首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 17 毫秒
1.
1H NMR spectra of low-spin cyanide-ligated bacterial hemoglobin from Vitreoscilla (VtHb-CN) are reported. The assignments of the 1H NMR spectra of VtHb-CN have been made through MCOSY, NOESY, 1D TOE and SUPERWEFT experiments. Almost all resonance peaks of heme and ligated His85 are identified. The spin-lattice relaxation time T1's and the variation relationships of chemical shifts of these peaks with temperature have been acquired, from which the distances between the measured protons and Fe3 , and the diamagnetic chemical shifts have been acquired, respectively. The ionization constants of pKa's of ligated His85 are determined through pH titration of chemical shift, which is 4.95 for ligated His85 C2H proton. The lower pKa is attributed to the influence of the Fe3 of carrying positive charge and the coordination of His85 and Fe3 of heme.  相似文献   

2.
The X‐ray structures of the hemoglobin from Synechococcus sp. PCC 7002 (GlbN) were solved in the ferric bis‐histidine (1.44 Å resolution) and cyanide‐bound (2.25 Å resolution) states with covalently attached heme. The two structures illustrate the conformational changes and cavity opening caused by exogenous ligand binding. They also reveal an unusually distorted heme, ruffled as in c cytochromes. Comparison to the solution structure demonstrates the influence of crystal packing on several structural elements, whereas comparison to GlbN from Synechocystis sp. PCC 6803 shows subtle differences in heme geometries and environment. The new structures will be instrumental in elucidating GlbN reactivity. Proteins 2014; 82:528–534. © 2013 Wiley Periodicals, Inc.  相似文献   

3.
NMR relaxation measurements of 15N spin-lattice relaxation rate (R(1)), spin-spin relaxation rate (R(2)), and heteronuclear nuclear Overhauser effect (NOE) have been carried out at 11.7T and 14.1T as a function of temperature for the side-chains of the tryptophan residues of 15N-labeled and/or (2H,15N)-labeled recombinant human normal adult hemoglobin (Hb A) and three recombinant mutant hemoglobins, rHb Kempsey (betaD99N), rHb (alphaY42D/betaD99N), and rHb (alphaV96W), in the carbonmonoxy and the deoxy forms as well as in the presence and in the absence of an allosteric effector, inositol hexaphosphate (IHP). There are three Trp residues (alpha14, beta15, and beta37) in Hb A for each alphabeta dimer. These Trp residues are located in important regions of the Hb molecule, i.e. alpha14Trp and beta15Trp are located in the alpha(1)beta(1) subunit interface and beta37Trp is located in the alpha(1)beta(2) subunit interface. The relaxation experiments show that amino acid substitutions in the alpha(1)beta(2) subunit interface can alter the dynamics of beta37Trp. The transverse relaxation rate (R(2)) for beta37Trp can serve as a marker for the dynamics of the alpha(1)beta(2) subunit interface. The relaxation parameters of deoxy-rHb Kemspey (betaD99N), which is a naturally occurring abnormal human hemoglobin with high oxygen affinity and very low cooperativity, are quite different from those of deoxy-Hb A, even in the presence of IHP. The relaxation parameters for rHb (alphaY42D/betaD99N), which is a compensatory mutant of rHb Kempsey, are more similar to those of Hb A. In addition, TROSY-CPMG experiments have been used to investigate conformational exchange in the Trp residues of Hb A and the three mutant rHbs. Experimental results indicate that the side-chain of beta37Trp is involved in a relatively slow conformational exchange on the micro- to millisecond time-scale under certain experimental conditions. The present results provide new dynamic insights into the structure-function relationship in hemoglobin.  相似文献   

4.
The proton signals for the coordinated axial imidazoles in a series of low-spin ferric bis-imidazole complexes with natural porphyrin derivatives have been located and assigned. The methyl signals of several methyl-substituted imidazoles have also been resolved for the mixed ligand complexes of imidazole and cyanide ion. The imidazole spectra for the bis complexes are essentially the same as those reported earlier for synthetic porphyrins, with the hyperfine shifts exhibiting comparable contributions from the dipolar and contract interactions. The contact contribution reflects spin transfer into a vacant imidazole π orbital. The spectra of both the mono- and bis-imidazole complex concur in predicting that only the 2-H and 5CH2 signals of an axial histidine are likely to resonate clearly outside the diamagnetic 0 to ?10 ppm from TMS region in hemoproteins. However, both the 2-H and 4-H imidazole peaks are found to be too broad to detect in a hemoprotein. Hence, it is suggested that the pair of non-heme, single proton resonances in low-spin met-myoglobin cyanides arise from the non-equivalent methylene protons at the 5-position of the histidyl imidazole. Both the resonance positions and relative linewidths in the model compounds are consistent with the data for this pair of protons in myoglobins. The possible interpretations of the average downfield bias of these signals as well as the magnitude of their spacing, are discussed in terms of the conformation of the proximal histidine relative to the heme group.  相似文献   

5.
The proton signals for the coordinated axial imidazoles in a series of low-spin ferric bis-imidazole complexes with natural porphyrin derivatives have been located and assigned. The methyl signals of several methyl-substituted imidazoles have also been resolved for the mixed ligand complexes of imidazole and cyanide ion. The imidazole spectra for the bis complexes are essentially the same as those reported earlier for synthetic porphyrins, with the hyperfine shifts exhibiting comparable contributions from the dipolar and contact interactions. The contact contribution reflects spin transfer into a vacant imidazole pi orbital. The spectra of both the mono- and bis-imidazole complex concur in predicting that only the 2-H and 5-CH2 signals of an axial histidine are likely to resonate clearly outside the diamagnetic 0 to --10 ppm from TMS region in hemoproteins. However, both the 2-H and 4-H imidazole peaks are found to be too broad to detect in a hemoprotein. Hence, it is suggested that the pair of non-heme, single-proton resonances in low-spin met-myoglobin cyanides arise from the non-equivalent methylene protons at the 5-position of the histidyl imidazole. Both the resonance positions and relative linewidths in the model compounds are consistent with the data for this pair of protons in myoglobins. The possible interpretations of the average downfield bias of these signals as well as the magnitude of their spacing, are discussed in terms of the conformation of the proximal histidine relative to the heme group.  相似文献   

6.
Iron is a versatile metal cofactor that is used in a wide range of essential cellular processes. During infections, many bacterial pathogens acquire iron from human hemoglobin (Hb), which contains the majority of the body's total iron content in the form of heme (iron protoporphyrin IX). Clinically important Gram‐positive bacterial pathogens scavenge heme using an array of secreted and cell‐wall‐associated receptors that contain NEAr‐iron Transporter (NEAT) domains. Experimentally defining the Hb binding properties of NEAT domains has been challenging, limiting our understanding of their function in heme uptake. Here we show that solution‐state NMR spectroscopy is a powerful tool to define the Hb binding properties of NEAT domains. The utility of this method is demonstrated using the NEAT domains from Bacillus anthracis and Listeria monocytogenes. Our results are compatible with the existence of at least two types of NEAT domains that are capable of interacting with either Hb or heme. These binding properties can be predicted from their primary sequences, with Hb‐ and heme‐binding NEAT domains being distinguished by the presence of (F/Y)YH(Y/F) and S/YXXXY motifs, respectively. The results of this work should enable the functions of a wide range of NEAT domain containing proteins in pathogenic bacteria to be reliably predicted.  相似文献   

7.
透明颤菌血红蛋白基因vgb在多种研究和工业发酵菌中异源表达很好的解决了高密度发酵中的溶氧率问题。酿酒酵母是经典的真核模型,且在发酵工业中具有重要的应用价值,但vgb在酿酒酵母中异源表达对细胞生长的影响并不清楚。以ADH1为启动子构建了含透明颤菌(Vistreoscilla)血红蛋白基因vgb的异源表达质粒YEplac195-ADH1pr-vgb,并转化至酿酒酵母BY4741。通过生长敏感性实验,发现在发酵碳源和非发酵碳源中,vgb的异源表达均抑制了菌株生长。接着,通过2',7'-二氯荧光黄双乙酸盐和PI染色和脂质过氧化产物检测分析,发现过表达vgb的酿酒酵母细胞中活性氧(ROS)的积累、细胞膜通透性改变以及脂质过氧化。结果表明,酿酒酵母中过表达vgb改变细胞的氧化状态促进活性氧的累积,氧化应激导致菌株的生长抑制。  相似文献   

8.
The heme environment and ligand binding properties of two relatively large membrane proteins containing multiple paramagnetic metal centers, cytochrome bo3 and bd quinol oxidases, have been studied by high field proton nuclear magnetic resonance (NMR) spectroscopy. The oxidized bo3 enzyme displays well-resolved hyperfine-shifted 1H NMR resonance assignable to the low-spin heme b center. The observed spectral changes induced by addition of cyanide to the protein were attributed to the structural perturbations on the low-spin heme (heme b) center by cyanide ligation to the nearby high-spin heme (heme o) of the protein. The oxidized hd oxidase shows extremely broad signals in the spectral region where protons near high-spin heme centers resonate. Addition of cyanide to the oxidized bd enzyme induced no detectable perturbations on the observed hyperfine signals, indicating the insensitive nature of this heme center toward cyanide. The proton signals near the low-spin heme b558 center are only observed in the presence of 20% formamide, consistent with a critical role of viscosity in detecting NMR signals of large membrane proteins. The reduced bd protein also displays hyperfine-shifted 1H NMR signals, indicating that the high-spin heme centers (hemes b595 and d) remain high-spin upon chemical reduction. The results presented here demonstrate that structural changes of one metal center can significantly influence the structural properties of other nearby metal center(s) in large membrane paramagnetic metalloproteins.  相似文献   

9.
Mutational study of the bacterial hemoglobin distal heme pocket   总被引:1,自引:0,他引:1  
Ligand binding experiments on three mutants in the distal heme pocket of Vitreoscilla hemoglobin (GlnE7His, ProE8Ala, and GlnE7His,ProE8Ala) were used to probe the role of GlnE7 and ProE8 in the pocket's unusual structure. The oxygen dissociation constants for the wild type, E8Ala mutant, and E7His mutant proteins were 4.5, 4.7, and 1.7microM, respectively; the K(d) for the double mutant was not determinable by our technique. Visible-Soret spectra of the carbonyl and cyanyl forms and FT-IR of the carbonyl form of the E8 mutant were similar to those of the wild type; the opposite was true for the GlnE7His and GlnE7His,ProE8Ala mutants, which also differed from wild type in the visible-Soret spectra of their oxidized forms. Models of the effects of the mutations on distal pocket structure were consistent with the experimental findings, particularly the larger effects of the GlnE7His change.  相似文献   

10.
The spin-lattice relaxation time was measured by proton NMR of hydrated tobacco cut-fillers. The relaxation decays of adsorbed water were expressed by a single phase system below 70% relative humidity, while a two-phase system was applicable to water adsorbed at more than 80% relative humidity. From the two-phase model, it was considered that 0.12–0.13 kg water/kg dry tobacco is bound water.  相似文献   

11.
The proton nuclear magnetic resonance spectra of carp hemoglobin (Hb) in the unligated deoxy and ligated met-cyano and met-azido forms have been recorded as a function of pH and upon addition of inositol hexaphosphate. All protein derivatives yield spectra that are consistent with appreciable molecular heterogeneity in the heme cavity. The pattern of heme methyl hyperfine shifts in carp met-cyano Hb indicates that this heterogeneity arises from the presence of heme rotational disorder, as found in native myoglobin. In carp deoxy Hb, the T----R transition manifests itself in nuclear magnetic resonance spectral changes similar to those found in modified human Hb species; namely, a decrease in heme methyl and an increase in proximal histidyl imidazole ring NH hyperfine shifts indicative of a strengthening of the iron-histidine bond. The met-cyano complex exhibits heme methyl hyperfine shifts similar to the analogous R state complex of Hb A; addition of inositol hexaphosphate did not give evidence for a quaternary structural change. Carp met-azido Hb in the R state also closely resembles the electronic structure of the HbA complex. Addition of inositol hexaphosphate appeared to effect at least a partial conversion to a T state with larger high-spin content than that observed for T state human metHbN3.  相似文献   

12.
Cobra snakeNaja naja naja hemoglobin shows four bands on Triton electrophoresis. We present the primary structure of one and one chain. The separation of polypeptide chains was achieved by ion exchange chromatography on carboxymethyl cellulose column. The amino acid sequence was established by automatic Edman degradation of the native chains and tryptic and hydrolytic peptides in a gas-phase sequencer. The structural data are compared with those of human and other reptile hemoglobins and reveal not only large variations from human but within reptiles. The amino acid exchanges involve several subunit contacts and heme binding sites. This is the first study on the hemoglobin of a land snake. There are only two amino acid sequences of sea snake hemoglobin (Microcephalophis gracilis gracilis andLiophis miliaris) reported in the literature.  相似文献   

13.
J D Satterlee  J E Erman 《Biochemistry》1991,30(18):4398-4405
Proton NMR assignments of the heme pocket and catalytically relevant amino acid protons have been accomplished for cyanide-ligated yeast cytochrome c peroxidase. This form of the protein, while not enzymatically active itself, is the best model available (that displays a resolvable proton NMR spectrum) for the six-coordinate low-spin active intermediates, compounds I and II. The assignments were made with a combination of one- and two-dimensional nuclear Overhauser effect methods and demonstrate the utility of NOESY experiments for paramagnetic proteins of relatively large size (Mr 34,000). Assignments of both isotope exchangeable and nonexchangeable proton resonances were obtained by using enzyme preparations in both 90% H2O/10% D2O and, separately, in 99.9% D2O solvent systems. Complete resonance assignments have been achieved for the proximal histidine, His-175, and His-52, which is a member of the catalytic triad on the distal side of the heme. In addition, partial assignments are reported for Trp-51 and Arg-48, catalytically important residues, both on the distal side. Aside from His-175, partial assignments for amino acids on the proximal side of the heme are proposed for the alanines at primary sequence positions 174 and 176 and for Thr-180 and Leu-232.  相似文献   

14.
Summary Vitreoscilla hemoglobin is involved in oxygen metabolism of this bacterium, possibly in an unusual role for a microbe. We have isolated the Vitreoscilla hemoglobin structural gene from a pUC19 genomic library using mixed oligodeoxy-nucleotide probes based on the reported amino acid sequence of the protein. The gene is expressed in Escherichia coli from its natural promoter as a major cellular protein. The nucleotide sequence, which is in complete agrecment with the known amino acid sequence of the protein, suggests the existence of promoter and ribosome binding sites with a high degree of homology to consensus E. coli upstream sequences. In the case of at least some amino acids, a codon usage bias can be detected which is different from the biased codon usage pattern in E. coli. The down-stream sequence exhibits homology with the 3 end sequences of several plant leghemoglobin genes. E. coli cells expressing the gene contain greater than fivefold more heme than controls.  相似文献   

15.
The binding of the anilido aminoacridine derivative amsacrine with the heme proteins, hemoglobin, and myoglobin, was characterized by various spectroscopic and calorimetric methods. The binding affinity to hemoglobin was (1.21?±?.05) × 105 M?1, while that to myoglobin was three times higher (3.59?±?.15) × 105 M?1. The temperature-dependent fluorescence study confirmed the formation of ground-state complexes with both the proteins. The stronger binding to myoglobin was confirmed from both spectroscopic and calorimetric studies. The binding was exothermic in both cases at the three temperatures studied, and was favored by both enthalpy and entropy changes. Circular dichroism results, three-dimensional (3D) and synchronous fluorescence studies confirmed that the binding of amsacrine significantly changed the secondary structure of hemoglobin, while the change in the secondary structure of myoglobin was much less. New insights, in terms of structural and energetic aspects of the interaction of amsacrine with the heme proteins, presented here may help in understanding the structure-activity relationship, therapeutic efficacy, and drug design aspects of acridines.  相似文献   

16.
The complete amino acid sequence of the major component of hemoglobin from amur-leopard (Panthera pardus orientalis) is presented. The major component accounts for more than 90% of the total hemoglobin. Separation of the globin subunits was achieved by ion-exchange chromatography on CM-cellulose in urea. The sequence was studied by automatic Edman degradation of tryptic and hydrolytic peptides. Alignment was carried out with human hemoglobin sequence. The NH2 terminus is blocked with Ac-serine. The data are compared with other mammalian hemoglobins and results are discussed with respect to sequence and physiology.85th communication on hemoglobin.  相似文献   

17.
Synechocystis sp. PCC 6803 hemoglobin is a cyanobacterial Group I truncated hemoglobin. In the absence of an exogenous ligand, its single heme group is coordinated by His46 (E10, distal) and His70 (F8, proximal). The protein can undergo a post-translational modification by which His117 (H16, in the C-terminal helix) reacts with the heme 2-vinyl group to form a Markownikoff adduct. The new C-N bond prevents heme loss, alters the dynamics of the protein, and influences ligand binding to the heme group. To explore the factors conditioning the formation of the cross-link, variants of the protein that contained an alanine or a leucine at position 46 (E10) were prepared. A double replacement (His46Leu and Tyr22 (B10) to Phe) was also performed to perturb the network of interactions stabilizing bound exogenous ligand. The single and double replacements affected the optical and NMR properties of the globin, each in a different fashion. Heme-protein cross-linking, as promoted by sodium dithionite, was retarded by the replacement of His46, but reactivity was recovered when imidazole or cyanide was used as exogenous ligand. In addition, a significant amount of a second product was systematically obtained when dithionite treatment was performed on the cyanide-bound proteins. This species was identified by NMR spectroscopy to be an adduct to the 4-vinyl group. It was concluded that the specificity and rate of the cross-linking reaction depended critically on the nature of the sixth ligand to the heme iron.  相似文献   

18.
19.
20.
Summary Five different types of experiment are described which make it possible to measure various relaxation rates of selected protons in crowded spectra of macromolecules such as proteins: longitudinal spin-lattice relaxation rates =1/T1, transverse relaxation rates =1/T2 measured under conditions of free precession, transverse relaxation rates 1 LOCK=1/T1 measured under conditions of spin-locking, and transverse relaxation rates DQC=1/T2 DQC and ZQC=1/T2 ZQC of double- and zero-quantum coherences. The surprisingly large discrepancy between the transverse rates t and t is discussed in detail. To separate overlapping proton signals, the experimental schemes involve one or several magnetization transfer steps, using a doubly selective homonuclear Hartmann-Hahn method. Numerous variants of the basic ideas can be conceived, depending on the extent of signal overlap and on the topology of the networks of scalar couplings. Applications are shown to H and H of Tyr23, to H, H and H of Cys30, and to H and H of Ala24 in bovine pancreatic trypsin inhibitor (BPTI).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号