首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We investigated the temporal alterations of adrenocorticotropic hormone (ACTH) immunoreactivity in the hippocampus after seizure onset. Expression of ACTH was observed within interneurons in the pre-seizure group of seizure sensitive gerbils, whereas its immunoreactivities were rarely detected in seizure resistant gerbil. Three hr after the seizure, ACTH immunoreactivity was significantly increased in interneurons within all hippocampal regions. On the basis of their localization and morphology through immunofluorescence staining, these cells were identified as GABAA α1-containing interneurons. At the 12 hr postictal period, ACTH expression in these regions was down-regulated, in a similar manner to the pre-seizure group of gerbils. These findings support the increase in ACTH synthesis that contributes to a reduction of corticotrophin-releasing factor via the negative feedback system which in turn provides an opportunity to enhance the excitability of GABAergic interneurons. Therefore, ACTH may play an important role in the reduction of excitotoxicity in all hippocampal regions. [BMB Reports 2013; 46(2): 80-85]  相似文献   

2.
The distribution and abundance of the calcium binding protein, calbindin D-28k (CB) immunoreactivity in the taste buds of the circumvallate papillae and larynx were compared between normoxic and chronically hypoxic rats (10% O2 for 8 weeks). In the normoxic rats, CB immunoreactivity was observed in some cells and fibers of the intragemmal region of the taste buds in the circumvallate papillae. In contrast, in the subgemmal region of the laryngeal taste buds, fibers but not cells were immunoreactive for CB. In chronically hypoxic rats, CB immunoreactive cells and fibers in the taste buds were decreased in the circumvallate papillae. In the laryngeal taste buds, the density of the subgemmal CB immunoreactive fibers in chronically hypoxic rats was greater than in normoxic rats. It is considered that function of the laryngeal taste buds is different from that of the lingual taste buds, so that laryngeal taste buds may be involved in chemosensation other than taste. The altered density of CB immunoreactive cells and fibers in the lingual and laryngeal taste buds is a predominant feature of hypoxic adaptation, and chronic hypoxic exposure might change the chemical sensitivity of the circumvallate papillae and larynx through the regulation of intracellular Ca2+.  相似文献   

3.
Fragment complementation of calbindin D28k   总被引:1,自引:0,他引:1       下载免费PDF全文
Calbindin D28k is a highly conserved Ca2+-binding protein abundant in brain and sensory neurons. The 261-residue protein contains six EF-hands packed into one globular domain. In this study, we have reconstituted calbindin D28k from two fragments containing three EF-hands each (residues 1-132 and 133-261, respectively), and from other combinations of small and large fragments. Complex formation is studied by ion-exchange and size-exclusion chromatography, electrophoresis, surface plasmon resonance, as well as circular dichroism (CD), fluorescence, and NMR spectroscopy. Similar chromatographic behavior to the native protein is observed for reconstituted complexes formed by mixing different sets of complementary fragments, produced by introducing a cut between EF-hands 1, 2, 3, or 4. The C-terminal half (residues 133-261) appears to have a lower intrinsic stability compared to the N-terminal half (residues 1-132). In the presence of Ca2+, NMR spectroscopy reveals a high degree of structural similarity between the intact protein and the protein reconstituted from the 1-132 and 133-261 fragments. The affinity between these two fragments is 2 x 10(7) M(-1), with association and dissociation rate constants of 2.7 x 10(4) M(-1) s(-1) and 1.4 x 10(-3) s(-1), respectively. The complex formed in the presence of Ca2+ is remarkably stable towards unfolding by urea and heat. Both the complex and intact protein display cold and heat denaturation, although residual alpha-helical structure is seen in the urea denatured state at high temperature. In the absence of Ca2+, the fragments do not recombine to yield a complex resembling the intact apo protein. Thus, calbindin D28k is an example of a protein that can only be reconstituted in the presence of bound ligand. The alpha-helical CD signal is increased by 26% after addition of Ca2+ to each half of the protein. This suggests that Ca2+-induced folding of the fragments is important for successful reconstitution of calbindin D28k.  相似文献   

4.
It is well established that GABA degradation may play a key role in epileptogenesis. However, whether or not the expression of GABA-transaminase (GABA-T), which catalyzes GABA degradation and participates in the neuronal metabolism via GABA shunt, changes chronologically after on-set of seizure remains to be clarified. To identify the change of GABA-T expression in seizure, GABA-T expression in the gerbil hippocampus, associated with different sequelae of spontaneous seizures, was investigated. The distribution pattern of GABA-T immunoreactive neurons in the hippocampus between the seizure-resistant and pre-seizure group of seizure sensitive gerbils was similar. Interestingly, at 30 min postictal, the enhancement of GABA-T immunoreactivity in the perikarya was apparently observed. This contrasted with the decline in GABA-T immunoreactivity in the granular and pyramidal layer. At 12-24 h postictal, GABA-T immunoreactivity in the hilar neurons had declined significantly. However, the GABA-T immunoreactivity in the granular layer increased. These findings suggest that in the gerbil, the alteration in GABA-T expressions may play an important role in the self-recovery mechanism from seizure attack via both GABA degradation and regulation of neuronal metabolism.  相似文献   

5.
The capacity of rats and humans to adapt to low dietary Ca by increasing intestinal Ca absorption declines with age. The intestinal calbindin-D-9k protein (calbindin) is thought to play a role in the transcellular transport of Ca across the mammalian intestine. The purpose of these studies was to determine the effect of age and diet on the expression of calbindin at the protein and mRNA levels. Young (2 month) and adult (12 month) male F344 rats were placed on either a high Ca diet (1.2%) or a low Ca diet (0.02%) for four weeks. In the duodenum, the level of intestinal calbindin protein induced by a low Ca diet was 8-fold higher in young rats compared to adult rats. In the ileum, expression of calbindin protein was only about 10% that of the duodenum. In addition, the adult ileum showed the same decreased adaptation to a low Ca diet that was seen in the adult duodenum. In both the duodenum and the ileum, the changes in calbindin protein expression were highly correlated with calbindin mRNA expression and the correlations in each segment were quantitatively similar. In the duodenum, the changes in calbindin protein levels were strongly correlated with both Ca transport and Ca uptake. This quantitative correlation suggests a role for calbindin protein in the age-related decline in Ca absorption. In the ileum, the decreased adaptation to a low Ca diet may also be important given the long transit time through the distal intestine. The changes in both intestinal segments may contribute to the negative Ca balance seen in adult rats fed a low Ca diet.  相似文献   

6.
7.
Calbindin D28k is a protein abundant in the mammalian central nervous system and in epithelial tissue involved in Ca2+ transport. Human calbindin D28k was cloned into a Pet3a vector and expressed in Escherichia coli. The protein was purified in three steps: (i) heat precipitation of bacterial proteins, (ii) ion-exchange chromatography on a DEAE-cellulose column in the presence of calcium, and (iii) ion-exchange chromatography on a DEAE-Sephacel column in the presence of EDTA. The protein was then supplemented with calcium and dialyzed against neutral water. The final yield was 20-50 mg of pure, homogeneous calcium-loaded calbindin D28k per liter of bacterial culture. The identity and purity of the protein were confirmed by immunoblotting, SDS-polyacrylamide gel electrophoresis, and agarose gel electrophoresis in the absence and presence of calcium and 1H NMR spectroscopy. The entire expression and purification protocol takes only 3 days and is easy to scale up and down. It was designed to minimize degradation and deamidation.  相似文献   

8.
The heterogeneous anatomy of both the dorsal striatum at the level of the head of the caudate nucleus and of the substantia nigra of cats was analyzed immunohistochemically using two calcium-binding proteins, namely, calbindin D-28k and parvalbumin. The striatal histochemical markers nicotinamide-adenine dinucleotide phosphate diaphorase and acetylcholinesterase were revealed in sections adjacent to those used for the immunohistochemical procedure. The distribution of both the calbindin D-28k and the parvalbumin immunoreactivities is heterogeneous in dorsal, ventral, lateral, and medial areas of the head of the caudate nucleus and is in register with the striosome/matrix pattern displayed by the histochemical markers. These calcium-binding proteins preferentially are located in the matrix compartment of the rostral caudate nucleus. Moreover, in some areas of the rostral two-thirds of the substantia nigra, calbindin D-28k and parvalbumin immunoreactivities appear to follow a complementary pattern that is quite different from the mesencephalic distribution of these two calcium-binding proteins. © 1994 Wiley-Liss, Inc.  相似文献   

9.
In the present study, the distribution of succinic semialdehyde dehydrogenase (SSADH) and succinic semialdehyde reductase (SSAR) in the hippocampus of the Mongolian gerbil and its association with various sequelae of spontaneous seizure were investigated in order to identify the roles of GABA shunt in the epileptogenesis and the recovery mechanisms in these animals. Both SSADH and SSAR immunoreactivities in the GABAergic neurons were significantly higher in the pre-seizure groups of seizure sensitive (SS) gerbil as compared to those seen in the seizure resistant (SR) gerbils. The distributions of both SSADH and SSAR immunoreactivities in the hippocampus showed significant differences after the on-set of seizure. At 3 h postictal, when compared to the pre-seizure group of SS gerbils, a decline in the immunoreactivities in the perikarya was observed. At 12 h after seizure on-set, the densities of both SSADH and SSAR immunoreactivities were begun to recover to the pre-seizure level of SS gerbils. These results suggest that the GABAergic neurons in the hippocampal complex of the SS gerbil may be highly activated. In addition, the imbalance of GABA shunt expressions in the GABAergic neurons may imply a malfunction of the metabolism of GABAergic neurons in the SS gerbils, and this defect may trigger seizure on-set. Therefore, the initiation of seizure, at least in gerbils, may be the result of a malfunction in GABA shunt in the GABAergic neurons.  相似文献   

10.
The domain organization of calretinin (CR) was predicted to involve all six EF-hand motifs (labeled I to VI) condensed into a single domain, as characterized for calbindin D28k (Calb), the closest homolog of calretinin. Unperturbed (1)H,(15)N HSQC NMR spectra of a (15)N-labeled calretinin fragment (CR III-VI, residues 100-271) in the presence of the unlabeled complimentary fragment (CR I-II, residues 1-100) show that these fragments do not interact. Size exclusion chromatography and affinity chromatography data support this conclusion. The HSQC spectrum of (15)N-labeled CR is similar to the overlaid spectra of individual (15)N-labeled CR fragments (CR I-II and CR III-VI), also suggesting that these regions do not interact within intact CR. In contrast to these observations, but in accordance with the Calb studies, we observed interactions between other CR fragments: CR I (1-60) with CR II-VI (61-271), and CR I-III (1-142) with CR IV-VI (145-271). We conclude that CR is formed from at least two independent domains consisting of CR I-II and CR III-VI. The differences in domain organization of Calb and CR may explain the specific target interaction of Calb with caspase-3. Most importantly, the comparison of CR and Calb domain organizations questions the value of homologous modeling of EF-hand proteins, and perhaps of other protein families.  相似文献   

11.
The effect of retinal ablation on qualitative and quantitative changes of calbindin D28k and GABA expression in the contralateral optic tectum was studied in young chicks. Fifteen days old chicks had unilateral retinal ablation and after 7 or 15 days, calbindin expression was analyzed by Western blot and immunocytochemistry. Neuronal degeneration was followed by the amino-cupric silver technique. After 15 days, retinal lesions produced a significant decrease in calbindin immunostaining in the neuropil of layers 5-6 and in the somata of neurons from the layers 8 and 10 of the contralateral tectum, being this effect less marked at 7 days post-lesion. Double staining revealed that 50-60% of cells in the layers 8 and 10 were calbindin and GABA positive, 30-45% were only calbindin positive and 5-10% were only GABAergic neurons. Retinal ablation also produced a decrease in the GABA expression at either 7 or 15 days after surgery. At 7 days, dense silver staining was observed in the layers 5-6 from the optic tectum contralateral to the retinal ablation, which mainly represented neuropil that would come from processes of retinal ganglion cells. Tectal neuronal bodies were not stained with silver, although some neurons were surrounded by coarse granular silver deposits. In conclusion, most of calbindin molecules are present in neurons of the tectal GABAergic inhibitory circuitry, whose functioning apparently depends on the integrity of the visual input. A possible role of calbindin in the control of intracellular Ca2+ in neurons of this circuit when the visual transmission arrives to the optic tectum remains to be studied.  相似文献   

12.
Calbindin D(28k) (calbindin) is a member of the calmodulin superfamily of Ca(2+)-binding proteins. An intracellular target of calbindin was discovered using bacteriophage display. Human recombinant calbindin was immobilized on magnetic beads and used in affinity purification of phage-displayed peptides from a random 12-mer peptide library. One sequence, SYSSIAKYPSHS, was strongly selected both in the presence of Mg(2+) and in the presence of Ca(2+). Homology search against the protein sequence data base identified a closely similar sequence, ISSIKEKYPSHS, at residues 55-66 in myo-inositol-1(or 4)-monophosphatase (IMPase, EC ), which constitute a strongly conserved and exposed region in the three-dimensional structure. IMPase is a key enzyme in the regulation of the activity of the phosphatidylinositol-signaling pathway. It catalyzes the hydrolysis of myo-inositol-1(or 4)-monophosphate to form free myo-inositol, maintaining a supply that represents the precursor for inositol phospholipid second messenger signaling systems. Fluorescence spectroscopy showed that isolated calbindin and IMPase interact with an apparent equilibrium dissociation constant, K(D), of 0.9 microm. Both apo and Ca(2+)-bound calbindin was found to activate IMPase up to 250-fold, depending on the pH and substrate concentration. The activation is most pronounced at conditions that otherwise lead to a very low activity of IMPase, i.e. at reduced pH and at low substrate concentration.  相似文献   

13.
It is well established that GABA degradation may play a key role in epileptogenesis. However, whether or not the expression of GABA-transaminase (GABA-T), which catalyzes GABA degradation and participates in the neuronal metabolism via GABA shunt, changes chronologically after on-set of seizure remains to be clarified. To identify the change of GABA-T expression in seizure, GABA-T expression in the gerbil hippocampus, associated with different sequelae of spontaneous seizures, was investigated. The distribution pattern of GABA-T immunoreactive neurons in the hippocampus between the seizure-resistant and pre-seizure group of seizure sensitive gerbils was similar. Interestingly, at 30 min postictal, the enhancement of GABA-T immunoreactivity in the perikarya was apparently observed. This contrasted with the decline in GABA-T immunoreactivity in the granular and pyramidal layer. At 12–24 h postictal, GABA-T immunoreactivity in the hilar neurons had declined significantly. However, the GABA-T immunoreactivity in the granular layer increased. These findings suggest that in the gerbil, the alteration in GABA-T expressions may play an important role in the self-recovery mechanism from seizure attack via both GABA degradation and regulation of neuronal metabolism.  相似文献   

14.
We have produced 25 clones secreting antibodies directed against chicken Calbindin D-28k. Two of them, 300 and 318, recognize determinants conserved in fish, chicken, mouse, rat, rabbit, monkey and human Calbindin D-28k. We demonstrate their use in the immunohistochemical localization of Calbindin D-28k, and in the detection of Calbindin D-28k on immunoblots.  相似文献   

15.
Human calbindin D(28k) is a Ca(2+) binding protein that has been implicated in the protection of cells against apoptosis. In this study, the structural and functional significance of the five cysteine residues present in this protein have been investigated through a series of cysteine-to-serine mutations. The mutants were studied under relevant physiological redox potentials in which conformational changes were monitored using ANS binding. Urea-induced denaturations, as monitored by intrinsic tryptophan fluorescence, were also carried out to compare their relative stability. It was shown that the two N-terminal cysteine residues undergo a redox-driven structural change consistent with disulfide bond formation. The other cysteine residues are not by themselves sufficient at inducing structural change, but they accentuate the disulfide-dependent conformational change in a redox-dependent manner. Mass spectrometry data show that the three C-terminal cysteine residues can be modified by glutathione. Furthermore, under oxidizing conditions, the data display additional species consistent with the conversion of cysteine thiols to sulfenic acids and disulfides to disulfide-S-monoxides. The biological function of calbindin D(28k) appears to be tied to the redox state of the cysteine residues. The two N-terminal cysteine residues are required for activation of myo-inositol monophosphatase, and enzyme activation is enhanced under conditions in which these residues are oxidized. Last, oxidized calbindin D(28k) binds Ca(2+) with lower affinity than does the reduced protein.  相似文献   

16.
Considerable attention has been focused on the role of corticotropin releasing factor (CRF) as well as CRF-binding protein (CRF-BP) in neuropsychiatric disorders and neurodegenerative diseases including epilepsy. Therefore, in the present study, we investigated the temporal and spatial alteration of CRF and CRF-BP in the gerbil hippocampal complex in order to characterize the possible changes and associations with different sequelae of spontaneous seizure in these animals. CRF immunoreactivity was shown in the interneurons of the hippocampal complex at 30 min following seizure. Additionally, alteration of CRF-BP immunoreactivity was restricted to the entorhinal cortex after seizure. These results indicate some factors for consideration. First, in the gerbil hippocampal complex, the delayed increase of CRF immunoreactivity, in spite of its excitatory function, may attenuate seizure activity, but may not do so in epileptogenesis. Second, in contrast to the hippocampal complex, the increase in CRF-BP immunoreactivity in the entorhinal cortex following seizure may participate in feedback inhibitory modulation.  相似文献   

17.
The present study was undertaken to examine the localization of calbindin D28k (CB)-like immunoreactivity (-LI) during the root formation of the rat molar. In the adult rat, CB-LI was detected in some of the cells of the epithelial rest of Malassez at the bifurcational region and in certain cells between the root dentin and cementum at the apical region. These cells had indented nuclei and many tonofilaments, and cementocytes lacked CB-LI. Moreover, CB-LI was observed in the periodontal fibroblasts in the alveolar half of the apical region. During root formation, the cells in the Hertwig's epithelial root sheath (HERS) lacked CB-LI, but most fragmented cells along the root surface began to express CB-LI when HERS was disrupted. Preodontoblasts and odontoblasts at the apical portion of the root also showed CB-LI. After the formation of cellular cementum, the CB-immunoreactive (-IR) cells were entrapped between the root dentin and cementum in the apical portion of the root. The number of CB-IR cells at the root surface decreased gradually, while that between the root dentin and cementum increased. The fibroblasts in the periodontal ligament began to express CB-LI after commencement of the occlusion, and the number and the staining intensity of CB-IR fibroblasts increased gradually with the passage of time. The present results suggest that CB may play an important role in the survival of the epithelial cells, in the cellular responses of periodontal fibroblasts against mechanical forces caused by the occlusion, and in the initial mineralization by the odontoblasts through the regulation of intracellular Ca(2+) concentration.  相似文献   

18.
It has been suggested that vitamin D is involved in the process of cell differentiation and extracellular mineralization during tooth development. One of the best-defined molecular markers of the action of vitamin D is a calcium-binding protein of Mr 28,000 called calbindin D-28 K (CaBP 28 K). Since this protein is present in growing teeth, we have examined its synthesis in teeth from vitamin D-replete and -deplete rats by Western blotting and immunocytochemistry with an antiserum to CaBP 28 K purified from rat kidney. The CaBP 28 K present in the enamel organ is a single molecular species migrating near 30 k Da, similarly to the kidney protein. The differentiation and maturation of odontogenic cells were followed during early postnatal development (2-12 days) in rat molars. At the light-microscope level, CaBP 28 K was only found in a single cell-type, the ameloblasts. The expression of this protein appeared to be developmentally controlled, since its distribution varied with the cell stage and the functional steps of amelogenesis. The protein was localized in the basal compartment of ameloblasts from the presecretory stage. During the early secretory stage, the concentration of cytoplasmic CaBP 28 K formed a gradient from the apical to the basal pole of the ameloblasts. Staining appeared homogeneous in the cytoplasm of later secretory ameloblasts. CaBP 28 K was discontinuously distributed during the maturation stage. This discontinuity might be related to cyclical changes in mature ameloblasts. In all stages, ameloblasts from vitamin-D-deficient rats appeared depleted of CaBP 28 K.  相似文献   

19.
Park DK  Park KH  Ko JS  Kim DS 《BMB reports》2011,44(5):306-311
Although NCX-3 is highly expressed in the brain, the distribution of NCX-3 in the epileptic hippocampus is still controversial. Therefore, to assess the distribution and pattern of NCX-3 expression in epileptic hippocampus, we performed a comparative analysis of NCX-3 immunoreactivities in the hippocampus of seizure-resistant (SR) and seizure-sensitive (SS) gerbils. In SR gerbils, NCX-3 immunoreactivity was higher than pre-seizure SS gerbils, particularly in the pavalbumin (PV)-positive interneurons. Three h post-ictal, NCX-3 immunoreactivity in the SS gerbil hippocampus was markedly elevated to the level of SR gerbils. Six h post-ictal, the expression of NCX-3 was reduced to the level of pre-seizure SS gerbils. Therefore, the results of the present study suggest that down-regulation of NCX-3 expression in the SS gerbil hippocampus may be involved in the hyperexcitability of SS gerbils due to an imbalance of intracellular Na(+)/Ca(2+) homeostasis and Ca(2+) concentration.  相似文献   

20.
Calbindin D(28k) (calbindin) is a cytoplasmic protein expressed in the central nervous system, which is implied in Ca(2+) homeostasis and enzyme regulation. A combination of biochemical methods and mass spectrometry has been used to identify post-translational modifications of human calbindin. The protein was studied at 37 degrees C or 50 degrees C in the presence or absence of Ca(2+). One deamidation site was identified at position 203 (Asn) under all conditions. Kinetic experiments show that deamidation of Asn 203 occurs at a rate of 0.023 h(-1) at 50 degrees C for Ca(2+)-free calbindin. Deamidation is slower for the Ca(2+)-saturated protein. The deamidation process leads to two Asp iso-forms, regular Asp and iso-Asp. The form with regular Asp 203 binds four Ca(2+) ions with high affinity and positive cooperativity, i.e., in a very similar manner to non-deamidated protein. The form with beta-aspartic acid (or iso-Asp 203) has reduced affinity for two or three sites leading to sequential Ca(2+) binding, i.e., the Ca(2+)-binding properties are significantly perturbed. The status of the cysteine residues was also assessed. Under nonreducing conditions, cysteines 94 and 100 were found both in reduced and oxidized form, in the latter case in an intramolecular disulfide bond. In contrast, cysteines 187, 219, and 257 were not involved in any disulfide bonds. Both the reduced and oxidized forms of the protein bind four Ca(2+) ions with high affinity in a parallel manner and with positive cooperativity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号