首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Transgene loci in 16 transgenic oat (Avena sativa L.) lines produced by microprojectile bombardment were characterized using phenotypic and genotypic segregation, Southern blot analysis, and fluorescence in situ hybridization (FISH). Twenty-five transgene loci were detected; 8 lines exhibited single transgene loci and 8 lines had 2 or 3 loci. Double FISH of the transgene and oat C- and A/D-genome-specific dispersed and clustered repeats showed no preferences in the distribution of transgene loci among the highly heterochromatic C genome and the A/D genomes of hexaploid oat, nor among chromosomes within the genomes. Transgene integration sites were detected at different locations along individual chromosomes, although the majority of transformants had transgenes integrated into subtelomeric and telomeric regions. Transgene integration sites exhibited different levels of structural complexity, ranging from simple integration structures of two apparently contiguous transgene copies to tightly linked clusters of multiple copies of transgenes interspersed with oat DNA. The size of the genomic interspersions observed in these transgene clusters was estimated from FISH results on prometaphase chromosomes to be megabases long, indicating that some transgene loci were significantly larger than previously determined by Southern blot analysis. Overall, 6 of the 25 transgene loci were associated with rearranged chromosomes. These results suggest that particle bombardment-mediated transgene integration may result from and cause chromosomal breakage and rearrangements. Received: 29 July 1999 / Accepted: 9 November 1999  相似文献   

2.
Using fluorescence in situ hybridization (FISH) with metaphase preparations, we localized a transferred barnase-psl DNA sequence onto chromosomes in 8 rice transgenic plants. All the tested rice transgenic lines showed hybridization signals on the middle and terminal regions of chromosome arms except for those close to centromeres. In two lines, two different integration sites were identified, and the other lines showed only one integration site. With the aid of Southern analysis and expression detection, we found that the barnase tended to show a higher level expression in the lines whose integration sites near the distal regions of chromosomes, while the expression level became lower in the lines whose integration sites near the centromeres. This result suggested a possible relationship between chromosomal location of transgenes and the expression level. However it showed no obvious relationship between copy numbers and expression levels. In most cases, the results of multi-color FISH showed that barnase-ps1 always integrated at the same position on the chrmosome as the reporter genes(pHctinG).  相似文献   

3.
利用荧光原位杂交(FISH),在供试8个转基因水稻株系的染色体上检出了转入的外源基因barnase-ps1片段.其中两株系各检出了两个不同的信号位点,而其他株系均只检出一个信号位点.所有染色体着丝粒区都没有杂交信号.结合Southern杂交及表达分析发现,大多数株系中,整合在染色体端部区的barnase基因表现为高水平表达,而靠近着丝粒区的则表现为低水平表达,表明表达水平与转基因整合位置可能存在一定程度的相关性.表达水平与拷贝数无明显相关.本文还利用多色荧光原位杂交(Multi-color FISH)技术,进行了barnaseps1片段与报道基因pHctinG的共杂交,多数情况下,barnase-ps1片段与报道基因整合在染色体的同一位置.  相似文献   

4.
Introduced transgenes, uidA, sgfp (S65T) and/or bar, were localized using fluorescence in situ hybridization (FISH) on metaphase chromosomes of transgenic barley produced by microparticle bombardment of immature embryos. Of the 19 independent transgenic lines (eight diploid and 11 tetraploid), nine had uidA and ten had s gfp (S65T). All lines tested had three or more copies of the transgenes and 18 out of 19 lines had visibly different integration sites. At a gross level, it appeared that no preferential integration sites of foreign DNA among chromosomes were present in the lines tested; however, a distal preference for transgene integration was observed within the chromosome. In diploid T0 plants that gave a 3:1 segregation ratio of transgene expression in the T1, only single integration sites were detected on one of the homologous chromosomes. Homozygous diploid plants had doublet signals on a pair of homologous chromosomes. All tetraploid T0 plants that gave a 3:1 segregation ratio in the T1 generation had only a single integration site on one of the homologous chromosomes. In contrast, the single tetraploid T0 plant with a 35:1 segregation ratio in the T1 generation had doublet signals on a pair of homologous chromosomes. In the one tetraploid T0 line, which had a homozygote-like segregation ratio (45:0), there were doublet signals at two loci on separate chromosomes. We conclude that the application of FISH for analysis of transgenic plants is useful for the gross localization of transgene(s) and for early screening of homozygous plants.  相似文献   

5.
As a prerequisite to determine physical gene distances in barley chromosomes by deletion mapping, a reliable, fast and inexpensive approach was developed to detect terminal deletions and translocations in individual barley chromosomes added to the chromosome complement of common wheat. A refined fluorescence in situ hybridization (FISH) technique subsequent to N-banding made it possible to detect subtelomeric repeat sequences (HvT01) on all 14 chromosome arms of barley. Some chromosome arms could be distinguished individually based on the number of FISH signals or the intensity of terminal FISH signals. This allowed the detection and selection of deletions and translocations of barley chromosomes (exemplified by 7H and 4HL), which occurred in the progeny of the wheat lines containing a pair of individual barley chromosomes (or telosomes) and a single so-called gametocidal chromosome (2C) of Aegilops cylindrica. This chromosome is known to cause chromosomal breakage in the gametes in which it is absent. Terminal deletions and translocations in barley chromosomes were easily recognized in metaphase and even in interphase nuclei by a decrease in the number of FISH signals specific to the subtelomeric repeat. These aberrations were verified by genomic in situ hybridization. The same approach can be applied to select deletions and translocations of other barley chromosomes in wheat lines that are monosomic for the Ae. cylindrica chromosome 2C.  相似文献   

6.
Cyclin D1 is involved in regulating the transition of G1 to S-phase in the cell cycle through phosphorylation of the retinoblastoma susceptibility product (pRB). Amplification and overexpression of the cyclin D1 gene (CCND1) have been reported in human breast cancers and are suggested to play important roles in the pathogenesis of the disease process. Although cyclin D1 is potentially an important gene, relatively little is known about the distribution of its amplification in breast cancer cell lines. In this study, a cyclin D1 cosmid probe was isolated and used with fluorescence in situ hybridization (FISH) to identify the gene in chromosomal spreads of 12 breast cancer cell lines. Nine cell lines showed increased gene copy levels of cyclin D1, including Five cell lines had more than six copies of cyclin D1 on sister chromatids and four had more than four copies but less than six copies grouped at the chromosome 11 q13 band. Three cell lines had two “normal” chromosome 11 and one and two additional derivative chromosome 11’s with three and four 11q13 sites which lacked amplification of cyclin D1 on any of these sites. Using progesterone receptor (PR) gene as an internal control, a 2.0-fold or greater increase in cyclin D1 gene signals, was observed in five of the ten cell lines by Southern hybridization, the Amplification level of cyclin D1 varied from 2.3 to 19.6-fold. Three cell lines with low amplification of cyclin D1 showed overexpression of the gene by Northern analysis. Our experiments demonstrated that FISH was more sensitive than Southern blot at demonstrating low levels of gene amplification and, additionally, permitted assessment of the distribution of cyclin D1 gene among chromosomes.  相似文献   

7.
Introgressive hybridization is an efficient means to improve the genetic diversity of cultivated cereals, including triticale. To identify the triticale lines with Aegilops introgressions, genotyping was carried out with ten lines obtained by crossing hexaploid triticale with genome-substitution forms of the common wheat cultivar Aurora: Aurolata (AABBUU), Aurodes (AABBSS), and Aurotika (AABBTT). The genome composition of the triticale lines was studied by in situ hybridization, and recombination events involving Aegilops and/or common wheat chromosomes were assumed for nine out of the ten lines. Translocations involving rye chromosomes were not observed. Substitutions for rye chromosomes were detected in two lines resulting from crosses with Aurolata. Genomic in situ hybridization (GISH) with Ae. umbellulata DNA and molecular genetic analysis showed that chromosome 1R was substituted with Ae. umbellulata chromosome 1U in one of the lines and that 2R(2U) substitution took place in the other line. Fluorescence in situ hybridization (FISH) with the Spelt1 and pSc119.2 probes revealed a translocation from Ae. speltoides to the long arm of chromosome 1B in one of the two lines resulting from crosses with Aurodes and a translocation in the long arm of chromosome 7B in the other line. In addition, the pSc119.2 probe revealed chromosome 1B rearrangements in four lines resulting from crosses with Aurolata and in a line resulting from crosses with Aurotika. The lines were tested for main productivity parameters. A negative effect on all productivity parameters was demonstrated for Ae. umbellulata chromosome 2U. The overwinter survival in all of the lines was similar to or even higher than in the original triticale cultivars. A substantial increase in winter resistance as compared with the parental cultivar was observed for the line carrying the T7BS-7SL translocation. The line with the 1R(1U) chromosome substitution seemed promising for the baking properties of triticale.  相似文献   

8.
Isolation of mitotic chromosomes using flow cytometry is an attractive way to dissect nuclear genomes into their individual chromosomal components or portions of them. This approach is especially useful in plants with complex genomes, where it offers a targeted and hence economical approach to genome analysis and gene cloning. In several plant species, DNA of flow-sorted chromosomes has been used for isolation of molecular markers from specific genome regions, for physical mapping using polymerase chain reaction (PCR) and fluorescence in situ hybridization (FISH), for integration of genetic and physical maps and for construction of chromosome-specific DNA libraries, including those cloned in bacterial artificial chromosome vectors. Until now, chromosome analysis and sorting using flow cytometry (flow cytogenetics) has found little application in barley (2n = 14, 1C ∼ 5,100 Mbp) because of the impossibility of discriminating and sorting individual chromosomes, except for the smallest chromosome 1H and some translocation chromosomes with DNA content significantly different from the remaining chromosomes. In this work, we demonstrate that wheat–barley ditelosomic addition lines can be used to sort any arm of barley chromosomes 2H–7H. Thus, the barley genome can be dissected into fractions representing only about 6–12% of the total genome. This advance makes the flow cytogenetics an attractive tool, which may greatly facilitate genome analysis and gene cloning in barley.  相似文献   

9.
A cDNA probe representative of the human hnRNP I/PTB gene was used to perform fluorescence in situ hybridization (FISH) on metaphases of human chromosomes. A new localization was found on band 19p13.3 in addition to the previously reported localization to band 14q23. Identical results were obtained when FISH analysis was repeated with probes covering different parts of the hnRNP I cDNA clone. This supported the notion that most, if not all, of the sequences of the different parts of this clone are present on both chromosomes. Moreover, Southern blot analysis of DNAs from interspecies somatic hybrids containing chromosomes 19 and 14 revealed that the whole hnRNP I cDNA probe generated very similar patterns in each hybrid DNA. These data suggest that two closely related copies of the hnRNP I gene exist in the human genome. Received: 19 January 1996 / Revised: 9 March 1996  相似文献   

10.
To examine variation in phytosiderophore biosynthesis in Triticeae, phytosiderophores were investigated in wild and cultivated species of wheat and barley with different genomes. All wheats tested including hexaploid (AABBDD), tetraploid (AABB),and diploid (AA or DD) lines produced only one phytosiderophore, 2-deoxymugineic acid. The phytosiderophores biosynthesized in wild barleys varied among species. Using substitution-type triticale lines and wheat-barley addition lines. it was revealed that, in triticale, genes for the biosynthesis of both mugineic and hydroxymugineic acids were located in the long arm of chromosome 5R and that, in barley, the gene for production of mugineic acid was located in the long arm of chromosome 4H.  相似文献   

11.
红系特异的GFP基因在转基因小鼠中的整合和表达   总被引:4,自引:0,他引:4  
应用荧光定量PCR技术对由位点控制区LCR的HS2元件和 β 珠蛋白基因启动子指导的红系特异表达绿色荧光蛋白 (GFP)基因的转基因小鼠中外源基因拷贝数进行测定 ,使用荧光显微镜和流式细胞仪检测小鼠外周血中GFP的表达水平 ,并运用荧光原位杂交技术 (FISH)确定了其中两只转基因小鼠中外源基因的整合位点 ,结果表明 :在转基因小鼠中外源基因的拷贝数各不相同且相差较大 ,而且拷贝数与GFP基因的表达量之间未呈现出相关性 ;FISH分析确定出两只转基因小鼠的外源基因整合于不同的染色体上 ;杂交信号的强弱与拷贝数的多少相一致  相似文献   

12.
13.
Fluorescence in situ hybridization (FISH) using T-DNA probes was applied to localize transgenes onto specific chromosomes and confirm the steady integration of transferred genes in three genetically modified (GM) rice lines, LS28 (event LS30-32-20-1), Cry1Ac1 (event C7-1-9-1) and LS28×Cry1Ac1 (event L/C1-1-3-1), which are a rice leaf blast-resistant single trait GM line, a leaf folder-resistant single trait GM line, and a rice leaf blast-resistant and leaf folder-resistant stacked GM hybrid line, respectively. The FISH signals were clearly detected on the arms of one homologous chromosome pair for LS28, and on the arms of another chromosome pair for Cry1Ac1 when using the transformation vector pSBM AtCK containing the rice leaf blast-resistant gene (LS28) and pMJ-RTB containing the leaf folder-resistant gene (mCry1Ac1) as a probe, respectively. As expected, we detected two pairs of FISH signals, each on the arms of different chromosome pairs in the stacked GM rice line LS28×Cry1Ac1 when using both pSBM AtCK and pMJ-RTB as probes. These results indicate that the transgenes are located at specific homologous loci and show position stability among generations in both single trait and stacked GM rice lines. The usefulness and the necessity of FISH to detect inserted genes in transformed plants will be discussed for the purpose of future studies to develop breeding programs and conduct risk assessment of GM plants.  相似文献   

14.
The 5S ribosomal RNA genes were mapped to mitotic chromosomes of Arabidopsis thaliana by fluorescence in situ hybridization (FISH). In the ecotype Landsberg erecta, hybridization signals appeared on three pairs of chromosomes, two of which were metacentric and the other acrocentric. Hybridization signals on one pair of metacentric chromosomes were much stronger than those on the acrocentric and the other pair of metacentric chromosomes, probably reflecting the number of copies of the genes on the chromosomes. Other ecotypes, Columbia and Wassilewskija, had similar chromosomal distribution of the genes, but the hybridization signals on one pair of metacentric chromosomes were very weak, and detectable only in chromosomes prepared from young flower buds. The chromosomes and arms carrying the 5S rDNA were identified by multi-color FISH with cosmid clones and a centromeric 180 bp repeat as co-probes. The metacentric chromosome 5 and its L arm carries the largest cluster of the genes, and the short arm of acrocentric chromosome 4 carries a small cluster in all three ecotypes. Chromosome 3 had another small cluster of 5S rRNA genes on its L arm. Chromosomes 1 and 2 had no 5S rDNA cluster, but they are morphologically distinguishable; chromosome 1 is metacentric and 2 acrocentric. Using the 5S rDNA as a probe, therefore, all chromosomes of A. thaliana could be identified by FISH. Chromosome 1 is large and metacentric; chromosome 2 is acrocentric carrying 18S-5.8S-25S rDNA clusters on its short arm; chromosome 3 is metacentric carrying a small cluster of 5S rDNA genes on its L arm; chromosome 4 is acrocentric carrying both 18S-5.8S-25S and 5S rDNAs on its short (L) arm; and chromosome 5 is metacentric carrying a large cluster of 5S rDNA on its L arm.  相似文献   

15.
A family of endogenous retroviruses (enJSRV) closely related to Jaagsiekte sheep retrovirus (JSRV) is ubiquitous in domestic and wild sheep and goats. Southern blot hybridization studies indicate that there is little active replication or movement of the enJSRV proviruses in these species. Two approaches were used to investigate the distribution of proviral loci in the sheep genome. Fluorescence in situ hybridization (FISH) to metaphase chromosome spreads using viral DNA probes was used to detect loci on chromosomes. Hybridization signals were reproducibly detected on seven sheep chromosomes and eight goat chromosomes in seven cell lines. In addition, a panel of 30 sheep-hamster hybrid cell lines, each of which carries one or more sheep chromosomes and which collectively contain the whole sheep genome, was examined for enJSRV sequences. DNA from each of the lines was used as a template for PCR with JSRV gag-specific primers. A PCR product was amplified from 27 of the hybrid lines, indicating that JSRV gag sequences are found on at least 15 of the 28 sheep chromosomes, including those identified by FISH. Thus, enJSRV proviruses are essentially randomly distributed among the chromosomes of sheep and goats. FISH and/or Southern blot hybridization on DNA from several of the sheep-hamster hybrid cell lines suggests that loci containing multiple copies of enJSRV are present on chromosomes 6 and 9. The origin and functional significance of these arrays is not known.  相似文献   

16.
 Results are reported on the integration sites and copy number of alien marker genes neomycin phosphotransferase II (nptII) and β-glucuronidase (uidA), introduced into diploid potato Solanum tuberosum through transformation by Agrobacterium tumefaciens. Also, the transgenic potato chromosomes 3 and 5 harbouring the nptII and uidA genes, which were transferred to tomato (wild species Lycopersicon peruvianum) by microprotoplast fusion, as revealed by genomic in situ hybridization (GISH), were identified by RFLP analysis using chromosome-specific markers. The data revealed three integration sites in the donor potato genome, each containing the uidA gene, and two also harbouring the nptII gene. Analysis of monosomic-addition hybrid plants obtained after microprotoplast fusion showed that each of these three integration sites is located on a different potato chromosome. The microprotoplast hybrid plants contained only the chromosomes that carried the selectable gene nptII. The data on sexual transmission of the donor potato chromosome carrying the uidA and nptII genes were obtained by analysing the first backcross progeny (BC1) derived from crossing a monosomic-addition hybrid plant to tomato (L. peruvianum). The glucuronidase (GUS) assay and PCR analysis using primers for the uidA gene indicated the presence of the potato chromosome in GUS-positive and its absence in GUS-negative BC1 plants. RFLP analysis confirmed sexual transmission of the potato chromosome carrying the nptII and uidA genes to the BC1 plants. A few BC1 plants contained the nptII and uidA genes in the absence of the potato additional chromosome, indicating that the marker genes were integrated into the tomato genome. The potential applications of the transfer of alien chromosomes and genes by microprotoplast fusion technique are discussed. Recieved: 1 September 1996 / Accepted: 20 September 1996  相似文献   

17.
Durum wheat (Triticum turgidum L. var. durum) is traditionally used for the production of numerous types of pasta, and significant amounts are also used for bread-making, particularly in southern Italy. The research reported here centres on the glutenin subunits 1Dx5 and 1Dy10 encoded by chromosome 1D, and whose presence in hexaploid wheats is positively correlated with higher dough strength. In order to study the effects of stable expression of the 1Dx5 and 1Dy10 glutenin subunits in different durum wheat genotypes, four cultivars commonly grown in the Mediterranean area (‘Svevo’, ‘Creso’, ‘Varano’ and ‘Latino’) were co-transformed, via particle bombardment of cultured immature embryos, with the two wheat genes Glu-D1-1d and Glu-D1-2b encoding the glutenin subunits, and a third plasmid containing the bar gene as a selectable marker. Protein gel analyses of T1 generation seed extracts showed expression of one or both glutenin genes in four different transformed durum wheat plants. One of these transgenic lines, DC2-65, showed co-suppression of all HMW-GS, including the endogenous ones. Transgene stability in the transgenic lines has been studied over four generations (T1–T4). Fluorescence in situ hybridization (FISH) analysis of metaphase chromosomes from T4 plants showed that the integration of transgenes occurred in both telomeric and centromeric regions. The three plasmids were found inserted at a single locus in two lines and in two loci on the same chromosome arm in one line. The fourth line had two transgenic loci on different chromosomes: one with both glutenin plasmids and a different one containing only the construct with the gene encoding the 1Dy10 glutenin subunit. Segregation of these two loci in subsequent generations allowed establishment of two sublines, one containing both 1Dx5 and 1Dy10 and the other containing only 1Dy10. Small-scale quality tests showed that accumulation of Dx5, Dy10 or both in transgenic durum wheat seeds resulted in doughs with stronger mixing characteristics. A. Gadaleta and A. E. Blechl have contributed equally to this work.  相似文献   

18.
Engineered minichromosomes offer an enormous opportunity to plant biotechnology as they have the potential to simultaneously transfer and stably express multiple genes. Following a top-down approach, we truncated endogenous chromosomes in barley (Hordeum vulgare) by Agrobacterium-mediated transfer of T-DNA constructs containing telomere sequences. Blocks of Arabidopsis-like telomeric repeats were inserted into a binary vector suitable for stable transformation. After transfer of these constructs into immature embryos of diploid and tetraploid barley, chromosome truncation by T-DNA-induced de novo formation of telomeres could be confirmed by fluorescent in situ hybridisation, primer extension telomere repeat amplification and DNA gel blot analysis in regenerated plants. Telomere seeding connected to chromosome truncation was found in tetraploid plants only, indicating that genetic redundancy facilitates recovery of shortened chromosomes. Truncated chromosomes were transmissible in sexual reproduction, but were inherited at rates lower than expected according to Mendelian rules.  相似文献   

19.
FISH physical mapping with barley BAC clones   总被引:7,自引:0,他引:7  
Fluorescence in situ hybridization (FISH) is a useful technique for physical mapping of genes, markers, and other single- or low-copy sequences. Since clones containing less than 10 kb of single-copy DNA do not reliably produce detectable signals with current FISH techniques in plants, a bacterial artificial chromosome (BAC) partial library of barley was constructed and a FISH protocol for detecting unique sequences in barley BAC clones was developed. The library has a 95 kb average barley insert, representing about 20% of a barley genome. Two BAC clones containing hordein gene sequences were identified and partially characterized. FISH using these two BAC clones as probes showed specific hybridization signals near the end of the short arm of one pair of chromosomes. Restriction digests of these two BAC clones were compared with restriction patterns of genomic DNA; all fragments contained in the BAC clones corresponded to bands present in the genomic DNA, and the two BAC clones were not identical. The barley inserts contained in these two BAC clones were faithful copies of the genomic DNA. FISH with four BAC clones with inserts varying from 20 to 150 kb, showed distinct signals on paired chromatids. Physical mapping of single- or low-copy sequences in BAC clones by FISH will help to correlate the genetic and physical maps. FISH with BAC clones also provide an additional approach for saturating regions of interest with markers and for constructing contigs spanning those regions.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号