首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Phosphodiester linked conjugates of various nucleosides such as d4U, d4T, IdUrd, ddI, ddA, virazole, ara-A, and ara-C containing a glucosyl moiety have been described. These compounds were designed to act as prodrugs, where the corresponding 5'-monophosphates may be generated intracellularly. The synthesis of the glycoconjugates was achieved in good yields by condensation of a glucosyl phosphoramidite 7 with nucleosides in the presence of an activating agent. It was demonstrated that the glucose conjugates improve the water solubility of the nucleoside analogues, for example, up to 31-fold for the ara-A conjugate compared to that of ara-A alone. The new conjugates were tested for their anti-HIV-1 activity in human lymphocytes. These derivatives offer a convenient design for potential prodrug candidates with the possibility of improving the physicochemical properties and therapeutic activity of nucleoside analogues.  相似文献   

2.
The online solid-phase synthesis of oligonucleotides conjugated at the 3' end with [1-6]-linked oligosaccharide mimics having the O-glycosidic linkages replaced by amide bonds is here described. The assembly of the carbohydrate domain has been carried out by exploiting classical solid phase peptide synthetic protocols, starting from solid supports functionalized with 1-azido sugars, in association with suitably protected 1-azido uronic acids of glucose and lactose, chosen as model addition monomers. After the insertion of a flexible linker, elongation of the oligodeoxyribonucleotide (ODN) chain was performed by standard automated phosphoramidite protocols. 3'-Glycoconjugated 18-mers exhibited an increased enzymatic stability with respect to the same unmodified ODN sequence. UV thermal denaturation experiments showed that the presence of the oligosaccharide tail at the 3' end of the oligonucleotides did not negatively interfere with their duplex formation abilities.  相似文献   

3.
4.
5.
Two model peptides rich in boron and prepared by Merrifield syntheses, dansyl.(nido-CB)2, (1) and dansyl.(nido-CB)10.Lys.Ac (2), where nido-CB represents the alpha-amino acid [nido-7-CH3-8-(CH2)3CH-(NH2)COOH-7,8-C2B9H10]-, were conjugated with the anti-CEA mAb T84.66 using peptide active ester reagents. The dansyl groups provided a means of fluorimetric analysis of mAb conjugates which was augmented by conventional amino acid analyses for nido-CB. The conjugate of 1 contained an average of 63 B atoms per mAb molecule. The mAb conjugate of 2 was chromatographically separated into a strongly fluorescent high molecular weight aggregated fraction (HMW) and a less intensely fluorescent monomeric fraction. Both fractions retained immunoreactivity. The HMW species contained an average of ca. 490 B atoms/mAb molecule, as determined by amino acid analysis. Biodistribution data were collected using nude mice bearing LS174T xenografts and 125I-labeled mAb conjugates. While the lightly B-loaded dipeptide conjugate gave biodistribution results which resembled those of native T84.66 mAb, the undecapeptide conjugate displayed greatly enhanced liver uptake and decreased tumor accretion. These results suggest that as the boron-containing burden on the supporting immunoprotein is greatly increased, as in the case of the T84.66-2 conjugate, loss of circulating conjugate to liver effectively competes with the desired tumor localization. Means which might be taken to circumvent this difficulty have been described elsewhere (ref 15).  相似文献   

6.
The aim of the present study was the synthesis of phospholipids containing a drug molecule instead of a fatty acid. Valproic acid and ibuprofen served as model compounds. The target molecules were synthesized either starting from sn-glycero-3-phosphocholine (1) or using (S)-2-O-benzyl-1-O-tritylglycerol (11) and (R)-2-O-benzyl-1-O-tert-butyldiphenylsilylglycerol (12), respectively, as key intermediates. With respect to the surface properties and the aggregation behavior, the drug-phospholipid conjugates resembled natural phosopholipids. Upon incubation with porcine pancreatic phospholipase A(2), only compounds with a fatty acid in the sn-2 position of the glycerol backbone were degraded. Derivatives with either ibuprofen in the sn-2 position or displaying the unnatural S-configuration were resistant to enzymatic in vitro hydrolysis.  相似文献   

7.
A set of aliphatic and aromatic aldehyde-derived hydrazone (HZ)-based acid-sensitive polyethylene glycol-phosphatidylethanolamine (PEG-PE) conjugates was synthesized and evaluated for their hydrolytic stability at neutral and slightly acidic pH values. The micelles formed by aliphatic aldehyde-based PEG-HZ-PE conjugates were found to be highly sensitive to mildly acidic pH and reasonably stable at physiologic pH, while those derived from aromatic aldehydes were highly stable at both pH values. The pH-sensitive PEG-PE conjugates with controlled pH sensitivity may find applications in biological stimuli-mediated drug targeting for building pharmaceutical nanocarriers capable of specific release of their cargo at certain pathological sites in the body (tumors, infarcts) or intracellular compartments (endosomes, cytoplasm) demonstrating decreased pH.  相似文献   

8.
9.
A new series of quinolone-platinum(II) conjugates, [Pt(Q'-NH2)(dmso)X2] and cis-[Pt(Q"-en)X2], where Q' and Q" are quinolones (flumequine, nalidixic acid or oxolinic acid) linked to monodentate and bidentate amine ligands, respectively, and X2 is Cl2 or 1,1-cyclobutanedicarboxylate, have been synthesized with the aim of examining the synergetic antitumor activity of quinolone intercalation and platinum(II) chelation. The complexes were characterized by elemental analyses and IR and multinuclear (1H and 195Pt) NMR spectroscopies, and then subjected to in vitro and in vivo bioassays using the leukemia L1210 cell line.  相似文献   

10.
11.
12.

Background

Mevalonate pathway is an important cellular metabolic pathway present in all higher eukaryotes and many bacteria. Four enzymes in mevalonate pathway, including MVK, PMK, MDD, and FPPS, play important regulatory roles in cholesterol biosynthesis and cell proliferation.

Methods

The following methods were used: cloning, expression and purification of enzymes in mevalonate pathway, organic syntheses of multifunctional enzyme inhibitors, measurement of their IC50 values for above four enzymes, kinetic studies of enzyme inhibitions, molecular modeling studies, cell viability tests, and fluorescence microscopy.

Results and conclusions

We report our multi-target-directed design, syntheses, and characterization of two blue fluorescent bisphosphonate derivatives compounds 15 and 16 as multifunctional enzyme inhibitors in mevalonate pathway. These two compounds had good inhibition to all these four enzymes with their IC50 values at nanomolar to micromolar range. Kinetic and molecular modeling studies showed that these two compounds could bind to the active sites of all these four enzymes. The fluorescence microscopy indicated that these two compounds could easily get into cancer cells.

General significance

Multifunctional enzyme inhibitors are generally more effective than single enzyme inhibitors, with fewer side effects. Our results showed that these multifunctional inhibitors could become lead compounds for further development for the treatment of soft-tissue tumors and hypercholesteremia.  相似文献   

13.
14.
Dendrimer conjugation with low molecular weight drugs has been of increasing interest recently for improving pharmacokinetics, targeting drugs to specific sites, and facilitating cellular uptake. Opportunities for increasing the performance of relatively large therapeutic proteins such as streptokinase (SK) using dendrimers are being explored in this study. Using the active ester method, a series of streptokinase-poly(amido amine) (PAMAM) G3.5 conjugates were synthesized with varying amounts of dendrimer-to-protein molar ratios. Characterization of these conjugates by GPC, IEC, and native-PAGE suggested that the conjugation reaction was successful, resulting in relatively pure SK-dendrimer conjugates. The conjugate made with an equimolar ratio of dendrimer to streptokinase (1:1) exhibited the highest enzymatic activity retention ( approximately 80% retained) that has been reported so far for conjugated streptokinase with macromolecules such as PEG or dextran. SK conjugates with higher streptokinase-to-dendrimer molar ratios (1:10 and 1:20) exhibited lower initial enzymatic activities. However, these conjugates showed sustained thrombolytic activity in plasma, perhaps due to the release of SK from the conjugate. All of the SK conjugates displayed significantly improved stability in phosphate buffer solution, compared to free SK. The high coupling reaction efficiencies and the resulting high enzymatic activity retention achieved in this study could enable a desirable way for modifying many bioactive macromolecules with dendrimers.  相似文献   

15.
16.
17.
In the present work, we report the conjugation of superparamagnetic nanoparticles to a fluorescently labeled oligodeoxyribonucleotide (ODN) able to fold into stable unimolecular guanine quadruple helix under proper ion conditions by means of its thrombin-binding aptamer (TBA) sequence. The novel modified ODN, which contained a fluorescent dU(Py) unit at 3'-end and a 12-amino-dodecyl spacer (C(12)-NH(2)) at 5' terminus, was characterized by ESI-MS and optical spectroscopy (UV, CD, fluorescence), and analyzed by RP-HPLC chromatography and electrophoresis. From CD and fluorescence experiments, we verified that dU(Py) and C(12)-NH(2) incorporation does not interfere with the conformational stability of the G-quadruplex. Subsequently, the conjugation of the pyrene-labeled ODN with the magnetite particles was performed, and the ODN-conjugated nanoparticles were studied through optical spectroscopy (UV, CD, fluorescence) and by enzymatic and chemical assays. We found that the nanoparticles enhanced the stability of the TBA ODN to enzymatic degradation. Finally, we evaluated the amount of the TBA-conjugated nanoparticles immobilized on a magnetic separator in view of the potential use of the nanosystem for the magnetic capture of thrombin from complex mixtures.  相似文献   

18.
The preparation of immunoreactive derivatives of digoxin for analytical applications is most often carried out by periodate cleavage of the terminal sugar ring (digitoxose) followed by reaction with an enzyme, protein, carrier, or related biological molecules. Here we report an improved and more efficient synthesis which was developed to provide digoxin-phospholipid conjugates useful for liposome immunoassay. The approach used involved the linking of the cleaved digitoxose through a carboxymethyl oxime functionality, which provides much improved yields of readily purified products. The synthetic modification should be applicable to the preparation of analogous phospholipid conjugates involving linkage through a sugar ring (digitoxin, ouabain, and related cardiac glycosides) or to those involving steroids (i.e., 3-digoxigenone) which can be modified to form oxime derivatives remote from key functionalities important for immunorecognition by specific antibody. The characterization of the digoxin-phospholipid conjugates with high-resolution NMR and fast atom bombardment mass spectrophotometry will also be discussed.  相似文献   

19.
Receptor-mediated endocytosis can be exploited for improving the transcellular delivery of therapeutic proteins. Insulin conjugated to transferrin by forming disulfide bonds has been shown to improve insulin oral bioavailability in diabetic rats. We are developing a combination strategy involving complexation hydrogels as delivery vehicles for insulin-transferrin conjugates. The complexation hydrogels developed in our laboratory have been shown to be promising carriers for oral delivery of proteins and peptides. Integrating the strategies based on the complexation hydrogels and insulin-transferrin conjugates may prove to be a novel approach for oral delivery of insulin and other therapeutic proteins. In this work, electrospray ionization mass spectrometry (ESI-MS) was used to study the modification of insulin during its reaction with transferrin. The stability of the conjugated insulin to enzymatic degradation was also studied. ESI-MS studies confirmed the site-specific modifications of insulin. The transferrin conjugation of insulin was also shown to increase the stability of insulin to enzymatic degradation.  相似文献   

20.
Thermally induced transition curves of hen egg-white lysozyme were measured in the presence of several concentrations of dextran at pH 2.0 by near-UV and far-UV CD. The transition curves were fitted to a two-state model by a non-linear, least-squares method to obtain the transition temperature (T(m)), enthalpy change (deltaH(u)(T(m))), and free energy change (deltaG(u)(T)) of the unfolding transition. An increase in T(m) and almost constant deltaH(u)(T(m)) values were observed in the presence of added dextran at concentrations exceeding ca 100 g l(-1). In addition, dextran-induced conformational changes of fully unfolded protein were investigated by CD spectroscopy. Addition of high concentrations of dextran to solutions of acid-unfolded cytochrome c at pH 2.0 results in a shift of the CD spectrum from that characteristic of the fully unfolded polypeptide to that characteristic of the more compact, salt-induced molten globule state, a result suggesting that the molten globule-like state is stabilized relative to the fully unfolded form in crowded environments. Both observations are in qualitative accord with predictions of a previously proposed model for the effect of intermolecular excluded volume (macromolecular crowding) on protein stability and conformation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号