首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The proteomic analysis of plasma is extremely complex due to the presence of few highly abundant proteins. These proteins have to be depleted in order to detect low abundance proteins, which are likely to be of biomedical interest. In this work it was investigated the applicability of hydrophobic interaction chromatography (HIC) as a plasma fractionation method prior to two-dimensional gel electrophoresis (2DGE). The average hydrophobicity of the 56 main plasma proteins was calculated. Plasma proteins were classified as low, medium and highly hydrophobic through a cluster analysis. The highly abundant proteins showed a medium hydrophobicity, and therefore a HIC step was designed to deplete them from plasma. HIC performance was assessed by 2DGE, and it was compared to that obtained by a commercial immuno-affinity (IA) column for albumin depletion. Both methods showed similar reproducibility. HIC allowed partially depleting α-1-antitrypsin and albumin, and permitted to detect twice the number of spots than IA. Since albumin depletion by HIC was incomplete, it should be further optimized for its use as a complementary or alternative method to IA.  相似文献   

2.
Solvents play a critical role in hydrophobic interaction chromatography (HIC), since the separation of proteins by HIC is based on the hydrophobicity of the proteins presented to the solvents. This review first describes the solvent properties which determine the effect of cosolvents on the binding and elution of proteins in HIC; i.e., the protein solvent interactions and the surface tension of water/cosolvent mixture. Second are presented the various cosolvents which have been tested as facilitating binding or elution of the proteins. Last, some examples of solvent manipulation which resolved complex mixtures of proteins by HIC are reviewed.  相似文献   

3.
The hydrophobic contributions of 17 individual peptides, fused to the N-terminal of Bacillus stearothermophilus lactate dehydrogenase (LDH) were studied by hydrophobic interaction chromatography (HIC) and aqueous two-phase system (ATPS). The constructs were sequenced from a protein library designed with a five-amino acid randomised region in the N-terminal of an LDH protein. The 17 LDH variants and an LDH control lacking the randomised region were expressed in Escherichia coli. HIC and ATPS behaviour of the proteins indicated significant differences in protein hydrophobicity, even though the modifications caused only 1% increase in protein molecular weight and 2% variation in isoelectric points. HIC and ATPS results correlated well (R(2) = 0.89). Protein expression was clearly affected by N-terminal modification, but there was no evidence that the modification affected protein activity. A GluAsnAlaAspVal modification resulted in increased protein expression. In most cases, HIC and ATPS results compared favourably with those predicted on the basis of 34 amino acid residue hydrophobicity scales; assuming exposure of tag residues to solution. Exceptions included LeuAlaGlyValIle and LeuTyrGlyCysIle modifications, which were predicted, assuming full solution exposure, to be more hydrophobic than observed.  相似文献   

4.
Hydrophobic interaction chromatography (HIC) is an important technique for the purification of proteins. In this paper, we review three different approaches for predicting protein retention time in HIC, based either on a protein's structure or on its amino-acidic composition, and we have extended one of these approaches. The first approach correlates the protein retention time in HIC with the protein average surface hydrophobicity. This methodology is based on the protein three-dimensional structure data and considers the hydrophobic contribution of the exposed amino acid residues as a weighted average. The second approach, which we have extended, is based on the high correlation level between the average surface hydrophobicity of a protein's hydrophobic interacting zone and its retention time in HIC. Finally, a third approach carries out a prediction of the average surface hydrophobicity of a protein, using only its amino-acidic composition, without knowing its three-dimensional structure. These models would make it possible to test different operating conditions for the purification of a target protein by computer simulations, and thus make it easier to select the optimal conditions, contributing to the rational design and optimization of the process.  相似文献   

5.
6.
It is well established that salt enhances the interaction between solutes (e.g., proteins, displacers) and the weak hydrophobic ligands in hydrophobic interaction chromatography (HIC) and that various salts (e.g., kosmotropes, chaotropes, and neutral) have different effects on protein retention. In this article, the solute affinity in kosmotropic, chaotropic, and neutral mobile phases are compared and the selectivity of solutes in the presence of these salts is examined. Since solute binding in HIC systems is driven by the release of water molecules, the total number of released water molecules in the presence of various types of salts was calculated using the preferential interaction theory. Chromatographic retention times and selectivity reversals of both proteins and displacers were found to be consistent with the total number of released water molecules. Finally, the solute surface hydrophobicity was also found to have a significant effect on its retention in HIC systems.  相似文献   

7.
In contrast to other chromatographic methods for purifying proteins (e.g. gel filtration, affinity, and ion exchange), hydrophobic interaction chromatography (HIC) commonly requires experimental determination (referred to as screening or "scouting") in order to select the most suitable chromatographic medium for purifying a given protein 1. The method presented here describes an automated approach to scouting for an optimal HIC media to be used in protein purification.HIC separates proteins and other biomolecules from a crude lysate based on differences in hydrophobicity. Similar to affinity chromatography (AC) and ion exchange chromatography (IEX), HIC is capable of concentrating the protein of interest as it progresses through the chromatographic process. Proteins best suited for purification by HIC include those with hydrophobic surface regions and able to withstand exposure to salt concentrations in excess of 2 M ammonium sulfate ((NH4)2SO4). HIC is often chosen as a purification method for proteins lacking an affinity tag, and thus unsuitable for AC, and when IEX fails to provide adequate purification. Hydrophobic moieties on the protein surface temporarily bind to a nonpolar ligand coupled to an inert, immobile matrix. The interaction between protein and ligand are highly dependent on the salt concentration of the buffer flowing through the chromatography column, with high ionic concentrations strengthening the protein-ligand interaction and making the protein immobile (i.e. bound inside the column) 2. As salt concentrations decrease, the protein-ligand interaction dissipates, the protein again becomes mobile and elutes from the column. Several HIC media are commercially available in pre-packed columns, each containing one of several hydrophobic ligands (e.g. S-butyl, butyl, octyl, and phenyl) cross-linked at varying densities to agarose beads of a specific diameter 3. Automated column scouting allows for an efficient approach for determining which HIC media should be employed for future, more exhaustive optimization experiments and protein purification runs 4.The specific protein being purified here is recombinant green fluorescent protein (GFP); however, the approach may be adapted for purifying other proteins with one or more hydrophobic surface regions. GFP serves as a useful model protein, due to its stability, unique light absorbance peak at 397 nm, and fluorescence when exposed to UV light 5. Bacterial lysate containing wild type GFP was prepared in a high-salt buffer, loaded into a Bio-Rad DuoFlow medium pressure liquid chromatography system, and adsorbed to HiTrap HIC columns containing different HIC media. The protein was eluted from the columns and analyzed by in-line and post-run detection methods. Buffer blending, dynamic sample loop injection, sequential column selection, multi-wavelength analysis, and split fraction eluate collection increased the functionality of the system and reproducibility of the experimental approach.Download video file.(63M, mov)  相似文献   

8.
Hydrophobic interaction chromatography (HIC) is an important tool in the industrial purification of proteins from various sources. The HIC separation behavior of individual (or model) proteins has been widely researched by others. On the contrary, this study focused on the fractionation ability of HIC when it is challenged with whole proteomes. The impact of the nature of three different proteomes, that is, yeast, soybean, and Chinese hamster ovary cells, on HIC separation was investigated. In doing so, chromatography fractions obtained under standardized conditions were evaluated in terms of their overall hydrophobicity—as measured by fluorescence dye binding. This technique allowed for the calculation of an average protein surface hydrophobicity (S0) for each fraction; a unique correlation between S0 and the observed chromatographic behavior was established in each case. Following a similar strategy, the effect of three different ligands (polypropylene glycol, phenyl, and butyl) and two adsorbent particle sizes (65 and 100 µm) on the chromatographic behavior of the yeast proteome was evaluated. As expected, the superficial hydrophobicity of the proteins eluted is correlated with the salt concentration of its corresponding elution step. The findings reveled how—and in which extent—the type of ligand and the size of the beads actually influenced the fractionation of the complex biological mixture. Summarizing, the approach presented here can be instrumental to the study of the performance of chromatography adsorbents under conditions close to industrial practice and to the development of downstream processing strategies. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

9.
Unfolding of marginally stable proteins is a significant factor in commercial application of hydrophobic interaction chromatography (HIC). In this work, hydrogen-deuterium isotope exchange labeling has been used to monitor protein unfolding on HIC media for different stationary phase hydrophobicities and as a function of ammonium sulfate concentration. Circular dichroism and Raman spectroscopy were also used to characterize the structural perturbations experienced by solution phase protein that had been exposed to media and by protein adsorbed on media. As expected, greater instability is seen on chromatographic media with greater apparent hydrophobicity. However, increased salt concentrations also led to more unfolding, despite the well-known stabilizing effect of ammonium sulfate in solution. A thermodynamic framework is proposed to account for the effects of salt on both adsorption and stability during hydrophobic chromatography. Using appropriate estimates of input quantities, analysis with the framework can explain how salt effects on stability in chromatographic systems may contrast with solution stability.  相似文献   

10.
11.
蛋白质层析用离子交换和疏水作用层析介质的发展概况   总被引:2,自引:0,他引:2  
浦宇  王芝祥   《生物工程学报》2004,20(6):975-982
层析是蛋白质纯化的关键技术之一 ,作为层析技术的核心———层析介质一直以来是层析技术研究的一个热点。近年来 ,越来越多的新型层析介质被开发出来 ,如粒度均匀的交联多糖、人工合成的大孔聚合物、触角型吸附剂、软胶包裹在硬胶表面等介质。主要介绍应用较为广泛的IEC和HIC介质的组成、特性及其在蛋白质纯化中的应用 ,还研究了与HIC技术相关的两种新技术 :亲硫层析和疏水电荷诱导层析 (HCIC) ,重点介绍了HCIC的介质及其应用 ,同时也讨论了在蛋白质纯化中应用的三相纯化策略 (富集、中间纯化和精制 )。结合我国的实际情况 ,就当前蛋白质纯化的离子交换和疏水层析介质面临的挑战和未来的发展进行讨论并提出了建议  相似文献   

12.
The behavior of a series of pure proteins partitioned in aqueous two-phase systems is compared with their behavior during mild hydrophobic interaction chromatography (HIC). A simple theoretical rationale for this comparison is presented based upon solvophobic theory. Similarities were found in the behavior of the model proteins in the two forms of partition chromatography. This indicates that HIC may be employed as a rapid instrumental technique for the broad characterization of protein behavior, which may be of benefit in the development of liquid-liquid partitioning strategies. However, it has proved difficult to completely account for this behavior on the basis of the known physical and structural properties of the proteins used. The variety in the detailed partitioning behavior of this small sample of protein types suggests that partition in aqueous two-phase systems is uniquely sensitive to subtle differences in surface properties of complex macromolecules. (c) 1994 John Wiley & Sons, Inc.  相似文献   

13.
14.
In this preliminary study hydrophobic interaction chromatography (HIC) is proposed as a good tool in order to detect conformational changes induced by chemical denaturants in two globular proteins, cytochrome C (Cyt C) and myoglobin (MYO). Alterations in protein structure were manifested chromatographically by reproducible changes in peak heights, retention time, and appearance of multiple peaks. The HIC behavior of the two model proteins denatured by guanidinium thyocyanate (GdmSCN) was investigated, keeping constant various concentrations of urea in the mobile phase in a TSK-Gel Phenyl-5PW column (TosoBiosep). Suitable elution conditions provide evidence of the simultaneous presence of two denatured forms in the case of MYO, and sequential different denatured states of Cyt C.  相似文献   

15.
In the present work we describe a procedure for the purification of human pregnancy zone protein (PZP) from pooled late pregnancy plasma by using hydrophobic interaction chromatography (HIC) on a phenyl–Sepharose column. The HIC step allowed the complete isolation of haptoglobins and the partial separation of human α2-macroglobulin (α2-M) from a protein fraction containing PZP previously obtained by a DEAE-Sephacel chromatography. Pure and native PZP, with a recovery of nearly 25% and biological activity of protease-binding, was obtained by two definitive final steps consisting of zinc-chelate and size-filtration chromatographies. Moreover, we further present an alternative procedure for the purification of α2-M from the same pregnancy plasma, based on the differential elution of PZP and α2-M from the HIC. This purification step gave rise to a highly purified product with a recovery of 10%. This differential elution could be explained by differences in surface hydrophobicity observed between both proteins. In addition, considering the different hydrophobic properties exhibited by native PZP and PZP–protease complexes, HIC on phenyl–Sepharose column could also be used for separating both conformational states of PZP.  相似文献   

16.
Recently it has been established that low molecular weight displacers can be successfully employed for the purification of proteins in hydrophobic interaction chromatography (HIC) systems. This work investigates the utility of this technique for the purification of an industrial protein mixture. The study involved the separation of a mixture of three protein forms, that differed in the C-terminus, from their aggregate impurities while maintaining the same relative ratio of the three protein forms as in the feed. A batch high-throughput screening (HTS) technique was employed in concert with fluorescence spectroscopy for displacer screening in these HIC systems. This methodology was demonstrated to be an effective tool for identifying lead displacer candidates for a particular protein/stationary-phase system. In addition, these results indicate that surfactants can be employed at concentrations above their CMCs as effective displacers. Displacement of the recombinant proteins with PEG-3400 and the surfactant Big Chap was shown to increase the productivity as compared to the existing step-gradient elution process.  相似文献   

17.
A method for the rapid representation of key process tradeoffs that need to be made during the analysis of chromatographic sequences has been proposed. It involves the construction of fractionation and maximum purification factor versus yield diagrams, which can be completed easily on the basis of chromatographic data. The output of the framework developed reflects the degree of tradeoff between levels of yield and purity and provides a fast and precise prediction of the sample fraction collection strategy needed to meet a desired process specification. The usefulness of this approach for the purposes of product purification and contaminant removal in a single chromatographic step has been successfully demonstrated in an earlier paper and it is now extended by application to a chromatographic sequence: the separation of a hypothetical three-component protein system by hydrophobic interaction chromatography (HIC) followed by size exclusion chromatography (SEC). The HIC operation has a strong impact upon the subsequent SEC step. The studies show how the analysis of performance in such a chromatographic sequence can be carried out easily and in a straightforward fashion using the fractionation diagram approach. The methodology proposed serves as a useful tool for identifying the process tradeoffs that must be made during operation of a sequence of chromatographic steps and indicates the impact on further processing of the cut-point decisions that are made.  相似文献   

18.
A multi‐dimensional fractionation and characterization scheme was developed for fast acquisition of the relevant molecular properties for protein separation from crude biological feedstocks by ion‐exchange chromatography (IEX), hydrophobic interaction chromatography (HIC), and size‐exclusion chromatography. In this approach, the linear IEX isotherm parameters were estimated from multiple linear salt‐gradient IEX data, while the nonlinear IEX parameters as well as the HIC isotherm parameters were obtained by the inverse method under column overloading conditions. Collected chromatographic fractions were analyzed by gel electrophoresis for estimation of molecular mass, followed by mass spectrometry for protein identification. The usefulness of the generated molecular properties data for rational decision‐making during downstream process development was equally demonstrated. Monoclonal antibody purification from crude hybridoma cell culture supernatant was used as case study. The obtained chromatographic parameters only apply to the employed stationary phases and operating conditions, hence prior high throughput screening of different chromatographic resins and mobile phase conditions is still a prerequisite. Nevertheless, it provides a quick, knowledge‐based approach for rationally synthesizing purification cascades prior to more detailed process optimization and evaluation. Biotechnol. Bioeng. 2012; 109: 3070–3083. © 2012 Wiley Periodicals, Inc.  相似文献   

19.
During cationic bed adsorption (EBA), with cutinase with varying length tryptophan tags (WP)(2)and (WP)(4), 33% and 10% of adsorption capacity and 80% and 32% eluted specific activity were observed in relation to wild type (wt)-cutinase in the conventional process. Therefore, as the hydrophobicity of the protein increases, it is important to integrate the EBA step with a hydrophobic interaction chromatography (HIC) process. As the length of the hydrophobic tag-(WP) increases from n = 2 to n = 4, the purification factor obtained by HIC was 1.8 and 2.2-fold higher than wt-cutinase. However, the recovery yield obtained in HIC decreases substantially as the length of hydrophobic tag increases (97%, 84% and 70% for wt-cutinase, cutinase-(WP)(2) and cutinase-(WP)(4)). The integration of two purification steps, EBA followed by HIC, resulted in the highest overall purity level for cutinase-(WP)(2), and the highest overall recovery yield for wt-cutinase. When optimizing the design of a hydrophobic tag fused to a protein secreted by Saccharomyces cerevisiae it must be considered that the cultivation parameters could impair the downstream process, and consequently the optimum tag is not necessarily the one that presents the highest purification factor in HIC.  相似文献   

20.
Membrane chromatography has already proven to be a powerful alternative to polishing columns in flow‐through mode for contaminant removal. As flow‐through utilization has expanded, membrane chromatography applications have included the capturing of large molecules, including proteins such as IgGs. Such bind‐and‐elute applications imply the demand for high binding capacity and larger membrane surface areas as compared to flow‐through applications. Given these considerations, a new Sartobind Phenyl? membrane adsorber was developed for large‐scale purification of biomolecules based on hydrophobic interaction chromatography (HIC) principles. The new hydrophobic membrane adsorber combines the advantages of membrane chromatography—virtually no diffusion limitation and shorter processing time—with high binding capacity for proteins comparable to that of conventional HIC resins as well as excellent resolution. Results from these studies confirmed the capability of HIC membrane adsorber to purify therapeutic proteins with high dynamic binding capacities in the range of 20 mg‐MAb/cm3‐membrane and excellent impurity reduction. In addition the HIC phenyl membrane adsorber can operate at five‐ to ten‐fold lower residence time when compared to column chromatography. A bind/elute purification step using the HIC membrane adsorber was developed for a recombinant monoclonal antibody produced using the PER.C6® cell line. Loading and elution conditions were optimized using statistical design of experiments. Scale‐up is further discussed, and the performance of the membrane adsorber is compared to a traditional HIC resin used in column chromatography. Biotechnol. Bioeng. 2010; 105: 296–305. © 2009 Wiley Periodicals, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号