首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Turan NN  Basgut B  Aypar E  Ark M  Iskit AB  Cakici I 《Life sciences》2008,82(17-18):928-933
Short ischemic episodes increase tolerance against subsequent severe ischemia in the heart. Nitropropionate (3-NP), an irreversible inhibitor of succinic dehydrogenase of the mitochondrial complex II, was shown to induce protective effect against ischemic brain injury. The aim of this study was to investigate the possible protective effect of 3-NP on regional ischemia in preconditioned rat heart in vivo. Hearts were assigned into three groups: first, in order to induce ischemic preconditioning (IP) 5 min ischemia separated by 10 min reperfusion protocol was used; second, non-preconditioned group was used as control; and third, 3-NP (20 mg/kg, i.p.) was injected 3 h before the surgical procedure in order to induce chemical preconditioning. In all these groups, 30 min regional ischemia was followed by 60 min reperfusion. Infarct size, bax expression, number of ventricular ectopic beats (VEB), duration of ventricular tachycardia (VT) and ventricular fibrillation (VF) were significantly decreased in ischemic preconditioning and 3-NP pretreatment groups, whereas bcl-2 values were not markedly changed in these groups during occlusion period. These results showed that in the anesthetized rat heart 3-NP induced chemical preconditioning by decreasing infarct size, number of VEB, duration of VT and VF. Protective effect is associated with via decreased production of bax protein expression.  相似文献   

2.
Experiments were made on 56 white noninbred male rats with transitory coronary insufficiency (duration of myocardial ischemia 10, 40 and 120 min, the length of subsequent reperfusion 10 and 40 min). It was discovered that there were changes in the ultrastructure of cardiocytes and vessels of the microcirculatory bed both in the area of ischemia and reperfusion and in the distant heart regions, an increase in myocardial cell and microvessel lesions during postischemic reperfusion not only in the area of ischemia but also in distant zones. In addition, a reduction was noted in the degree of ischemic and reperfusion myocardial injury during the prophylactic use of myophedrine. The mechanisms of the protective action of myophedrine in acute transitory coronary insufficiency are discussed.  相似文献   

3.
Effects of the duration of preceding ischemia on the recovery of liver energy metabolism after reperfusion were investigated. Liver ATP level was depleted after the first 30 min of ischemia, and the decrease remained steady thereafter. Recovery of ATP depended on the preceding ischemic time, i.e., 81.5%, 66.4% and 39.5% recovery of the control level were observed after 60 min of reperfusion following 30 min, 60 min and 120 min of ischemia, respectively. Ischemia-induced mitochondrial dysfunction depended on the duration of ischemia. Mitochondrial function was recovered fully after 60 min of reperfusion following both 30 min and 60 min of ischemia. However, deterioration of mitochondrial function did not recover significantly after 60 min of reperfusion following 120 min of ischemia. Similar decreases in adenylate energy charge were observed irrespective of the duration of ischemia, and it recovered fully after 60 min of reperfusion following 30 min, 60 min and 120 min of ischemia. These results suggest that not the energy charge but ATP level itself is a reliable marker of liver energy status.  相似文献   

4.
The role for peroxynitrite (ONOO(-)) in the mechanism of preconditioning is not known. Therefore, we studied effects of preconditioning and subsequent ischemia/reperfusion on myocardial ONOO(-) formation in isolated rat hearts. Hearts were subjected to a preconditioning protocol (three intermittent periods of global ischemia/reperfusion of 5 min duration each) followed by a test ischemia/reperfusion (30 min global ischemia and 15 min reperfusion). When compared to nonpreconditioned controls, preceding preconditioning improved postischemic cardiac performance and significantly decreased test ischemia/reperfusion-induced formation of free nitrotyrosine measured in the perfusate as a marker for cardiac endogenous ONOO(-) formation. During preconditioning, however, the first period of ischemia/reperfusion increased nitrotyrosine formation, which was attenuated after the third period of ischemia/reperfusion. We conclude that classic preconditioning inhibits ischemia/reperfusion-induced cardiac formation of ONOO(-) and that subsequent periods of ischemia/reperfusion result in a gradual attenuation of ischemia/reperfusion-induced ONOO(-) generation. This mechanism might be involved in ischemic adaptation of the heart.  相似文献   

5.
Bosetti F  Baracca A  Lenaz G  Solaini G 《FEBS letters》2004,563(1-3):161-164
Isolated rat hearts were exposed to 30 min ischemia or to 30 min ischemia followed by 2, 5 or 40 min reperfusion and mitochondria were isolated at these different time points. ADP-stimulated, succinate-dependent respiration rate (state 3) was not significantly changed at the different time points examined. In contrast, state 4 (non-ADP-stimulated) respiration rate was significantly increased after 30 min ischemia, and it increased further during the first post-ischemic reperfusion period. Mitochondrial swelling, as evaluated under conditions of the major controlled ion channels (i.e. permeability transition pore and ATP-dependent mitochondrial K(+) channel) closed, significantly increased in parallel. It is suggested that the inner mitochondrial membrane permeability is increased under exposure of the heart to ischemia and early reperfusion, and that the phenomenon is reversible upon subsequent long periods of reperfusion.  相似文献   

6.
Previous studies demonstrated that preconditioning of a heart by repeated stunning can reduce the cellular injury to the heart from subsequent acute ischemic insult. To examine the possible biochemical mechanism for such myocardial preservation afforded by preconditioning, swine heart was subjected to four episodes of 5 min. stunning by occluding the left anterior descending coronary artery (LAD), followed by 10 min. of reperfusion after each stunning. Heart was then made regionally ischemic for 60 min. by LAD occlusion, followed by 6 hrs. reperfusion. Control heart was perfused for 60 min., followed by 60 min. ischemia and 6 hrs. reperfusion. The results of our studies indicated the stimulation of a number of antioxidative enzymes, including Mn-superoxide dismutase (Mn-SOD), catalase, glutathione peroxidase, and glutathione reductase, after repeated stunning and reperfusion. In addition, a number of new proteins were expressed after preconditioning the heart, including some oxidative-stress related proteins and 72 kDa heat-shock protein. These results suggest that preconditioning of a heart by repeated stunning may lead to strengthening of the oxidative defense system of the heart, which is likely to play a role in myocardial preservation during subsequent ischemic and reperfusion injury.  相似文献   

7.
Fenton RA  Dickson EW  Dobson JG 《Life sciences》2005,77(26):3375-3388
Brief, nonlethal episodes of ischemia in the mammalian heart provide cardioprotection against the detrimental effects of a longer duration ischemia. The manifestation of this preconditioning (PC) phenomenon is initiated by the enhanced phosphorylation state of signal transduction proteins. We reported previously that PC is decreased in the aged rat myocardium. Although the mechanism responsible for this loss is not understood, a reduction in the phosphorylation of critical proteins associated with PC may be postulated. Experiments were conducted to investigate whether PC in the aged heart can be restored with the inhibition of endogenous protein phosphatases thereby enhancing phosphorylation of signaling proteins. Levels of phosphatase activities were also assessed with adult heart aging. Hearts from young adult (3-4 mo.) and aged (21-22 mo.) Fischer-344 rats were perfused in the presence or absence of okadaic acid (OKA; 0.1 microM). Aged adult hearts were either not preconditioned or were preconditioned with two PC cycles (5 min ischemia/5 min reperfusion). Myocardial cellular death that developed with a subsequent ischemia was determined with triphenyltetrazolium. With PC, 55% of the aged heart after ischemia was no longer viable. OKA administered before or after ischemia reduced this ischemia-induced cellular death by 29%. Without PC, OKA reduced viability 18% only when present before and after the ischemic episode. OKA in the ischemic young heart during reperfusion reduced the loss of viability 31%. The Protein Phosphatase 2A (PP2A) activity was found to be up to 82% greater in ventricular myocardium of aged rats. In conclusion, aging-induced changes in protein dephosphorylation may be one mechanism reducing the manifestation of preconditioning in the aged heart.  相似文献   

8.
Regulation of cardiomyocyte apoptosis by redox-sensitive transcription factors   总被引:18,自引:0,他引:18  
  相似文献   

9.
The effects of myocardial stunning and ischemic preconditioning on left-ventricular developed pressure and end-diastolic pressure (diastolic stiffness) as well as on coronary-perfusion pressure were examined in isolated isovolumic rabbit hearts. The isovolumic relaxation was evaluated, and the time constant of pressure decay during the isovolumic period was calculated. Our experimental protocol comprised: 1) myocardial stunning-global ischemia (15 min) followed by reperfusion (30 min); 2) myocardial stunning-global ischemia (20 min) followed by reperfusion (30 min); and 3) ischemic preconditioning — a single cycle of brief global ischemia and reperfusion (5 min each), before a second ischemic period, of 20-min duration. There was no effect upon systolic and diastolic parameters when 15 and 20 minutes of ischemia were evaluated. In both stunned groups the left ventricular developed pressure first recovered to near control values, but then stabilized at only 60% of the control values. Whereas the isovolumic relaxation time constant was increased after 5 min of reperfusion, and return to control values at late reperfusion, the end diastolic pressure remained elevated during the entire period. Values of dP/dV calculated at common pressure levels, were used as a second index of diastolic stiffness. They were increased after stunning, as also was the coronary perfusion pressure. When the heart was preconditioned with a single episode of ischemia, the systolic and diastolic alterations were completely abolished. We thus concluded that diastolic abnormalities incurred by myocardial stunning consist in both an increase in diastolic stiffness and an early impairment of isovolumic relaxation. The increase in stiffness cannot result from incomplete relaxation since these two parameters become temporally dissociated during the reperfusion period.  相似文献   

10.
Ischemic postconditioning (IPOC) could be ineffective or even detrimental if the index ischemic duration is either too short or too long. The present study is to demonstrate that oxygen supply and metabolism defines a salvageable ischemic time window of IPOC in mice. C57BL/6 mice underwent coronary artery occlusion followed by reperfusion (I/R), with or without IPOC by three cycles of 10 s/10 s R/I. In vivo myocardial tissue oxygenation was monitored with electron paramagnetic resonance oximetry. Regional blood flow (RBF) was measured with a laser Doppler monitor. At the end of 60 min reperfusion, tissue from the risk area was collected, and mitochondrial enzyme activities were assayed. Tissue oximetry demonstrated that I/R induced a reperfusion hyperoxygenation state in the 30- and 45-min but not 15- and 60-min ischemia groups. IPOC attenuated the hyperoxygenation with 45 but not 30 min ischemia. RBF, eNOS phosphorylation, and mitochondrial enzyme activities were suppressed after I/R with different ischemic time, and IPOC afforded protection with 30 and 45 but not 60 min ischemia. Infarct size measurement indicated that IPOC reduced infarction with 30 and 45 min but not 60 min ischemia. Clearly, IPOC protected mouse heart with a defined ischemic time window between 30 and 45 min. This salvageable time window was accompanied by the improvement of RBF due to increased phosphorylated eNOS and the preservation of mitochondrial oxygen consumption due to conserved mitochondrial enzyme activities. Interestingly, this salvageable ischemic time window was mirrored by tissue hyperoxygenation status in the postischemic heart.  相似文献   

11.
Prolonged hepatic warm ischemia has been incriminated in oxidative stress after reperfusion. However, the magnitude of oxidative stress during ischemia has been controversial. The aims of the present study were to elucidate whether lipid peroxidation progressed during ischemia and to clarify whether oxidative stress during ischemia aggravated the oxidative damage after reperfusion. Rats were subjected to 30 to 120 min of 70% warm ischemia alone or followed by reperfusion for 60 min. Lipid peroxidation (LPO) was evaluated by amounts of phosphatidylcholine hydroperoxide (PC-OOH) and phosphatidylethanolamine hydroperoxide (PE-OOH) as primary LPO products. Total amounts of malondialdehyde and 4-hydroxy-2-nonenal (MDA + 4-HNE), degraded from hydroperoxides, were also determined. PC-OOH and PE-OOH significantly increased at 60 and 120 min ischemia with concomitant increase of oxidized glutathione. These hydroperoxides did not increase at 60 min reperfusion after 60 min ischemia, whereas they did increase at 60 min reperfusion after 120 min ischemia with deactivation of phospholipid hydroperoxide glutathione peroxidase and superoxide dismutase. The amount of MDA + 4-HNE exhibited similar changes, but the velocity of production dropped with ischemic time longer than 60 min. In conclusion, oxidative stress progressed during ischemia and triggered the oxidative injury after reperfusion. Secondary LPO products are less sensitive, especially during ischemia, which may cause possible underestimation and discrepancy.  相似文献   

12.

Aims

Cardiac grafts from non-heartbeating donors (NHBDs) could significantly increase organ availability and reduce waiting-list mortality. Reluctance to exploit hearts from NHBDs arises from obligatory delays in procurement leading to periods of warm ischemia and possible subsequent contractile dysfunction. Means for early prediction of graft suitability prior to transplantation are thus required for development of heart transplantation programs with NHBDs.

Methods and Results

Hearts (n = 31) isolated from male Wistar rats were perfused with modified Krebs-Henseleit buffer aerobically for 20 min, followed by global, no-flow ischemia (32°C) for 30, 50, 55 or 60 min. Reperfusion was unloaded for 20 min, and then loaded, in working-mode, for 40 min. Left ventricular (LV) pressure was monitored using a micro-tip pressure catheter introduced via the mitral valve. Several hemodynamic parameters measured during early, unloaded reperfusion correlated significantly with LV work after 60 min reperfusion (p<0.001). Coronary flow and the production of lactate and lactate dehydrogenase (LDH) also correlated significantly with outcomes after 60 min reperfusion (p<0.05). Based on early reperfusion hemodynamic measures, a composite, weighted predictive parameter, incorporating heart rate (HR), developed pressure (DP) and end-diastolic pressure, was generated and evaluated against the HR-DP product after 60 min of reperfusion. Effective discriminating ability for this novel parameter was observed for four HR*DP cut-off values, particularly for ≥20 *103 mmHg*beats*min−1 (p<0.01).

Conclusion

Upon reperfusion of a NHBD heart, early evaluation, at the time of organ procurement, of cardiac hemodynamic parameters, as well as easily accessible markers of metabolism and necrosis seem to accurately predict subsequent contractile recovery and could thus potentially be of use in guiding the decision of accepting the ischemic heart for transplantation.  相似文献   

13.
In the normal heart, there is loss of citric acid cycle (CAC) intermediates that is matched by the entry of intermediates from outside the cycle, a process termed anaplerosis. Previous in vitro studies suggest that supplementation with anaplerotic substrates improves cardiac function during myocardial ischemia and/or reperfusion. The present investigation assessed whether treatment with the anaplerotic medium-chain fatty acid heptanoate improves contractile function during ischemia and reperfusion. The left anterior descending coronary artery of anesthetized pigs was subjected to 60 min of 60% flow reduction and 30 min of reperfusion. Three treatment groups were studied: saline control, heptanoate (0.4 mM), or hexanoate as a negative control (0.4 mM). Treatment was initiated after 30 min of ischemia and continued through reperfusion. Myocardial CAC intermediate content was not affected by ischemia-reperfusion; however, treatment with heptanoate resulted in a more than twofold increase in fumarate and malate, with no change in citrate and succinate, while treatment with hexanoate did not increase fumarate or malate but increased succinate by 1.8-fold. There were no differences among groups in lactate exchange, glucose oxidation, oxygen consumption, and contractile power. In conclusion, despite a significant increase in the content of carbon-4 CAC intermediates, treatment with heptanoate did not result in improved mechanical function of the heart in this model of reversible ischemia-reperfusion. This suggests that reduced anaplerosis and CAC dysfunction do not play a major role in contractile and metabolic derangements observed with a 60% decrease in coronary flow followed by reperfusion.  相似文献   

14.
The involvement of lipid peroxidation in renal ischemia/reperfusion was explored by measuring changes in the cortical content of specific primary lipid hydroperoxides (using chemluminescent detection with HPLC) following ischemia and reperfusion and by correlating the changes in hydroperoxide content with measurements of renal blood flow. Phosphatidylcholine and phosphatidylethanolamine hydroperoxide concentrations were significantly lowered during 30 or 60 min of ischemia (to levels less than 50% of control at 60 min). Following 30 min of renal ischemia, reperfusion resulted in a rebound of phospholipid hydroperoxide tissue content to levels higher than controls. Increased phospholipid hydroperoxide formation was not, however, observed in response to reperfusion following long-term (60 min) ischemia. In separate animals it was demonstrated that following 30 min ischemia and reperfusion, renal blood flow recovers to about 65% of control in 1 h. In contrast, following 60 min ischemia and reperfusion, the renal blood flow remains more highly impaired (less than 25% recovery for periods up to 24 h). These results imply that phospholipid hydroperoxides are produced and accumulate in the kidneys under normal aerobic conditions and that lipid peroxidative activity increases during renal ischemia/reperfusion to an extent dependent on the degree of local blood perfusion.  相似文献   

15.
The activities of rat hepatic subcellular antioxidant enzymes were studied during hepatic ischemia/reperfusion. Ischemia was induced for 30 min (reversible ischemia) or 60 min (irreversible ischemia). Ischemia was followed by 2 or 24 h of reperfusion. Hepatocyte peroxisomal catalase enzyme activity decreased during 60 min of ischemia and declined further during reperfusion. Peroxisomes of normal density (d = 1.225 gram/ml) were observed in control tissues. However, 60 min of ischemia also produced a second peak of catalase specific activity in subcellular fractions corresponding to newly formed low density immature peroxisomes (d = 1.12 gram/ml). The second peak was also detectable after 30 min of ischemia followed by reperfusion for 2 or 24 h. Mitochondrial and microsomal fractions responded differently. MnSOD activity in mitochondria and microsomal fractions increased significantly (p < 0.05) after 30 min of ischemia, but decreased below control values following 60 min of ischemia and remained lower during reperfusion at 2 and 24 h in both organelle fractions. Conversely, mitochondrial and microsomal glutathione peroxidase (GPx) activity increased significantly (p < 0.001) after 60 min of ischemia and was sustained during 24 h of reperfusion. In the cytosolic fraction, a significant increase in CuZnSOD activity was noted following reperfusion in animals subjected to 30 min of ischemia, but 60 min of ischemia and 24 h of reperfusion resulted in decreased CuZnSOD activity. These studies suggest that the antioxidant enzymes of various subcellular compartments respond to ischemia/reperfusion in an organelle or compartment specific manner and that the regulation of antioxidant enzyme activity in peroxisomes may differ from that in mitochondria and microsomes. The compartmentalized changes in hepatic antioxidant enzyme activity may be crucial determinant of cell survival and function during ischemia/reperfusion. Finally, a progressive decline in the level of hepatic reduced glutathione (GSH) and concomitant increase in serum glutamate pyruvate transaminase (SGPT) activity also suggest that greater tissue damage and impairment of intracellular antioxidant activity occur with longer ischemia periods, and during reperfusion.  相似文献   

16.
We hypothesize that early ischemic preconditioning (IPC) can afford protection against focal brief and prolonged cerebral ischemia with subsequent reperfusion as well as permanent brain ischemia in rats by amelioration of regional cerebral blood flow. Adult male Wistar rats (n=97) were subjected to transient (30 and 60 minutes) and permanent middle cerebral artery (MCA) occlusion. IPC protocol consisted of two episodes of 5-min common carotid artery occlusion + 5-min reperfusion prior to test ischemia either followed by 48 hours of reperfusion or not. Triphenyltetrazolium chloride and Evans blue were used for delineation of infarct size and anatomical area at risk (comprises ischemic penumbra and ischemic core), respectively. Blood flow in the MCA vascular bed was measured with use of Doppler ultrasound. The IPC resulted in significant infarct size limitation in both transient and permanent MCA occlusion. Importantly, IPC caused significant reduction of area at risk after 30 min of focal ischemia as compared to controls [med(min-max) 11.4% (3.59-2 0.35%) vs. 2.47% (0.8-9.31%), p = 0.018] but it failed to influence area at risk after 5 min of ischemia [med(min-max) 7.61% (6.32-10.87%) vs. 8.2% (4.87-9.65%), p > 0.05]. No differences in blood flow were found between IPC and control groups using Doppler ultrasound. This is suggestive of the fact that IPC does not really influence blood flow in the large cerebral arteries such as MCA but it might have some effect on smaller arteries. It seems that, along with well established cytoprotective effects of IPC, IPC-mediated reduction of area at risk by means of improvement in local cerebral blood flow may contribute to infarct size limitation after focal transient and permanent brain ischemia in rats.  相似文献   

17.
Platelets become activated during myocardial infarction (MI), but the direct contribution of activated platelets to myocardial reperfusion injury in vivo has yet to be reported. We tested the hypothesis that activated platelets contribute importantly to reperfusion injury during MI in mice. After 30 min of ischemia and 60 min of reperfusion, P-selectin knockout mice had a significantly smaller infarct size than that of wild-type mice (P < 0.05). Platelets were detected by P-selectin antibody in the previously ischemic region of wild-type mice as early as 2 min postreperfusion after 45 min, but not 20 min, of ischemia. The appearance of neutrophils in the heart was delayed when compared with platelets. Flow cytometry showed that the number of activated platelets more than doubled after 45 min of ischemia when compared with 20 min of ischemia or sham treatment (P < 0.05). Platelet-rich or platelet-poor plasma was then transfused from either sham-operated or infarcted mice after 45 and 10 min of ischemia-reperfusion to mice undergoing 20 and 60 min of ischemia-reperfusion. Infarct size was increased by threefold and platelet accumulation was remarkably enhanced in mice treated with wild-type, MI-activated platelet-rich plasma but not in mice receiving either platelet-poor plasma from wild types or MI-activated platelet-rich plasma from P-selectin knockout mice. In conclusion, circulating platelets become activated early during reperfusion and their activation depends on the duration of the preceding coronary occlusion and is proportional to the extent of myocardial injury. Activated platelets play an important role in the process of myocardial ischemia-reperfusion injury, and platelet-derived P-selectin is a critical mediator.  相似文献   

18.
To elucidate the involvement of monoamine oxidase (MAO) in hydroxyl radical production and cardiomyocyte injury during ischemia as well as after reperfusion, we applied microdialysis technique to the heart of anesthetized rats. Dialysate samples were collected during 30?min of induced ischemia followed by 60?min of reperfusion. We monitored dialysate 3,4-dihydrobenzoic acid (3,4-DHBA) concentration as an index of hydroxyl radical production using a trapping agent (4-hydroxybenzoic acid), and dialysate myoglobin concentration as an index of cardiomyocyte injury in the ischemic region. The effect of local administration of a MAO inhibitor, pargyline, was investigated. Dialysate 3,4-DHBA concentration increased from 1.9?±?0.5?nM at baseline to 3.5?±?0.7?nM at 20–30?min of occlusion. After reperfusion, dialysate 3,4-DHBA concentration further increased reaching a maximum (4.5?±?0.3?nM) at 20–30?min after reperfusion, and stabilized thereafter. Pargyline suppressed the averaged increase in dialysate 3,4-DHBA concentration by ~72% during occlusion and by ~67% during reperfusion. Dialysate myoglobin concentration increased from 235?±?60?ng/ml at baseline to 1309?±?298?ng/ml at 20–30?min after occlusion. After reperfusion, dialysate myoglobin concentration further increased reaching a peak (5833?±?1017?ng/ml) at 10–20?min after reperfusion, and then declined. Pargyline reduced the averaged dialysate myoglobin concentration by ~56% during occlusion and by ~41% during reperfusion. MAO plays a significant role in hydroxyl radical production and cardiomyocyte injury during ischemia as well as after reperfusion.  相似文献   

19.
Previous studies have shown that reactive oxygen species mediated lipid peroxidation in patients undergoing cardiac surgery occurs primarily during cardiopulmonary bypass. We examined whether application of a high concentration of propofol during ischemia could effectively enhance postischemic myocardial functional recovery in the setting of global ischemia and reperfusion in an isolated heart preparation. Hearts were subjected to 40 min of global ischemia followed by 90 min of reperfusion. During ischemia, propofol (12 microg/mL in saline) was perfused through the aorta at 60 microL/min. We found that application of high-concentration propofol during ischemia combined with low-concentration propofol (1.2 microg/mL) administered before ischemia and during reperfusion significantly improved postischemic myocardial functional recovery without depressing cardiac mechanics before ischemia, as is seen when high-concentration propofol was applied prior to ischemia and during reperfusion. The functional enhancement is associated with increased heart tissue antioxidant capacity and reduced lipid peroxidation. We conclude that high-concentration propofol application during ischemia could be a potential therapeutic and anesthetic strategy for patients with preexisting myocardial dysfunction.  相似文献   

20.
Salicylic acid was used as a probe for .OH formed during reperfusion of the ischemic myocardium. .OH adds to the phenolic ring of salicylate to yield dihydroxybenzoic acid species. The two principal dihydroxybenzoic acids formed are the 2,3- and 2,5-derivatives and can be isolated and quantitated using HPLC combined with electrochemical detection. In these experiments, dihydroxybenzoic acids were detectable in the f molar range. Rat hearts were perfused in the Langendorff mode with Krebs-Henseleit buffer containing 100 microM salicylate. Following 20 min of global ischemia a 173% increase in tissue content of 2,5-dihydroxybenzoic acid was detected after 2.5 min of reperfusion. The duration of ischemia did not significantly affect tissue content of 2,5-dihydroxybenzoic acid peaked at 250 to 300% of control within 2.5 min of reperfusion. The inclusion of 100 microM salicylate in the perfusion buffer had no effect on myocardial function during the duration of the experiments. The results indicate that salicylate can be used as a very sensitive probe for .OH in the isolated ischemic heart.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号