首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
At rest and after cycle ergometry the elastic properties of the large arteries of limbs of healthy men were examined using an original non-invasive quantitative oscillometric method. It has been shown that in response to muscle work performed with the legs there is a decrease of the effective inner radius, and an increase of the characteristic impedance modulus and bulk modulus and of the elastic resistance of the intact and relaxed wall in the large arteries in the upper limbs. All these changes testify to an increase of vascular tension in the upper limbs. In response to work performed with the hands, there is an increase of the effective inner radius of large arteries of the upper limbs, a large increase of the pulsatile blood volume increment of the intact vessels and a decrease of the characteristic impedance modulus, of the bulk modulus and of the elastic resistance of the intact arterial wall. These changes indicate a decrease of the vascular tension of these arteries. In response to work performed either with the legs or with the hands a decrease of the effective inner radius of large arteries and an increase of the elastic resistance of the relaxed arterial wall were observed in the lower limbs, all these changes indicating relatively small changes in tone of these vessels. It is concluded that the wall tension of large arteries supplying blood to the muscles of non-working limbs is increased. Vascular tension changes in the arteries in working limbs are accounted for by the superimposition of centrally originating vasoconstriction with local vasodilatation, which also affects large arteries.  相似文献   

2.
Active and passive intervals (AI, PI) between exercise series promote different hemodynamic responses; however, the impact of these intervals on the blood pressure response has not yet been investigated. The objective of this study was to compare the impact of AIs and PIs during resistance exercises with the magnitude of postexercise hypotension (PEH). Elderly hypertensive women (n = 21, 61.2 ± 2 years of age) completed 4 sessions for upper or lower limbs with AI or PI (3 sets, 15 repetitions, 60% load of 15 repetition maximum (RM), and an interval of 90 seconds between sets). Blood pressure was measured 10 minutes before and at 10, 20, 30, 40, and 50 minutes after the exercise sessions. The heart rate at the end of each AI was always significantly higher than that after the PI, but the perceived exertion as measured by the Perceived Exertion Scale (OMNI-RPE) was similar to that of PI exercise protocols. In the lower limb exercises, AI resulted in significantly and consistently higher PEH than in exercises with PI for both systolic (from 20 minutes postexercise) and diastolic (from 10 minutes postexercise) pressures. The upper limb exercises promoted much more discrete PEH in relation to the lower limb exercises, given that the AI promoted significantly higher PEH relative to the PI protocols, but only for systolic PEH and only from 30 minutes postexercise. This is the first time that AIs between sets in a session of resistance exercises have been shown to be a highly effective methodological strategy to increase PEH in elderly hypertensive women.  相似文献   

3.
To elucidate accumulation of minerals in the human arteries, the relative contents (RCs) of minerals in the arteries of the upper and lower limbs were analyzed by inductively coupled plasma atomic emission spectrometry. It was found that the RCs of calcium and phosphorus in the femoral and popliteal arteries of the lower limb increased with aging, whereas those in the axillary and radial arteries of the upper limb did not increase with aging. This result indicates that higher accumulation of calcium and phosphorus occurs in the arteries of the lower limb with aging as compared with that in the arteries of the upper limb, and the prevalence of arteriosclerosis increases in the arteries of the lower limb with aging but not in the arteries of the upper limb.  相似文献   

4.
During gait rehabilitation, therapists or robotic devices often supply physical assistance to a patient's lower limbs to aid stepping. The expensive equipment and intensive manual labor required for these therapies limit their availability to patients. One alternative solution is to design devices where patients could use their upper limbs to provide physical assistance to their lower limbs (i.e., self-assistance). To explore potential neural effects of coupling upper and lower limbs, we investigated neuromuscular recruitment during self-driven and externally driven lower limb motion. Healthy subjects exercised on a recumbent stepper using different combinations of upper and lower limb exertions. The recumbent stepper mechanically coupled the upper and lower limbs, allowing users to drive the stepping motion with upper and/or lower limbs. We instructed subjects to step with 1) active upper and lower limbs at an easy resistance level (active arms and legs); 2) active upper limbs and relaxed lower limbs at easy, medium, and hard resistance levels (self-driven); and 3) relaxed upper and lower limbs while another person drove the stepping motion (externally driven). We recorded surface electromyography (EMG) from six lower limb muscles. Self-driven EMG amplitudes were always higher than externally driven EMG amplitudes (P < 0.05). As resistance and upper limb exertion increased, self-driven EMG amplitudes also increased. EMG bursts during self-driven and active arms and legs stepping occurred at similar times. These results indicate that active upper limb movement increases neuromuscular activation of the lower limbs during cyclic stepping motions. Neurologically impaired humans that actively engage their upper limbs during gait rehabilitation may increase neuromuscular activation and enhance activity-dependent plasticity.  相似文献   

5.
To examine whether the calcium accumulation in aged arteries is related to the way of walking, the mineral contents were determined in the arteries of Japanese monkeys of quadrupedal walk by inductively coupled plasma-atomic emission spectrometry. Sixteen Japanese monkeys consisting of 7 males and 9 females ranging in age from 2 to 33 yr were studied. The accumulation of calcium, phosphorus, and magnesium occurred progressively in most, but not all, of the arteries with aging. It was found that independent of the upper and lower limbs, a higher accumulation of calcium, phosphorus, and magnesium occurred in the arteries of the proximal regions with aging, compared with the arteries of the distal regions. In a comparison between the arteries of anatomically corresponding regions of the upper and lower limbs, the accumulation of calcium and magnesium was 20–60% higher in the external iliac and femoral arteries of the lower limb than in the axillary and brachial arteries of the upper limb. Regarding phosphorus, the accumulation was 20–120% higher in the external iliac and femoral arteries than in the axillary and brachial arteries. It was known that in humans, the accumulation of calcium, phosphorus, and magnesium was three to seven times higher in the arteries of the lower limb than in the arteries of the upper limb. It is clear that there is a very significant difference in the accumulation of calcium and magnesium in the arteries of the lower limbs between Japanese monkeys and humans. The present study suggests that the accumulation of calcium and magnesium in the arteries of the lower limb with aging is affected by the way of walking.  相似文献   

6.
To investigate local blood-flow regulation during orthostatic maneuvers, 10 healthy subjects were exposed to -20 and -40 mmHg lower body negative pressure (LBNP; each for 3 min) and to 60 degrees head-up tilt (HUT; for 5 min). Measurements were made of blood flow in the brachial (BF(brachial)) and femoral arteries (BF(femoral)) (both by the ultrasound Doppler method), heart rate (HR), mean arterial pressure (MAP), cardiac stroke volume (SV; by echocardiography), and left ventricular end-diastolic volume (LVEDV; by echocardiography). Comparable central cardiovascular responses (changes in LVEDV, SV, and MAP) were seen during LBNP and HUT. During -20 mmHg LBNP, -40 mmHg LBNP, and HUT, the following results were observed: 1) BF(brachial) decreased by 51, 57, and 41%, and BF(femoral) decreased by 40, 53, and 62%, respectively, 2) vascular resistance increased in the upper limb by 110, 147, and 85%, and in the lower limb by 76, 153, and 250%, respectively. The increases in vascular resistance were not different between the upper and lower limbs during LBNP. However, during HUT, the increase in the lower limb was much greater than that in the upper limb. These results suggest that, during orthostatic stimulation, the vascular responses in the limbs due to the cardiopulmonary and arterial baroreflexes can be strongly modulated by local mechanisms (presumably induced by gravitational effects).  相似文献   

7.
Humans demonstrate species-wide bilateral asymmetry in long bone dimensions. Previous studies have documented greater right-biases in upper limb bone dimensions--especially in length and diaphyseal breadth--as well as more asymmetry in the upper limb when compared with the lower limb. Some studies have reported left-bias in lower limb bone dimensions, which, combined with the contralateral asymmetry in upper limbs, has been termed "crossed symmetry." The examination of sexual dimorphism and population variation in asymmetry has been limited. This study re-examines these topics in a large, geographically and temporally diverse sample of 780 Holocene adult humans. Fourteen bilateral measures were taken, including maximum lengths, articular and peri-articular breadths, and diaphyseal breadths of the femur, tibia, humerus, and radius. Dimensions were converted into percentage directional (%DA) and absolute (%AA) asymmetries. Results reveal that average diaphyseal breadths in both the upper and lower limbs have the greatest absolute and directional asymmetry among all populations, with lower asymmetry evident in maximum lengths or articular dimensions. Upper limb bones demonstrate a systematic right-bias in all dimensions, while lower limb elements have biases closer to zero %DA, but with slight left-bias in diaphyseal breadths and femoral length. Crossed symmetry exists within individuals between similar dimensions of the upper and lower limbs. Females have more asymmetric and right-biased upper limb maximum lengths, while males have greater humeral diaphyseal and head breadth %DAs. The lower limb demonstrates little sexual dimorphism in asymmetry. Industrial groups exhibit relatively less asymmetry than pre-industrial humans and less dimorphism in asymmetry. A mixture of influences from both genetic and behavioral factors is implicated as the source of these patterns.  相似文献   

8.
杜抱朴  杜靖 《人类学学报》2021,40(4):644-652
观察中国不同区域内现代人群四肢形态变化是否与艾伦法则相一致。本文搜集中国各区域102处地点的现代人群上、下肢测量性状中17项指标,探讨其与温度(年平均温度、年最高温度、年最低温度和气温年较差)间的线性关系。结果表明,随着环境温度降低,中国现代人的上肢相对长度逐渐变短,前臂和手则逐渐增粗;下肢(下肢全长、大腿长和小腿长)逐渐变长,且下肢相对长度同样渐增。手长、手宽、上臂围和前臂围与气温年较差呈正相关,而身高上肢长指数与气温年较差呈负相关;下肢全长、大腿长、足长和小腿围与气温年较差呈正相关。环境温度作为一项选择性压力,作用于上肢发育或形态塑造过程的显著程度上要高于下肢。中国现代人群的四肢形态变化规律并不完全符合艾伦法则,可能与遗传、地理环境、功能性需求、生存策略和营养等因素共同影响现代人群的四肢发育密切相关。  相似文献   

9.
To elucidate the calcium content of the arteries in the upper and lower limbs, the authors determined the calcium content of all the arteries in the upper and lower limbs continuously by microwave-induced plasma-atomic emission spectrometry. The subjects were an 87-yr-old man and a 72-yr-old woman. The calcium content was determined both in the arteries of the upper limbs continuously, such as the subclavian arteries and its distal arteries, and in the arteries of the lower limbs, such as the common iliac arteries and its distal arteries. The common finding that the higher accumulation of calcium occurred in the arteries of the lower limbs in comparison to the arteries of the upper limbs and extremely high accumulation of calcium occurred in the common, external, and internal iliac arteries was obtained in the two subjects. The calcium content of the arteries in the upper and lower limbs was visually demonstrated.  相似文献   

10.
Individuals with chronic stroke have reduced perfusion of the paretic lower limb at rest; however, the hyperemic response to graded muscle contractions in this patient population has not been examined. This study quantified blood flow to the paretic and non-paretic lower limbs of subjects with chronic stroke after submaximal contractions of the knee extensor muscles and correlated those measures with limb function and activity. Ten subjects with chronic stroke and ten controls had blood flow through the superficial femoral artery quantified with ultrasonography before and immediately after 10 second contractions of the knee extensor muscles at 20, 40, 60, and 80% of the maximal voluntary contraction (MVC) of the test limb. Blood flow to the paretic and non-paretic limb of stroke subjects was significantly reduced at all load levels compared to control subjects even after normalization to lean muscle mass. Of variables measured, increased blood flow after an 80% MVC was the single best predictor of paretic limb strength, the symmetry of strength between the paretic and non-paretic limbs, coordination of the paretic limb, and physical activity. The impaired hemodynamic response to high intensity contractions was a better predictor of lower limb function than resting perfusion measures. Stroke-dependent weakness and atrophy of the paretic limb do not explain the reduced hyperemic response to muscle contraction alone as the response is similarly reduced in the non-paretic limb when compared to controls. These data may suggest a role for perfusion therapies to optimize rehabilitation post stroke.  相似文献   

11.
We hypothesized that exposure to prolonged recumbency (bedrest), and thus reductions of intravascular pressure gradients, increases pressure distension in arteries/arterioles in the legs. Ten subjects underwent 5 wk of horizontal bedrest. Pressure distension was investigated in arteries and arterioles before and after the bedrest, with the subject seated or supine in a hyperbaric chamber with either one arm or a lower leg protruding through a hole in the chamber door. Increased pressure in the vessels of the arm/leg was accomplished by increasing chamber pressure. Vessel diameter and flow were measured in the brachial and posterior tibial arteries using Doppler ultrasonography. Electrical tissue impedance was measured in the test limb. Bedrest increased (P < 0.01) pressure distension threefold in the tibial artery (from 8 +/- 7% to 24 +/- 11%) and by a third (P < 0.05) in the brachial artery (from 15 +/- 9% to 20 +/- 10%). The pressure-induced increase in tibial artery flow was more pronounced (P < 0.01) after (50 +/- 39 ml/min) than before (13 +/- 23 ml/min) bedrest, whereas the brachial artery flow response was unaffected by bedrest. The pressure-induced decrease in tissue impedance in the leg was more pronounced (P < 0.01) after (16 +/- 7%) than before (10 +/- 6%) bedrest, whereas bedrest did not affect the impedance response in the arm. Thus, withdrawal of the hydrostatic pressure gradients that act along the blood vessels in erect posture markedly increases pressure distension in dependent arteries and arterioles.  相似文献   

12.
The consequences of the relatively short lower limbs characteristic of AL 288-1 have been widely discussed, as have the causes and consequences of the short limbs of Neanderthals. Previous studies of the effect of limb length on the energetic cost of locomotion have reported no relationship; however, limb length could have accounted for as much as 19% of the variation in cost and gone undetected (Steudel and Beattie, 1995; Steudel, 1994, 1996). Kramer (1999) and Kramer and Eck (2000) have recently used a theoretical model to predict the effect of the shorter limbs of early hominids, concluding that the shorter limbs may actually have been energetically advantageous. Here, we took an experimental approach. Twenty-one human subjects, of varying limb lengths, walked on a treadmill at 2.6, 2.8, 3.0 and 3.2m.p.h., while their expired gases were analyzed. The subjects walked for 12 minutes at each speed and their rates of oxygen consumption (VO2) over four minutes were averaged to estimate VO2. We also measured each subject's height, weight and lower limb length. Lean body mass and % fat were determined using dual-energy x-ray absorptiometry. ANCOVA with total VO2 at either speed as the dependent variable and total lean mass, % fat and lower limb length as covariates resulted in all three covariates having a significant positive effect on VO2 at p<0.01. Subjects with relatively longer lower limbs had lower locomotor costs. Thus the short lower limbs characteristic of some hominid taxa would have resulted in more costly locomotion, barring some physiological anomaly. The magnitude of this effect is substantial; Neanderthals are estimated to have had locomotor costs 30% greater than those of contemporary anatomically modern humans. By contrast the increase in lower limb length seen in H. erectus would have mitigated the increase in locomotor costs produced by the increase in body size.  相似文献   

13.
To quantify limb dynamics, accurate estimates are needed of anthropometric inertia parameters (mass, center-of-mass location, and moments of inertia). These estimates, however, are not available for human infants; therefore, the movement dynamics of infants have not been studied extensively. Here, regression equations for the masses, center-of-mass locations, and transverse moments of inertia of upper and lower limb segments (upper arm, forearm, and hand; thigh, leg, and foot) of 0.04 to 1.50 yr old infants are provided. A mathematical model of the human body was used to determine the anthropometric inertia parameters for upper limbs in 44 infants and for lower limbs in 70 infants. Stepwise linear regressions were used to fit the distributions of the anthropometric inertia parameters. The regression equations accounted for significant amounts of the variance (64-98%), and the R2-values compared favorably when our equations were cross-validated. Consequently, these regression equations can provide, for infants of similar ages, reasonable estimates of upper and lower limb anthropometric inertia parameters, suitable for equations of motion in the analysis of limb dynamics in human infants.  相似文献   

14.
The aims of this study were to test the potential of in-season heavy upper and lower limb strength training to enhance peak power output (Wpeak), vertical jump, and handball related field performance in elite male handball players who were apparently already well trained, and to assess any adverse effects on sprint velocity. Twenty-four competitors were divided randomly between a heavy resistance (HR) group (age 20 ± 0.7 years) and a control group (C; age 20 ± 0.1 years). Resistance training sessions were performed twice a week for 8 weeks. Performance was assessed before and after conditioning. Peak power (W(peak)) was determined by cycle ergometer; vertical squat jump (SJ) and countermovement jump (CMJ); video analyses assessed velocities during the first step (V(1S)), the first 5 m (V(5m)), and between 25 and 30 m (V(peak)) of a 30-m sprint. Upper limb bench press and pull-over exercises and lower limb back half squats were performed to 1-repetition maximum (1RM). Upper limb, leg, and thigh muscle volumes and mean thigh cross-sectional area (CSA) were assessed by anthropometry. W(peak) (W) for both limbs (p < 0.001), vertical jump height (p < 0.01 for both SJ and CMJ), 1RM (p < 0.001 for both upper and lower limbs) and sprint velocities (p < 0.01 for V(1S) and V(5m); p < 0.001 for V(peak)) improved in the HR group. Upper body, leg, and thigh muscle volumes and thigh CSA also increased significantly after strength training. We conclude that in-season biweekly heavy back half-squat, pull-over, and bench-press exercises can be commended to elite male handball players as improving many measures of handball-related performance without adverse effects upon speed of movement.  相似文献   

15.
Slowed pulmonary O(2) uptake (Vo(2)) kinetics in peripheral arterial disease (PAD) have been attributed to impaired limb blood flow and/or peripheral muscle metabolic abnormalities. Although PAD results from atherosclerotic occlusive disease in the arteries to the lower extremities, systemic abnormalities affecting whole body O(2) delivery or vascular function in PAD could also partially explain the exercise impairment. To date, the effects of these systemic abnormalities have not been evaluated. To test the hypothesis that the slowed pulmonary Vo(2) kinetics in PAD reflects local and not systemic abnormalities, Vo(2) kinetics were evaluated after the onset of constant-load exercise of the upper and lower limbs in PAD patients and healthy controls (Con). Ten PAD patients and 10 Con without significant cardiopulmonary dysfunction performed multiple transitions from rest to moderate-intensity arm ergometry and treadmill exercise to assess their Vo(2) kinetic responses. Reactive hyperemic (RH) blood flow was assessed in the arms and legs as a measure of endothelial function. Compared with Con, PAD Vo(2) kinetic phase 2 time constants were prolonged during treadmill exercise (PAD 34.3 +/- 9.2 s vs. Con 19.6 +/- 3.5 s; P < 0.01) but not arm exercise (PAD 38.5 +/- 7.5 s vs. Con 32.5 +/- 9.0 s; P > 0.05). RH blood flow was significantly reduced in the legs (PAD 20.7 +/- 8.3 vs. Con 46.1 +/- 17.1 ml.100 ml(-1).min(-1); P < 0.01) and arms of PAD subjects (PAD 34.0 +/- 8.6 vs. Con 50.8 +/- 12.2 ml.100 ml(-1).min(-1); P < 0.01) compared with Con, but RH limb flow was not correlated with arm or treadmill Vo(2) kinetic responses in either group. In summary, slowed pulmonary Vo(2) kinetics in PAD patients occur only with exercise of the lower limbs affected by the arterial occlusive disease process and are not slowed with exercise of the unaffected upper extremities compared with controls. Furthermore, the slowed pulmonary Vo(2) kinetics of the lower extremity could not be explained by any abnormalities in resting cardiac or pulmonary function and were not related to the magnitude of reduction in limb vascular reactivity.  相似文献   

16.
大多数的脑卒中患者在下肢运动方面有障碍,给其生活带来了极大的不便,进行及时有效的康复训练是恢复下肢运动功能的关键。传统的下肢康复训练过程中重复性高,患者的参与度低和互动性差。为了解决该问题,本研究设计了一种基于虚拟场景的下肢康复训练系统。该系统实现了结合虚拟现实技术进行下肢康复训练和评估,采集和处理足底压力数据,控制虚拟场景中虚拟元素,显示训练的时间、得分和训练过程中足底压力的最大值、平均值。该系统由下位机硬件和上位机软件构成。硬件系统包括力传感模块和数据采集模块;软件系统是由虚拟场景模块和人机交互模块构成。基于SPSS软件的分析数据结果表明,系统不仅可以准确的采集足底脚掌与脚跟的压力值,而且组内相关系数均大于0.9,系统具有很好的可靠性。本研究的虚拟场景的趣味性很高,能有效地提高患者训练的积极性,并有利于医生制定针对性的康复计划。  相似文献   

17.
The alterations in pulsatile hemodynamics that occur during hypoxic pulmonary vasoconstriction have not been well characterized. Changes in oscillatory hemodynamics, however, may affect right ventricular-pulmonary vascular coupling and the dissipation of energy within the lung vasculature. To better define hypoxic pulsatile hemodynamics, we measured main pulmonary artery proximal and distal micromanometric pressures and ultrasonic flow in four open-chest calves during progressive hypoxia. Main pulmonary artery impedance and pressure transmission spectra were calculated using spectral analysis methods. Measured pressure and flow signals were separated in the time domain into forward and backward components. Hypoxia increased pulmonary blood pressure and resistance and produced multiple modifications in the impedance and pressure transmission spectra that indicated increased wave reflections and elasticity. The impedance and apparent phase velocity first-harmonic values were increased in amplitude, and the pressure transmission modulus plot showed an increased peak value. In addition, the impedance modulus plot demonstrated a rightward shift and increased oscillation in the mid- to high-frequency range. The time domain analysis also confirmed increased wave reflections and elasticity. Hypoxia produced large backward-traveling (reflected) pressure and flow waves. The initial portions of these waves arrived at the heart during systole, producing characteristic changes in the measured pressure and flow waveforms. With prolonged hypoxia, main pulmonary artery pulse wave velocity increased by 30%. Thus, hypoxia is associated with complex alterations in pulmonary artery elasticity and wave reflections that act to increase the oscillatory afterload of the right ventricle.  相似文献   

18.
When walking at normal and fast speeds, humans swing their upper limbs in alternation, each upper limb swinging in phase with the contralateral lower limb. However, at slow and very slow speeds, the upper limbs swing forward and back in unison, at twice the stride frequency of the lower limbs. The change from “single swinging” (in alternation) to “double swinging” (in unison) occurs consistently at a certain stride frequency for agiven individual, though different individuals may change at different stride frequencies. To explain this change in the way we use our upper limbs and individual variations in the occurrence of the change, the upper limb is modelled as a compound pendulum. Based on the kinematic properties of pendulums, we hypothesize that the stride frequency at which the change from “single swinging” to “double swinging” occurs will be at or slightly below the natural pendular frequency (NPF) of the upper limbs. Twenty-seven subjects were measured and then filmed while walking at various speeds. The mathematically derived NPF of each subject's upper limbs was compared to the stride frequency at which the subject changed from “single swinging” to “double swinging.” The results of the study conform very closely to the hypothesis, even when the NPF is artificially altered by adding weights to the subjects' hands. These results indicate that the pendulum model of the upper limb will be useful in further investigations of the function of the upper limbs in human walking. © 1994 Wiley-Liss, Inc.  相似文献   

19.
OBJECTIVE--To describe and quantify patterns of injury from antipersonnel mines in terms of distribution of injury, drain on surgical resources, and residual disability. DESIGN--Retrospective analysis. SETTING--Two hospitals for patients injured in war. SUBJECTS--757 patients with injuries from antipersonnel mines. MAIN OUTCOME MEASURES--Distribution and number of injuries; number of blood transfusions; number of operations; disability. RESULTS--Pattern 1 injury results from standing on a buried mine. These patients usually sustain traumatic amputation of the foot or leg; they use most surgical time and blood and invariably require surgical amputation of one or both lower limbs. Pattern 2 injury is a more random collection of penetrating injuries caused by multiple fragments from a mine triggered near the victim. The lower limb is injured but there is less chance of traumatic amputation or subsequent surgical amputation. Injuries to the head, neck, chest, or abdomen are common. Pattern 3 injury results from handling a mine: the victim sustains severe upper limb injuries with associated face injuries. Eye injuries are common in all groups. CONCLUSIONS--Patients who survive standing on a buried mine have greatest disability. Non-combatants are at risk from these weapons; in developing countries their social and economic prospects after recovery from amputation are poor.  相似文献   

20.
本文通过对63452例18~97岁的中国人体部12项指数值的统计分析,得出目前该年龄段中国人的体部形态特征。研究发现,中国人总体体型为长躯干型、中肩型、中骨盆型、中腿型。男性为中胸型,女性为宽胸型。随着年龄增长,上半身会显得更短一些,上半身与下半身比例更小一些,胸部更显宽厚一些,躯干下部显得更宽一些,腿显得更长一些。与南方族群相比,蒙古语族群、突厥语族群身体更壮实一些,胸部更显得宽厚一些,上身更高一些,上肢显得短一些,躯干的上部(肩部)相对窄一些,躯干的下部(骨盆)相对更宽一些,上肢长和下肢长度比例更小一些。研究还发现,同等身高的男性和女性相比,男性的上肢长度、下肢长度一般都小于女性,而女性比男性有一个更大的坐高值。从躯干长度来比较,女性确实比男性腿短一些。下身长相等的中国男性、女性之间相比,女性的坐高大于男性。同等身高情况下,中国人的坐高比欧亚人种、非洲人种的坐高要大,即有较高的上半身高度。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号