首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Biologists who study the timing of development in insects have focused on variation in duration of pre‐adult stages almost without exception. However, development is not complete until adults are not only morphologically mature, but also reproductively mature. Here we describe an experiment in the fruit fly, Drosophila simulans, in which we used artificial selection to create lines with shortened and lengthened duration from eclosion to the age when the first egg was laid. We found significant genetic variation for this trait. The response to selection on age when the first egg was laid was due to variation among females. Delayed adult development was correlated with rapid pre‐adult development and longer life span in females. The approach we use here resolves some difficulties with previous approaches used to study the genetics of senescence, and provides an opportunity to study the hitherto unexamined predictions derived from classic models for the evolution of senescence.  相似文献   

2.
Summary In many populations of protandrous shrimp, two alternative life histories coexist. One way to interpret this fact is that one age (or size) group consists of a mixture of males and females. This is a nice example of a phenotype limited evolutionarily stable strategy (ESS), in the sense of Parker (1982, p. 187). This paper explores the ESS theory for the mixture.  相似文献   

3.
Ratios of effective populations size, N(e), to census population size, N, are used as a measure of genetic drift in populations. Several life-history parameters have been shown to affect these ratios, including mating system and age at sexual maturation. Using a stochastic matrix model, we examine how different levels of persistent individual differences in mating success among males may affect N(e)/N, and how this relates to generation time. Individual differences of this type are shown to cause a lower N(e)/N ratio than would be expected when mating is independent among seasons. Examining the way in which age at maturity affects N(e)/N, we find that both the direction and magnitude of the effect depends on the survival rate of juveniles in the population. In particular, when maturation is delayed, lowered juvenile survival causes higher levels of genetic drift. In addition, predicted shifts in N(e)/N with changing age at maturity are shown to be dependent on which of the commonly used definitions of census population size, N, is employed. Our results demonstrate that patterns of mating success, as well as juvenile survival probabilities, have substantial effects on rates of genetic drift.  相似文献   

4.
Ossification score and animal age are both used as proxies for maturity-related collagen crosslinking and consequently decreases in beef tenderness. Ossification score is strongly influenced by the hormonal status of the animal and may therefore better reflect physiological maturity and consequently eating quality. As part of a broader cross-European study, local consumers scored 18 different muscle types cooked in three ways from 482 carcasses with ages ranging from 590 to 6135 days and ossification scores ranging from 110 to 590. The data were studied across three different maturity ranges; the complete range of maturities, a lesser range and a more mature range. The lesser maturity group consisted of carcasses having either an ossification score of 200 or less or an age of 987 days or less with the remainder in the greater maturity group. The three different maturity ranges were analysed separately with a linear mixed effects model. Across all the data, and for the greater maturity group, animal age had a greater magnitude of effect on eating quality than ossification score. This is likely due to a loss of sensitivity in mature carcasses where ossification approached and even reached the maximum value. In contrast, age had no relationship with eating quality for the lesser maturity group, leaving ossification score as the more appropriate measure. Therefore ossification score is more appropriate for most commercial beef carcasses, however it is inadequate for carcasses with greater maturity such as cull cows. Both measures may therefore be required in models to predict eating quality over populations with a wide range in maturity.  相似文献   

5.
Mean length and mean weight at age of Atlantic mackerel in the North Sea increased significantly between 1960 and 1979, then, decreased markedly during the 1980s. In contrast, median age at maturity decreased (c. 1-1.5 years) from 1960. Median length at maturity remained stable until the 1980s, when it declined sharply. The significance of these changes is discussed in relation to variation in sea temperature, food availability and stock size. It is speculated that the changes during the 1980s resulted from immigration of western stock mackerel.  相似文献   

6.
We collected data on the age at maturity (tm) and maximum reported age (tmax) for 153 stocks of marine fishes in Turkey, belonging to 59 species, 24 families and 2 classes (Actinopterygii and Elasmobranchii). Among Actinopterygii tm had an average of 1.8 years (1 to 4 years) while among Elasmobranchii it had an average of 11.9 years (2 to 11.9 years). Overall, tmax ranged between two years (for Sarda sarda) and 34 years (for Squalus acanthias). Mean tmax was found to be 6.24 years for Actinopterygii and 10.11 years for Elasmobranchii. tm showed a positive linear correlation with tmax for both Actinopterygii and Elasmobranchii. Mean tm?tmax did not differ significantly with sex within the Actinopterygii and Elasmobranchii. The ratio tm?tmax was found to be significantly lower for Actinopterygii than for Elasmobranchii.  相似文献   

7.
Variation in food availability impacts the performance of insects in terms of their size and age to maturity and fecundity. Age at maturity determines how quickly individuals in a population can start to reproduce and how much they can reproduce. Results from studies on various insect species show that food availability influences the size and fecundity of adult females. It is predicted that under poor growth conditions, variation in size is low, but variation in age at maturity is considerable. This prediction was examined in a widely distributed lady beetle species, Harmonia axyridis (Pallas) (Coleoptera: Coccinellidae), a predator of aphids and coccids. Using a food gradient from low to high aphid prey density, performance of females that were reared on excess food was recorded for pre‐reproductive duration, size at reproductive maturity, number of aphids consumed, and fecundity in the first 10 days of their reproductive period. Results suggested that female H. axyridis that were reared on surplus food when kept at low prey density (poor growth condition) took, on average, three times longer to attain maturity and produced, on average, 14 times fewer eggs than females that were also reared on surplus food, but kept at high prey density (good growth condition). Females performed best at a prey density of 30 aphids per female per 150 cm2. Results suggested that the current food availability significantly influenced the age and size of females at maturity and their fecundity. Age and size at maturity of female lady beetles showed non‐linear responses to prey density as well as the occurrence of a minimum size of females, below which H. axyridis females fail to mature. The steep slope recorded at lower prey densities suggests relatively high variation in age at maturity but low variation in size.  相似文献   

8.
Co‐inheritance in life‐history traits may result in unpredictable evolutionary trajectories if not accounted for in life‐history models. Iteroparity (the reproductive strategy of reproducing more than once) in Atlantic salmon (Salmo salar) is a fitness trait with substantial variation within and among populations. In the Teno River in northern Europe, iteroparous individuals constitute an important component of many populations and have experienced a sharp increase in abundance in the last 20 years, partly overlapping with a general decrease in age structure. The physiological basis of iteroparity bears similarities to that of age at first maturity, another life‐history trait with substantial fitness effects in salmon. Sea age at maturity in Atlantic salmon is controlled by a major locus around the vgll3 gene, and we used this opportunity demonstrate that these two traits are co‐inherited around this genome region. The odds ratio of survival until second reproduction was up to 2.4 (1.8–3.5 90% CI) times higher for fish with the early‐maturing vgll3 genotype (EE) compared to fish with the late‐maturing genotype (LL). The L allele was dominant in individuals remaining only one year at sea before maturation, but the dominance was reversed, with the E allele being dominant in individuals maturing after two or more years at sea. Post hoc analysis indicated that iteroparous fish with the EE genotype had accelerated growth prior to first reproduction compared to first‐time spawners, across all age groups, whereas this effect was not detected in fish with the LL genotype. These results broaden the functional link around the vgll3 genome region and help us understand constraints in the evolution of life‐history variation in salmon. Our results further highlight the need to account for genetic correlations between fitness traits when predicting demographic changes in changing environments.  相似文献   

9.
To place associations among body size, age at maturity, age, and reproductive traits of a long-lived organism in the context of current life history models based on the concept of norms of reaction, we examined data from a mark-recapture study of Blanding's turtles (Emydoidea blandingi) in southeastern Michigan during 24 of the years between 1953 and 1988. Females matured between 14 and 20 years of age. Both the smallest and largest adult females in the population were reproducing for the first time in their lives. This result suggests that a combination of differences in juvenile growth rates and ages at maturity, and not indeterminate growth, are the primary cause of variation in body size among adults. Body size variation among individuals was not related to age at sexual maturity. Females that had slower growth rates as juveniles matured later at similar mean body size compared to those with more rapid growth that matured at an earlier age. As a result, a linear model of age at sexual maturity with growth rates of primiparous females between hatching and maturity was significant and negative (R2 = 0.76). Frequency of reproduction of the largest and smallest females was not significantly different. Clutch size did not vary significantly with age among either primiparous or multiparous females. Clutch sizes of primiparous females and multiparous females were not significantly different. However, older females (>55 years minimum age) reproduced more frequently than did younger females (minimum age <36 y).  相似文献   

10.
Many animal taxa exhibit a positive correlation between sexual size dimorphism and sex differences in age at maturity, such that members of the larger sex mature at older ages than members of the smaller sex. Previous workers have suggested that sexual bimaturation is a product of sex differences in growth trajectories, but to date no one has tested this hypothesis. The current study uses growth-based models to study relationships between sexual size dimorphism and sexual bimaturation in species with asymptotic growth after maturity. These models show that sex differences in asymptotic size would produce sexual bimaturation even if both sexes approach their respective asymptotic sizes at the same age, mature at the same proportion of asymptotic size and have otherwise equivalent growth and maturation patterns. Furthermore, our analyses show that there are three ways to reduce sexual bimaturation in sexually size-dimorphic species: (1) higher characteristic growth rates for members of the larger sex, (2) larger size at birth, hatching or metamorphosis for members of the larger sex or (3) smaller ratio of size at maturity to asymptotic size (relative size at maturity) for members of the larger sex. Of these three options, sex differences in relative size at maturity are most common in size-dimorphic species and, in both male-larger and female-larger species, members of the larger sex frequently mature at a smaller proportion of their asymptotic size than do members of the smaller sex. Information about the growth and maturation patterns of a taxon can be used to determine relationships between sexual size dimorphism and sexual bimaturation for the members of that taxon. This process is illustrated for Anolis lizards, a genus in which both sexes exhibit the same strong correlation (r 0.97) between size at maturity and asymptotic size, and in which the relative size at maturity is inversely related to asymptotic size for both sexes. As a result, sexually size-dimorphic species of anoles exhibit the expected pattern of a smaller relative size at maturity for members of the larger sex. However, for species in this genus, sex differences in the relative size at maturity are not strong enough to produce the same age at maturity for both sexes in sexually size-dimorphic species. Members of the larger sex (usually males) are still expected to mature at older ages than members of the smaller sex in Anolis lizards.  相似文献   

11.
Variation in age at maturity is an important contributor to life history and demographic variation within and among species. The optimal age at maturity can vary by sex, and the ability of each sex to evolve towards its fitness optimum depends on the genetic architecture of maturation. Using GWAS of RAD sequencing data, we show that age at maturity in Chinook salmon exhibits sex‐specific genetic architecture, with age at maturity in males influenced by large (up to 20 Mb) male‐specific haplotypes. These regions showed no such effect in females. We also provide evidence for translocation of the sex‐determining gene between two different chromosomes. This has important implications for sexually antagonistic selection, particularly that sex linkage of adaptive genes may differ within and among populations based on chromosomal location of the sex‐determining gene. Our findings will facilitate research into the genetic causes of shifting demography in Chinook salmon as well as a better understanding of sex determination in this species and Pacific salmon in general.  相似文献   

12.
Summary Five demographical factors influencing the sex ratio of a population are classically considered. The influence of two of them is dependent on the longevity of individuals in the population. The effect of differential age at maturity between males and females is higher for animals with low annual survival, whereas the effect of differential annual survival between males and females is higher for animals with high annual survival. Such a conclusion applied to turtles, which are long life-span animals, allows us to retain differential survival between sexes as a major factor influencing the population sex ratio.  相似文献   

13.
In ectotherms, temperature induces similar developmental and evolutionary responses in body size, with larger individuals occurring or evolving in low temperature environments. Based on the occasional occurrence of opposite size clines, showing a decline in body size with increasing latitude, an interaction between generation time and growing season length was suggested to account for the patterns found. Accordingly, multivoltine species with short generation times should gain high compound interest benefits from reproducing early at high temperatures, indicating potential for extra generations, even at the expense of being smaller. This should not apply for obligatorily monovoltine populations. We explicitly test the prediction that monovoltine populations (no compound interest) should be selected for large body size to maximise adult fitness, and therefore size at maturity should respond only weakly to temperature. In two monovoltine populations (an Alpine and a Western German one) of the butterfly Lycaena hippothoe, increasing temperatures had no significant effect on pupal weight and caused a slight decrease in adult weight only. In contrast, two closely related, yet potentially multivoltine Lycaena populations showed a greater weight loss at increasing temperature (in protandrous males, but not in females) and smaller adult sizes throughout. Thus, the results do support our predictions indicating that the compound interest hypothesis may yield causal explanations for the relationship between temperature and insect size at maturity. At all temperatures, the alpine population had higher growth rates and concomitantly shorter development times (not accompanied by a reduction in size) than the other, presumably indicating local adaptations to different climates.  相似文献   

14.
对虾抗病毒免疫研究现状   总被引:1,自引:0,他引:1  
高溳  金春英  王蔚 《生命科学》2011,(12):1296-1299
白斑综合征病毒(white spot syndrome virus,wssv),是对虾养殖中主要的致病病毒,在全球范围内引起急性感染和致死反应,带来巨大的经济损失。之前的研究主要集中在对虾的先天免疫反应上,在抗病毒反应方面的尚所知有限。总结了近年来对虾抗病毒免疫研究取得的主要成果,概括了病毒侵染对虾后分子水平上的改变,旨在为更加有效的预防和治疗白斑综合症提供参考。  相似文献   

15.
Penaeid shrimp aquaculture is an important industry in the Americas, and the industry is based almost entirely on the culture of the Pacific White Shrimp, Litopenaeus vannamei. Western Hemisphere shrimp farmers in 14 countries in 2004 produced more than 200,000 metric tons of shrimp, generated more than $2 billion in revenue, and employed more than 500,000 people. Disease has had a major impact on shrimp aquaculture in the Americas since it became a significant commercial entity in the 1970s. Diseases due to viruses, rickettsial-like bacteria, true bacteria, protozoa, and fungi have emerged as major diseases of farmed shrimp in the region. Many of the bacterial, fungal and protozoan caused diseases are managed using improved culture practices, routine sanitation, and the use of chemotherapeutics. However, the virus diseases have been far more problematic to manage and they have been responsible for the most costly epizootics. Examples include the Taura syndrome pandemic that began in 1991-1992 when the disease emerged in Ecuador, and the subsequent White Spot Disease pandemic that followed its introduction to Central America from Asia in 1999. Because of their socioeconomic significance to shrimp farming, seven of the nine crustacean diseases listed by the World Animal Organization (OIE) are virus diseases of shrimp. Of the seven virus diseases of penaeid shrimp, five are native to the Americas or have become enzootic following their introduction. The shrimp virus diseases in the Americas are increasingly being managed by exclusion using a combination of biosecurity and the practice of culturing domesticated specific pathogen-free (SPF) stocks or specific pathogen-resistant (SPR) stocks. Despite the significant challenges posed by disease, the shrimp farming industry of the Americas has responded to the challenges posed by disease and it has developed methods to manage its diseases and mature into a sustainable industry.  相似文献   

16.
In birds with altricial young an important stage in the life history is the age at fledging. In this paper we use an approach proven successful in the prediction of the optimal age at maturity in fish and reptiles to predict the optimal age of fledging in passerines. Integrating the effects of growth on future fecundity and survival leads to the prediction that the optimal age at fledging is given by a function that comprises survival to maturity, the exponent of the fecundity-body size relationship and nestling growth. Growth is described by the logistic equation with parameters, A, K and t(i). Assuming that the transitional mortality curve can be approximated by the nestling mortality, M(n), the optimal fledging age, t(f), is given by a simple formula involving the three growth parameters, nestling mortality (M(n)) and the exponent (d) of the fecundity-body size relationship. Predictions of this equation underestimate the true values by 11-16%, which is expected as a consequence of the transitional mortality function approximation. A transitional mortality function in which mortality is approximately 0.3-0.4 of nesting mortality (i.e. mortality declines rapidly after fledging) produces predictions which, on average, equal the observed values. Data are presented showing that mortality does indeed decline rapidly upon fledging.  相似文献   

17.
It is widely accepted that sperm morphology is a good indicator of fertility and it has been proposed that sperm quality may be related to subtle changes in sperm head morphology. However, a precise estimation of the morphology of ram sperm would be very useful to improve reproductive success in ovine. Computer-assisted morphometric analysis and clustering analysis have been important tools to study sperm subpopulations in domestic animals. However, to the best of our knowledge, no data exist studing morphometric differences regarding to sperm subpopulations within the ovine ejaculate. The aim of this study was to test the presence and distribution of sperm morphometric subpopulations in cryopreserved ejaculates from yearling and mature rams using an objective method by computer analysis system and to establish the relationship between the distribution of the subpopulations found and sperm quality in each individual ram. Principal component analysis revealed that three principal components for yearlings and four components for mature rams that represented more than 84% of the cumulative variance in both cases. After cluster analysis, three sperm morphometric subpopulations for yearlings (CLY) and four for mature (CLM) rams were identified with defined sperm dimensions and shapes. CLY1 included big, round and short sperm (37%), CLY2 included average size and slightly elliptical and elongated sperm (48%), CLY3 included small, long, elliptical and elongated sperm cells (15%). CLM1 consisted of average size and moderate elliptical and elongated (26%), CLM2 consisted of small, long, elliptical and elongated (31%), CLM3 consisted of small and round (32%) and CLM4 included big, short and round (8%) spermatozoa respectively. There were significant differences in the distribution of the three subpopulations (P < 0.001) as well as in the sperm concentration, total motility (%), sperm viability (%) and the overall (P < 0.05) in the ejaculates among the four yearling rams tested. Same results were found for the four subpopulations and the different sperm quality parameters in the ejaculates among the four mature rams tested. In conclusion, cryopreserved ram semen showed a specific structure with regard to sperm morphometric subpopulations. In addition, the distribution of these subpopulations seems to be related to stud maturity age and the ejaculate quality which would be a very important indicator of sperm function. Thus, analysis of sperm morphometric subpopulation structure together with functional tests could provide valuable information to assess the cryoresistence of ram spermatozoa.  相似文献   

18.
This paper describes the skeletal maturity status of Japanese children in Western Kyushu and its variation within Japanese populations. Hand-wrist skeletal maturity was assessed by the Tanner-Whitehouse (1975) (TW2) method from radiographs of 500 boys and 485 girls aged from 4 to 15 years. Western Kyushu children showed retarded skeletal maturity scores (RUS, carpals, and 20-bone) under the age of 12 years for boys and 10 years for girls, and thereafter they were advanced in relation to the British standard. Within Japanese populations the present sample showed delayed maturity compared to Tokyo children, but was close to that of Sapporo children throughout the age range studied. However, the expected effect of secular trend suggested skeletal maturity more advanced for Tokyo children and somewhat advanced one for Sapporo children compared to that of Western Kyushu children.  相似文献   

19.
We analyzed variation in phenotypic plasticity of life history traits between two Cardamine flexuosa populations based on differences in plasticity of age and size at maturity. C. flexuosa (Cruciferae) is a facultative, vernalization-sensitive, long-day annual, and its phenology and the phenotypic expressions of many life history traits are largely controlled by photoperiod and vernalization in natural populations. We used plants from two populations which differed in their responses to chilling and photoperiod treatments. The timing of developmental processes was changed by controlling temperature and photoperiod regimes in growth chambers. Plasticity in size at maturity was analyzed as changes in a growth trajectory using two parameters, age at maturity (Δt) and growth rate (k). Both traits showed plasticity, but differences between the populations were found mostly for Δt. Distinctive differences in size at maturity of individuals in the two populations were mainly due to different amounts of plasticity in Δt. Variations in plasticity of nine other life history traits and their associations to age and size at maturity were also analyzed. Variation for eight of the traits can be described, at least in part, as a function of age and size at maturity for both populations, and most of the variation in the total number of seeds was explained by age and size at maturity. Only age at maturity had any effect on changes in resource allocation. The nine life history traits were integrated through associated character expressions with age and size at maturity. Changes in the association between a trait and age and/or size at maturity were rather conservative compared to changes in the plasticity of a trait between the two populations. Associations with age and size at maturity are mostly explicable in terms of inherent relationships in the developmental processes, and they may limit the ecological range expansion and the adaptive evolution of plasticity in C. flexuosa. The negative correlation between reproductive allocation and age at maturity can be a cost of delaying maturation in C. flexuosa.  相似文献   

20.
This study provides growth rate, longevity and maturity estimates for the two important species of jack in Hawaiʻi: ulua aukea/giant trevally Caranx ignobilis and omilu/bluefin trevally Caranx melampygus. Maximum observed ages for C. ignobilis and C. melampygus were 31 years and 24 years, respectively. Combined sex von Bertalanffy growth parameter values for C. ignobilis and C. melampygus were as follows: L = 1064 mm and K = 0.18 year−1; and L = 718 mm and K = 0.20 year−1, respectively. Female size at maturity was significantly greater than males for both C. ignobilis and C. melampygus. Size and age at maturity for C. ignobilis was 594 mm and 4.4 years for females and 465 mm and 2.8 years for males. Size and age at maturity for C. melampygus was 372 mm and 4.1 years for females and 329 mm and 2.9 years for males. This study provides the first robust demographic data for both of these highly prized and ecologically important predatory species in Hawaiʻi, which can be used for future assessments or management.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号