth rate and albumin concentration of interstitial fluid cuffs were measured in isolated rabbit lungs inflated with albumin solution (3 g/dl) to constant airway (Paw) and vascular pressures for up to 10 h. Cuff size was measured from images of frozen lung sections, and cuff albumin concentration (Cc) was measured from the fluorescence of Evans blue labeled albumin that entered the cuffs from the alveolar space. At 5-cmH2O Paw, cuff size peaked at 1 h and then decreased by 75% in 2 h. The decreased cuff size was consistent with an osmotic absorption into the albumin solution that filled the vascular and alveolar spaces. At 15-cmH2O Paw, cuff size peaked at 0.25 h and then remained constant. Cc rose continuously at both pressures, but was greater at the higher pressure. The increasing Cc with a constant cuff size was modeled as diffusion through epithelial pores. Initial Cc-to-airway albumin concentration ratio was 0.1 at 5-cmH2O Paw and increased to 0.3 at 15 cmH2O, a behavior that indicated an increased permeability with lung inflation. Estimated epithelial reflection coefficient was 0.9 and 0.7, and equivalent epithelial pore radii were 4.5 and 6.1 nm at 5- and 15-cmH2O Paw, respectively. The initial cuff growth occurred against an albumin colloid osmotic pressure gradient because a high interstitial resistance reduced the overall epithelial-interstitial reflection coefficient to the low value of the interstitium.  相似文献   

8.
9.
We used a new technique to estimate the pulmonary microvascular membrane reflection coefficient to plasma protein (sigma d) in anesthetized dogs. In five animals we continuously weighed the lower left lung lobe and used a left atrial balloon to increase the pulmonary microvascular pressure (Pc). We determined the relationship between the rate of edema formation (S) and Pc and estimated the fluid filtration coefficient (Kf) as delta S/delta Pc. From the S vs. Pc relationship and Kf, we estimated the Pc at which S/Kf = 10 mmHg for each dog. This pressure (P10) was 38.0 +/- 5.8 (SD) mmHg, and the plasma protein osmotic pressure (pi c) was 14.9 +/- 3.7 mmHg. In five additional dogs in which we decreased pi c to 2.9 +/- 1.7 mmHg, P10 = 27.2 +/- 2.6 mmHg. The P10 vs. pi c regression line fit to the data from all 10 dogs was P10 = 0.92 pi c +/- 24.4 mmHg (r = 0.88). We estimated sigma d from the slope of the regression line as sigma d = square root of delta P10/delta pi c. With this technique, we estimated that, with 95% probability, sigma d lies between 0.72 and unity. This is higher than most previous sigma d estimates.  相似文献   

10.
Determinations of colloid osmotic pressure in the supernatant of germfree rat cecal contents indicated substantially elevated values in comparison to those of rat blood plasma or of conventional rat cecal supernatant. The germfree cecal supernatant, under conditions of similar total osmolality, was able to draw water at a sizable rate from a polyvinylpyrollidone solution whose colloid osmotic pressure was taken to be equivalent to that of interstitial fluid. It is suggested that the water absorption inhibition which was observed in the lower bowel of germfree rodents, is in part caused by the colloid osmotic pressure gradient which exists in these animals between the luminal contents and the tissue component.  相似文献   

11.
Fetal volume control is driven by an equilibrium between fetal and maternal hydrostatic and oncotic pressures in the placenta. Renal contributions to blood volume regulation are minor because the fetal kidneys cannot excrete fluid from the fetal compartment. We hypothesized that an increase in fetal plasma protein would lead to an increase in plasma oncotic pressure, resulting in an increase in fetal arterial and venous pressures and decreased angiotensin levels. Plasma or lactated Ringer solution was infused into each of five twin fetuses. After 7 days, fetal protein concentration was 71.2 +/- 4.2 g/l in the plasma-infused fetuses compared with 35.7 +/- 6.3 g/l in the lactated Ringer-solution-infused fetuses. Arterial pressure was 68.0 +/- 3.6 compared with 43.4 +/- 1.9 mmHg in the lactated Ringer solution-infused fetuses (P < 0.0003), whereas venous pressure was 4.8 +/- 0.3 mmHg in the plasma-infused fetuses compared with 3.3 +/- 0.4 mmHg in the lactated Ringer solution-infused fetuses (P < 0.036). Six fetuses were studied on days 0, 7, and 14 of plasma protein infusion. Fetal protein concentration increased from 31.1 +/- 1.5 to 84.8 +/- 3.8 g/l after 14 days (P < 0.01), and arterial pressure increased from 43.1 +/- 1.8 to 69.1 +/- 4.1 mmHg (P < 0.01). Venous pressure increased from 3.0 +/- 0.4 to 6.2 +/- 1.3 mmHg (P < 0.05). Fetal heart rate did not change. Angiotensin II concentration decreased, from 24.6 +/- 5.6 to 2.9 +/- 1.3 pg/l, after 14 days (P < 0.01). Fetal plasma infusions resulted in fetal arterial and venous hypertensions that could not be corrected by reductions in angiotensin II levels.  相似文献   

12.
To understand the mechanism, magnitude, and time course of facial puffiness that occurs in microgravity, seven male subjects were tilted 6 degrees head-down for 8 h, and all four Starling transcapillary pressures were directly measured before, during, and after tilt. Head-down tilt (HDT) caused facial edema and a significant elevation of microvascular pressures measured in the lower lip: capillary pressures increased from 27.7 +/- 1.5 mmHg (mean +/- SE) pre-HDT to 33.9 +/- 1.7 mmHg by the end of tilt. Subcutaneous and intramuscular interstitial fluid pressures in the neck also increased as a result of HDT, whereas interstitial fluid colloid osmotic pressures remained unchanged. Plasma colloid osmotic pressure dropped significantly by 4 h of HDT (21.5 +/- 1.5 mmHg pre-HDT to 18.2 +/- 1.9 mmHg), suggesting a transition from fluid filtration to absorption in capillary beds between the heart and feet during HDT. After 4 h of seated recovery from HDT, microvascular pressures in the lip (capillary and venule pressures) remained significantly elevated by 5-8 mmHg above baseline values. During HDT, urine output was 126.5 ml/h compared with 46.7 ml/h during the control baseline period. These results suggest that facial edema resulting from HDT is caused primarily by elevated capillary pressures and decreased plasma colloid osmotic pressures. The negativity of interstitial fluid pressures above heart level also has implications for maintenance of tissue fluid balance in upright posture.  相似文献   

13.
Alveolar liquid pressures in newborn and adult rabbit lungs   总被引:1,自引:0,他引:1  
To study the effects of lung maturation and inflation on alveolar liquid pressures, we isolated lungs from adult and newborn rabbit pups (1-11 days old). We used the micropuncture technique to measure alveolar liquid pressure at several transpulmonary pressures on lung deflation. Alveolar liquid pressure was greater than pleural pressure but less than airway pressure at all transpulmonary pressures. Alveolar liquid pressure decreased further below airway pressure with lung inflation. At high transpulmonary pressure, alveolar liquid pressure was less in newborn than in adult lungs. To study the effects of edema, we measured alveolar liquid pressures in newborn lungs with different wet-to-dry weight ratios. Alveolar liquid pressure increased with progressive edema. In addition, we compared alveolar liquid and perivenular interstitial pressures in perfused newborn lungs and found that they were similar. Thus alveolar liquid pressure can be used to estimate perivenular interstitial pressure. We conclude that the transvascular pressure gradient for fluid flux into the interstitium might increase with lung inflation and decrease with progressive edema. Furthermore, this gradient might be greater in newborn than adult lungs at high inflation pressures.  相似文献   

14.
"Cardiac surgery with cardiopulmonary bypass (CPB) induces a systemic inflammatory response syndrome that may contribute to postoperative morbidity and mortality. We investigated the in-flammatory responses to colloids compared to crystalloid priming in cardiac surgery patients with cardiopulmonary bypass. Thirty patients undergoing coronary artery bypass grafting (CABG) preparing for CPB were randomized into Ringer's solution (RS), 10% hydroxyethyl starch (HES) or 25% human albumin (HA) group. Serum concentrations of tumor necrosis factor-α (TNF-α), interleukin-1 β (IL-1β ), interleukin-6 (IL-6) and interleukin-10 (IL-10) were measured before CPB, at the end of CPB and 1, 6 and 12 h after CPB. Serum C-reactive protein (CRP) was determined pre-operatively and then daily for 2 days. Body-weight gain was significantly decreased on the day after surgery in the HES group than in the RS group. Volume priming in CPB for CABG patients using HA or HES preparation had less tendency for intense inflammatory response with lower levels of TNF-α, IL-1 β , IL-6 and higher levels of IL-10 compared to patients treated with RS. HES prime had lower levels of circulating CRP than in patients treated with HA or Ringer prime on the second post-operative day. Our data indicate that volume priming using colloid during CPB in CABG patients might exert beneficial effects on inflammatory responses."  相似文献   

15.
Experiments were conducted on five chronically instrumented unanesthetized sheep to determine the effects of sustained hypoproteinemia on lung fluid balance. Plasma total protein concentration was decreased from a control value of 6.17 +/- 0.019 to 3.97 +/- 0.17 g/dl (mean +/- SE) by acute plasmapheresis and maintained at this level by chronic thoracic lymph duct drainage. We measured pulmonary arterial pressure, left atrial pressure, aortic pressure, central venous pressure, cardiac output, oncotic pressures of both plasma and lung lymph, lung lymph flow rate, and lung lymph-to-plasma ratio of total proteins and six protein fractions for both control base-line conditions and hypoproteinemia base-line conditions. Moreover, we estimated the average osmotic reflection coefficient for total proteins and the solvent drag reflection coefficients for the six protein fractions during hypoproteinemia. Hypoproteinemia caused significant decreases in lung lymph total protein concentration, lung lymph-to-plasma total protein concentration ratio, and oncotic pressures of plasma and lung lymph. There were no significant alterations in the vascular pressures, lung lymph flow rate, cardiac output, or oncotic pressure gradient. The osmotic reflection coefficient for total proteins was found to be 0.900 +/- 0.004 for hypoproteinemia conditions, which is equal to that found in a previous investigation for sheep with a normal plasma protein concentration. Our results suggest that hypoproteinemia does not alter the lung filtration coefficient nor the reflection coefficients for plasma proteins. Possible explanations for the reported increase in the lung filtration coefficient during hypoproteinemia by other investigators are also made.  相似文献   

16.
Thrombin-induced alterations in lung fluid balance in awake sheep   总被引:5,自引:0,他引:5  
We examined the effect of fibrinolysis depression on thrombin-induced pulmonary microembolism in awake sheep prepared with chronic lung lymph fistulas. Fibrinolysis was depressed by an intravenous infusion (100 mg) of tranexamic acid [trans-4-(Aminomethyl)cyclohexanecarboxylic acid]. Pulmonary microembolism was induced by an intravenous infusion of alpha-thrombin (80 NIH U/kg) in normal (n = 7) and in tranexamic acid-treated (n = 6) sheep. Thrombin immediately increased pulmonary lymph flow (Qlym) in both groups. The increased Qlym was not associated with a change in the lymph-to-plasma protein concentration (L/P) ratio in the control group and with a small decrease in the tranexamic acid-treated group. The increases in Qlym and pulmonary transvascular protein clearance (Qlym X L/P ratio) in the tranexamic acid-treated group were greater and sustained at four- to fivefold above base line for 10 h after the thrombin and remained elevated at twofold above base line even at 24 h. In contrast, Qlym and protein clearance were transiently increased in the control group. The mean pulmonary arterial pressure (Ppa) and pulmonary vascular resistance (PVR) increased after thrombin in tranexamic acid-treated group; the increases in Ppa and PVR in the control group were transient. Protein reflection coefficient as determined by the filtration independent method decreased after thrombin in tranexamic acid-treated sheep (n = 5), indicating an increased vascular permeability to proteins. We conclude that prolongation of microthrombi retention in the pulmonary circulation results in an increased vascular permeability to proteins. Both increased vascular permeability and vascular hydrostatic pressure are important determinants of the increases in Qlym and transvascular protein clearance after thrombin-induced pulmonary microembolism.  相似文献   

17.
Interstitial fluid protein concentration (C(protein)) values in perivascular and peribronchial lung tissues were never simultaneously measured in mammals; in this study, perivascular and peribronchial interstitial fluids were collected from rabbits under control conditions and rabbits with hydraulic edema or lesional edema. Postmortem dry wicks were implanted in the perivascular and peribronchial tissues; after 20 min, the wicks were withdrawn and the interstitial fluid was collected to measure C(protein) and colloid osmotic pressure. Plasma, perivascular, and peribronchial C(protein) values averaged 6.4 +/- 0.7 (SD), 3.7 +/- 0.5, and 2.4 +/- 0.7 g/dl, respectively, in control rabbits; 4.8 +/- 0.7, 2.5 +/- 0.6, and 2.4 +/- 0.4 g/dl, respectively, in rabbits with hydraulic edema; and 5.1 +/- 0.3, 4.3 +/- 0.4 and 3.3 +/- 0.6 g/dl, respectively, in rabbits with lesional edema. Contamination of plasma proteins from microvascular lesions during wick insertion was 14% of plasma C(protein). In control animals, pulmonary interstitial C(protein) was lower than previous estimates from pre- and postnodal pulmonary lymph; furthermore, although the interstitium constitutes a continuum within the lung parenchyma, regional differences in tissue content seem to exist in the rabbit lung.  相似文献   

18.
To determine how liquid accumulation affects extra-alveolar perimicrovascular interstitial pressure, we measured filtration rate under zone 1 conditions (25 cmH2O alveolar pressure, 20 or 10 cmH2O vascular pressure) in isolated dog lung lobes in which all vessels were filled with autologous plasma. In the base-line condition, starting with normal extra-alveolar water content, filtration rate decreased by about one-half over 1 h as edema liquid slowly accumulated. We repeated each experiment after inducing edema (up to 100% lung weight gain). The absolute values and time course of filtration in the edema condition did not differ from base-line, i.e., the edema did not affect the time course of filtration. To compute the maximal initial and maximal change in extra-alveolar perimicrovascular pressure that occurred over each 1-h filtration study, we first assumed that the reflection coefficient is 0 in the Starling equation, then calculated perimicrovascular pressure and filtration coefficient from two equations with two unknowns. The mean filtration coefficient in 10 lobes is 0.063 g/(min X cmH2O X 100 g wet wt), and the initial perimicrovascular pressure is 3.9 cmH2O, rising by 4-7 cmH2O at 1 h. Finally we tested low protein perfusates and found the filtration rate was higher. We calculated an overall reflection coefficient = 0.44, a decrease in the initial perimicrovascular pressure to 1.9 cmH2O and a slightly lower increase after 1 h of edema formation, 2.2-6.6 cmH2O.  相似文献   

19.
Sensitivity to endotoxin in rabbits is increased after hemorrhagic shock.   总被引:1,自引:0,他引:1  
The immunoinflammatory response following trauma and hemorrhage may predispose to the development of sepsis and multiple-organ failure syndrome. Cardiac output (CO), arterial pressure, arterial PO2, and pulmonary permeability index were measured. We examined the sensitivity of rabbits to infusions of lipopolysaccharide (LPS) after hemorrhagic shock. Shock was produced by reducing CO to 40% of baseline for 90 min, followed by resuscitation with shed blood and then with lactated Ringer solution to maintain CO near baseline. Animals were assigned to three groups: 1) hemorrhagic shock only, 2) LPS only, and 3) hemorrhagic shock + LPS. Groups 1 and 3 were subjected to hemorrhagic shock on day 1. Escherichia coli LPS was infused (1.0 microgram/kg i.v.) into groups 2 and 3 on day 2. Fluid resuscitation with lactated Ringer solution was continued in an effort to maintain CO at baseline. Five hours after LPS infusion, 125I-albumin was injected intravenously, and rabbits were killed 1 h later for measurement of pulmonary permeability index. LPS infusion after shock (group 3) caused significant decreases in CO, arterial pressure, and PO2 and an increase in pulmonary permeability. These changes were not seen in the groups 1 and 2. We conclude that hemorrhagic shock and resuscitation result in a proinflammatory state, leading to increased sensitivity to subsequent exposure to LPS.  相似文献   

20.
Our previous studies suggest that a neutrophil-mediated inflammatory injury causes a major fraction of the pulmonary edema that occurs after smoke inhalation. Because activated neutrophils extrude cytotoxic proteases, the current study was conducted to evaluate the role of proteases in the pulmonary microvascular injury. Twelve sheep, instrumented for collection of lung lymph, were insufflated with cotton smoke. The sheep were treated 30 min after smoke inhalation with either gabexate mesilate (an inhibitor of serine proteases) or vehicle. Smoke inhalation resulted in an increased protease activity in the lung interstitium, as evidenced by decreases in both antiprotease activity and immunoreactive alpha 2-macroglobulin. Intravenous infusion of gabexate mesilate prevented the decrease in antiprotease activity. The protease inhibitor significantly attenuated the smoke-induced increase in transvascular fluid and protein flux, with untreated animals exhibiting 460% increases in flux compared with 180% in the inhibitor treated sheep. The protease inhibitor also eliminated the functional degradation in gas exchange that was observed in the untreated sheep. These studies strongly suggest that an increase in pulmonary proteolytic enzyme activity is responsible for a significant fraction of the degradation in microvascular integrity and gas exchange that is associated with smoke inhalation injury.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号