首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
This experiment studied effects of a mixture of exogenous enzymes (ZADO®) from anaerobic bacteria on ruminal fermentation, feed intake, digestibility, as well as milk production and composition in cows fed total mixed rations (TMRs; 0.7 corn silage and 0.3 of a concentrate mixture). Twenty lactating multiparous Brown Swiss cows (500 ± 12.4 kg live weight) were randomly assigned into two experimental groups of 10 immediately after calving and fed a TMR with or without (CTRL) addition of 40 g/cow/d of enzymes for 12 weeks. Addition of enzymes increased (P<0.05) rumen microbial N synthesis. Intake of dry matter (DM) and organic matter (OM) was positively influenced (P<0.05) by supplementation, and digestibility of all nutrients was higher (P<0.05) in the total tract of supplemented cows, although the magnitude of the improvement varied among nutrients, with the highest improvement in aNDFom and ADFom (418–584 and 401–532 g/kg respectively; P<0.05) than the other nutrients. Supplementation of enzymes also increased (P<0.05) rumen ammonia N and total short chain fatty acid (SCFA) concentrations, and individual SCFA proportions were also altered with an increase in acetate (61.0–64.8 mol/100 mol; P=0.05) before feeding, and acetate and propionate increased 3 h post-feeding (60.0–64.0 and 18.3–20.8 mol/100 mol respectively; P<0.05). Milk and milk protein production was higher (12.8–15.7 and 0.45–0.57 kg/d respectively; P<0.05) for cows fed the ZADO® supplemented diet. This exogenous enzyme product, supplemented daily to the TMR of cows in early lactation, increased milk production due to positive effects on nutrient intake and digestibility, extent of ruminal fermentation and microbial protein synthesis.  相似文献   

2.
This study was carried out to evaluate intake, digestibility, ruminal fermentation, nitrogen (N) retention and ruminal microbial protein synthesis in lambs fed dwarf elephant grass (Pennisetum purpureum Schum. cv. Mott) hay or hay supplemented with urea and 0, 5, 10 or 15 g/kg of live weight (LW) of cracked corn grain. Ten lambs (mean LW of 28 ± 0.9 kg), housed in metabolic cages, were used in a double 5 × 5 Latin Square experiment. Except fibre intake and digestibility, which was higher, the intake and digestibility of the others feed components, as well as ruminal microbial protein synthesis and N retention were lower in non-supplemented lambs. Corn supplementation increased total dry matter (DM) (P<0.05), organic matter (OM), non-structural carbohydrate (NSC) and energy intake (P<0.01) but decreased total neutral detergent fibre (aNDFom) (P<0.01) intake, as well as OM and aNDFom intake from the hay (P<0.01). Apparent DM, OM and energy digestibility, as well as OM true digestibility (OMTD) increased (P<0.01), and aNDFom digestibility decreased linearly (P<0.01) as corn supplementation increased. Total N intake was not influenced but, apparent and true N digestibility, as well as urinary N excretion decreased (P<0.01), and ruminal microbial N entering the small intestine increased linearly (P<0.01) as corn supplementation increased. However, the efficiency of ruminal microbial protein synthesis was similar for all treatments. Mean ruminal pH values and ammonia N concentrations decreased linearly (P<0.01) with level of corn supplementation. Ammonia N and amino acid, as well as peptide concentrations in ruminal fluid were quadratically related (P<0.01) with the time after feeding. Corn supplementation had a linear additive effect on total dry matter and digestible energy intake, as well as on N retention, but a linear negative effect on hay intake and on fibre digestibility. However, decreased forage digestibility by animals was probably neither related to lower ruminal pH, which values were always higher than 7.0, nor related to ruminal sugar concentrations, which were similar for all treatments.  相似文献   

3.
The brown midrib (BMR) gene has been reported to reduce the lignin concentration in plants, which contributed to increased fiber digestion in ruminants. Three studies were completed to compare the digestibility of a BMR mutant of sudangrass (sorghum bicolor subsp. Drummondii) versus a non-BMR (‘Piper’) variety when included in diets fed to sheep (Study 1), to complete a rumen in vitro assessment of sheep and lactating cow diets (Study 2), and to compare digestibility when included in the diet fed to lactating dairy cows (Study 3). Four wether sheep were used in a 2 × 2 Latin square experiment (Study 1) with total fecal collection to determine total tract apparent digestibility of pelleted Piper (P) and BMR (P-BMR) sudangrass hays. Forage pellets consisted of either P-BMR or P hay with added urea to meet the maintenance crude protein (CP) requirement of the sheep. Digestibility of organic matter (OM; P<0.01), dry matter (DM; P<0.01), acid detergent fiber (ADF; P<0.05), and neutral detergent fiber (aNDFom; P<0.07) was higher for P-BMR than P sudangrass. In vitro rumen digestibility of aNDFom using cattle rumen fluid was higher at 24 (P<0.01), 48 (P<0.01) and 72 h (P<0.01) of fermentation for P-BMR versus P (Study 2). Four lactating Holstein dairy cows (251 ± 30 days in milk) and fitted with ruminal and duodenal cannulae were used in a 4 × 4 Latin square experiment. Total mixed rations (TMR) contained 180 g/kg DM shredded sudangrass hay and 180 g/kg sliced alfalfa hay, but the proportion of P to P-BMR sudangrass varied as 100:0, 66:34, 34:66, or 0:100. Yields of milk and milk protein were highest at the 66:34 level (Quadratic: P=0.06 and 0.07, respectively), but composition of milk fat, protein and lactose, as well as DM intake, did not differ (Study 3), probably because forestomach and total tract apparent digestion of aNDFom and OM did not differ due to sudangrass source.  相似文献   

4.
Effects of fatty acids of linseed in different forms, on ruminal fermentation and digestibility were studied in dry cows fitted with ruminal and duodenal cannulas. Four diets based on maize silage, lucerne hay and concentrates (65/10/25 dry matter (DM)) were compared in a 4 × 4 Latin square design experiment where the diets were: control diet (C), diet RL supplied 75 g/kg DM rolled linseeds, diet EL supplied 75 g/kg DM extruded linseeds, and diet LO supplied 26 g/kg DM linseed oil and 49 g/kg DM linseed meal. The diets did not differ in total organic matter (OM) and fibre digestibility, in forestomach and intestinal OM digestibility, and in duodenal N flow. Microbial N duodenal flow tended to be lower for RL versus C diet (P<0.1). Extrusion did not reduce ruminal crude protein (CP) degradation in vivo and in situ. Volatile fatty acid concentration and pattern, and protozoa concentration in the rumen, did not vary among diets. Results confirm the absence of a negative effect of a moderate supply of linseed on rumen function, as well as no effect of extrusion on its ruminal CP degradability.  相似文献   

5.
A study was conducted to evaluate soybean hulls (SH) as a replacement of tifton bermudagrass hay (TH) in diets of goats containing high levels of spineless cactus. Ten mature bucks (five ruminally fistulated) were used in a 5 × 5 Latin square experiment with 21-day periods. Soybean hulls replaced 0, 250, 500, 750 and 1000 g/kg of TH in the experimental diets. All diets contained 600 g/kg spineless cactus (dry matter basis). Intakes of dry matter (DM), organic matter (OM) and non-fiber carbohydrates and chewing activities decreased linearly (P < 0.01) as the level SH in the diet increased. In vivo digestibility of DM, OM and neutral detergent fiber increased linearly (P < 0.01) as the level of SH in the diet increased. Addition of SH linearly increased (P < 0.05) N retention without affecting microbial N supply (g/kg of digestible OM intake) to the small intestine. Ruminal pH and NH3-N decreased linearly (P < 0.05) while total volatile fatty acid (VFA) concentration increased linearly (P < 0.05) as proportion of SH in diets increased. It was concluded that inclusion of SH in cactus-based diets had a negative impact on intake and chewing activities but improved total tract nutrient utilization by goats. Replacing TH with SH resulted in a concentrate type ruminal fermentation (i.e., low ruminal pH and high VFA concentration).  相似文献   

6.
Effects of supplementing tree foliage mixtures on voluntary intake, apparent digestibility and N balance was evaluated using Pelibuey sheep fed low quality diets. Five treatments were examined in a 5 × 5 Latin square design, which consisted of a basal diet of grass (Sorghum halepense) hay supplemented with Brosimum alicastrum (B) and Lysiloma latisiliquum (L) at the following rates (g DM/kg diet): B264, L0; B198, L66; B132, L132; B66, L198 and B0, L264. Additionally, an in situ degradability evaluation was completed with two ruminally cannulated cows. Neutral detergent fibre (NDF), acid detergent insoluble N (ADIN), lignin(sa) and total phenols (TP) were higher (P<0.01) in L. latisiliquum versus B. alicastrum. Daily intake (g/kg LW0.75/day) of DM (from 98 to 73) and OM (from 88 to 66) decreased quadratically (P<0.01), whereas CP (from 8.0 to 5.6) and ME (from 7.7 to 5.2, MJ/sheep/day) reduced linearly (P<0.01), as L. latisiliquum increased in the diet. Apparent digestibility of DM (from 0.486 to 0.445), OM (from 0.511 to 0.458) and CP (from 0.417 to 0.198) decreased linearly (P<0.01) and was associated with a low ruminal in situ CP degradability of L. latisiliquum. The decrease in N intake and digestibility induced lower (P<0.01) N retention (from 2.7 to 0.1 g/sheep/day). Although the incremental substitution of B. alicastrum with L. latisiliquum negatively affected intake, rumen degradation, digestibility and N balance, results indicate that this foliage mixture, but with no more than 132 g DM/kg diet of L. latisiliquum, could be used as a supplementation strategy to sheep fed low quality forage without negative effects on voluntary intake.  相似文献   

7.
This experiment aimed to quantify the relative intake, digestibility, rumen fermentation, performance and carcass characteristics of beef cattle fed diets based on good quality whole-crop wheat and barley silages, each harvested at two cutting heights, and to rank these relative to good quality maize silage and an ad libitum concentrates-based diet. Ninety beef steers, initial live-weight 438 ± 31.0 kg, were allocated to one of the following dietary treatments in a randomised complete block design: maize silage (MS), whole-crop wheat harvested at a normal cutting height (WCW) (stubble height 0.12 m) or an elevated cutting height (HCW) (stubble height 0.29 m), whole-crop barley harvested at a normal cutting height (WCB) (stubble height 0.13 m) or an elevated cutting height (HCB) (stubble height 0.30 m), each being supplemented with 3 kg concentrates/head/day, and ad libitum concentrates (ALC) supplemented with 5 kg grass silage/head/day for the duration of the 160-day study. Mean dry matter (DM) of the maize silage, whole-crop wheat, head-cut wheat, whole-crop barley and head-cut barley was 301, 488, 520, 491 and 499 g/kg, respectively. There were no differences in total DM intake among treatments, or in rumen fermentation characteristics (except ammonia), or in DM digestibility among the forage-based treatments. Neutral detergent fibre digestibility was lower (P<0.05) for whole-crop wheat than head-cut barley, and starch digestibility was lower (P<0.05) for whole-crop barley and head-cut barley than maize silage. Steers fed ALC had a higher carcass gain (P<0.001) and carcass weight (P<0.05) than all other treatments, but there were no differences between any of the forage-based treatments. Steers fed MS had a better feed conversion efficiency (FCE) than those on WCW or WCB (P<0.05) but were similar to HCW and HCB. The FCE was better for ALC versus any of the other treatments, particularly compared to WCW or WCB (P<0.001). Subcutaneous fat from steers fed ALC was more yellow (P<0.01) than that from steers fed the other treatments. Neither intake nor performance were altered by raising the cutting height of cereals or by replacing whole-crop wheat by barley. However, head-cut cereals numerically favoured DM intake, carcass gain and feed conversion efficiency values nearer to that of maize than whole-crop cereal silages. Ad libitum concentrates supported superior levels of growth by steers compared to all other treatments.  相似文献   

8.
9.
The study was undertaken to determine the effects of different forms of Acacia saligna leaves inclusion on feed intake, digestibility and body weight gain in lambs fed grass hay basal diet. Twenty local ‘Farta’ yearling male lambs weighing 17.4 ± 0.10 kg (mean ± SD) were randomly allocated to four dietary treatments consisting of daily feeding of lambs in T1 with 700 g grass hay (dry matter basis), and daily free choice feeding of lambs in T2, T3, and T4 with 700 g grass hay + 700 g fresh, wilted, and dried A. saligna leaves, respectively. Inclusion of different forms of A. saligna leaves improved (P<0.01) the daily intake of total DM by 8–9% and that of OM and CP by 7 and 38%, respectively compared to the control. The daily intake of NDFom was lower (P<0.01) by 1–2.3%, whereas that of the ADFom intake declined (P<0.01) by 1.3–3.4% for lambs on wilted and dried forms of A. saligna leaves. Inclusion of A. saligna leaves replaced the intake of the grass hay by 26–27% of the total diet and reduced (P<0.05) apparent digestibility coefficient of the total DM by 9, 7, and 4%, OM by 7, 6 and 4%, and CP by 12, 12, and 9%, but improved (P<0.05) apparent digestibility coefficient of NDFom by 3–4% compared to the control diet. Dried A. saligna leaves improved (P<0.05) apparent digestibility of DM, OM and CP compared to fresh A. saligna leaves. Lambs fed on hay alone lost (P<0.05) body weight, while the lambs supplemented with A. saligna leaves gained (P<0.05) weight. The results of this study revealed that A. saligna leaves could be best included in the grass hay based feeding in dried form at the rate of 265 g/kg DM for improved nutrient utilization and growth performance of yearling lambs.  相似文献   

10.
Passage, comminution and digestion rates of large and small particles were estimated using a rumen evacuation technique and total faecal collection with five lactating dairy cows in a 5 × 5 Latin square experiment. Two grass and two red clover silages harvested at early and late primary growth stages and a 1:1 mixture of late harvest grass and early harvest red clover were the dietary treatments. Cows received 9.0 kg supplementary concentrate per day. Ruminal contents and faeces were divided into large (>1.25 mm) and small (1.25–0.038 mm) particles by wet sieving. Indigestible neutral detergent fibre (iNDF) was determined by 12 days ruminal in situ incubation followed by neutral detergent extraction. Plant species did not affect ruminal particle size distribution, whereas advancing forage maturity decreased the proportion of large particles for both grass and red clover silage diets. Ruminal pool size of iNDF was higher (P<0.001) with red clover compared to grass silage diets. Ruminal passage rates of iNDF and potentially digestible NDF (pdNDF) increased with decreasing particle size (P<0.01). Passage rate of iNDF for small particles was slower (P<0.01) when red clover compared to grass silage diets were fed. Particle comminution rate in the rumen was slower (P<0.001) with red clover compared to grass silage diets and it increased (P<0.01) with advancing forage maturity. The contribution of particle comminution to ruminal mean retention time of iNDF in the ruminal large particle pool was smaller (P<0.01) in red clover compared to grass silage diets and it increased (P<0.05) with the mixed silage compared to the separate silages. Passage rate of pdNDF for both large and small particles was not affected by dietary treatments. Digestion rate of pdNDF for large particles was faster (P<0.001) with red clover compared to grass silage diets. Differences in ruminal passage and digestion rates of the large and small particles, in addition to differences in the passage and digestion rates of red clover compared to grass silage diets, emphasize the need to consider particle size and forage type in metabolic models predicting feed intake and fibre digestibility in ruminants.  相似文献   

11.
《Small Ruminant Research》2008,76(2-3):217-225
Data regarding the influence of maturity within the vegetative stage of tropical grasses on forage quality are limited and conflicting. The change in chemical composition of rice grass (Echinochloa sp.) hay harvested at 32, 46, 72 and 90 days of regrowth, and its effect on intake, digestibility, ruminal fermentation, rumen microbial protein synthesis (Experiment 1) and splanchnic oxygen uptake (Experiment 2) by lambs was evaluated. Except intake of indigestible neutral detergent fibre (NDF) which was similar for all treatments, intake of all hay components and the apparent digestibility of dry matter, organic matter (OM), NDF, N, as well as OM and N true digestibility, N retention and rumen microbial protein synthesis decreased linearly (P < 0.05) with increased regrowth age. Rumen fluid pH, ammonia N and peptide concentrations were similar for all treatments while sugars and amino acid concentrations decreased linearly with increased regrowth age of rice grass (P < 0.05). Passage rate of particles through reticulum-rumen (PRrr) was quadratically related (P < 0.05) to regrowth age. The highest PRrr and, consequently, the lowest retention time in the reticulum-rumen were obtained at 72 days of regrowth. There was a quadratic effect (P < 0.05) on net portal-drained viscera (PDV) flux of oxygen and heat production, while OM intake, portal blood flow and heat production as proportion of digestible energy (DE) intake were not affected by the increased regrowth age of rice grass. The highest means of oxygen uptake and heat production by PDV tissues were in 72 days treatment. In the whole splanchnic metabolism assay neither hay intake nor blood flow, oxygen uptake or heat production were affected by forage regrowth age. In conclusion, the nutritive value of rice grass hay decreased as regrowth age increased from 32 to 90 days due to decrease both OM intake and digestibility.  相似文献   

12.
The effects of varying the grain (G) to straw (S) ratio (G:S) of whole-crop wheat and barley silages on intake and digestibility and whole-crop barley silage on rumen fermentation characteristics were examined in two parallel studies. For the intake and digestibility study, eight Aberdeen Angus cross-bred steers (mean bodyweight 407 kg (S.D. 24.2)) were used in two (barley and wheat) 4 × 4 Latin Square designed experiments. The dietary treatments were four G:S ratios: 0:100, 30:70, 60:40 and 90:10. Intake of grain linearly increased (P<0.001) while that of straw decreased (P<0.001) as the ratio of G:S increased for both cereals. No effect (P>0.05) was observed in total dry matter (DM) intake (DMI) or in DMI per kg liveweight. There was a positive linear (P<0.001) effect on the digestibility of the DM and organic matter (OM) and a negative linear effect on neutral detergent fibre (aNDFom) digestibility (P<0.01) as the G:S ratio increased for both cereals. Both a positive linear (P<0.05) and quadratic (P<0.01) effect were observed for the G:S ratio on nitrogen (N) digestibility of barley and a corresponding positive linear increase (P<0.01) for wheat. A negative linear effect was found for digestibility of starch (P<0.01) and a positive linear effect for faecal grain content (P<0.01) with increasing G:S ratio. Four Holstein–Friesian steers (mean bodyweight 659 kg (S.D. 56.9)) fitted with rumen cannulae were used in the rumen study. A negative linear effect of G:S ratio was found on rumen pH (P<0.001) while a positive linear effect was found on rumen ammonia (P<0.001) and total volatile fatty acid (VFA) concentration (P<0.01) with increasing G:S ratio. A negative linear effect (P<0.01) was found on the molar proportion of acetic acid. However, this decrease was offset by linear increases in the molar proportions of iso- and n-butyric acid, iso- (P<0.01) and n- (P<0.05) valeric acid, and to a lesser extent in propionic acid (P<0.01). No effect of treatment was found on rumen pool sizes of DM or its constituents. A positive linear effect (P<0.01) was found on the effective degradability (ED) of the DM, OM, N and starch while it was found to be negative in aNDFom (P<0.05). No effect (P>0.05) was found on the fractional clearance rates of DM, OM, aNDFom or starch or on liquid passage rate. It is concluded that increasing the G:S ratio in whole-crop wheat or barley silage linearly increased the intake of digestible nutrients for both wheat and barley and increasing the G:S ratio for whole-crop barley increased the concentration of fermentation products (total VFA, ammonia and the molar proportions of the VFAs, except acetic acid) in the rumen.  相似文献   

13.
A 2 × 2 factorial feeding experiment was conducted to examine the effects of varying the maturity level of the grass used to prepare silage and the nature of concentrate starch source and their interactions on dry matter intake (DMI), diet digestibility, energy corrected milk (ECM) production and milk composition in dairy cows. Twenty-eight multiparous Swedish Red dairy cows, 133 ± 45 days in milk (DIM), with an average milk yield of 30 ± 4 kg/day and a live weight of 624 ± 69 kg were blocked by DIM and randomly assigned to seven replicated balanced 4 × 4 Latin squares with four 21-day experimental periods. The experimental diets consisted of four total mixed rations (TMR) consisting of early-cut grass silage (EGS) supplemented with either barley- or maize-based concentrate and late-cut grass silage (LGS) supplemented with either barley- or maize-based concentrate. All TMR contained identical proportions of forage (51%) and concentrate (49%). Total tract digestibility was estimated by determining indigestible NDF (iNDF) concentrations in feeds and faeces and using iNDF as an internal marker. The feeds’ ruminal degradation parameters were determined using both in situ (nylon bag) and in vitro (gas production (GP)) techniques. Cows offered diets containing EGS had greater (P < 0.001) daily dry matter (DM) intakes, ECM yields and total tract digestibilities for DM and organic matter (OM), but these were not affected by the nature of the concentrate starch source. No interaction between the maturity of the silage and the nature of the concentrate starch source was observed for DMI, diet digestibility or ECM yield. Both grass silages and concentrates had similar rates of ruminal degradation of NDF when measured in situ. The in situ DM (P < 0.001) and starch (P = 0.001) degradation rates of barley-based concentrate were greater than those for maize-based concentrate. In vitro OM GP rates and extents were similar for both concentrate feeds. The results showed that diets containing EGS offered better animal performance and diet digestibility than diets containing LGS. The concentrate starch source did not affect animal performance, but total NDF digestibility was better with diet containing barley- than maize-based concentrate.  相似文献   

14.
To evaluate the potential of Commelina benghalensis as a forage for ruminants, effects of plant maturity on chemical composition, rumen degradability as well as its increased dietary inclusion level on intake, digestibility and N balance in sheep fed Sorghum almum were investigated with forage obtained from the wild, re-established and harvested at 6, 10 and 14 weeks of growth. Composite herbage samples were analyzed for dry matter (DM), chemical components, total extractable phenolics (TEP) and amino acid content. In sacco rumen degradability measurements used six individually confined wethers (8 ± 0.5 months of age; 21 ± 2.6 kg live-weight (LW)) fitted with rumen cannulae and fed a ration of 3:1 fresh S. almum and Medicago sativa hay (about 1:2 on a DM basis). In sacco bags containing 5 g each of dry herbage were inserted into the rumen and withdrawn sequentially after 0, 12, 24, 36 and 48 h. Metabolizable energy (ME) was estimated from 24 h in vitro gas production. In the digestibility study, 12 wethers fitted with rumen canula were housed in metabolic crates and allotted to four treatment diets (i. e., D0, D10, D20 and D30) constituted from fresh S. almum and pre-wilted C. benghalensis in a randomized complete block design. The control diet (D0) was 3 kg fresh S. almum (≈535.5 g DM/wether/d about 30 g/kg LW), whereas D10, D20 and D30 were D0 +300, 600 or 900 g of wilted C. benghalensis (≈34, 68 or about 102 g DM/wether/d), respectively. The study lasted for 21 d. Dry matter, fibre and TEP content increased (P<0.001) with maturity of the forage, whereas those of CP and EE decreased (P<0.0001) over the same period. Amino acids (AA) also declined with maturity (P<0.05). Rumen degradability of DM and OM were unaffected, but DM intake increased linearly (P<0.0001) at a decreasing rate (Q: P<0.05) and DM digestibility (DMD) and N intake increased linearly (P<0.01 and P<0.0001, respectively) as level of C. benghalensis in the diet increased. Results indicate that advancing maturity affected chemical composition, but not rumen degradability, of C. benghalensis and also demonstrated that inclusion of C. benghalensis in S. almum diet improved intake, digestibility and N intake, suggesting its potential use as a feed supplement.  相似文献   

15.
The objective of this study was to evaluate the effects of LaCl3 supplementation on rumen fermentation, urinary excretion of purine derivatives and feed digestibility in the total tract of steers. Eight ruminally cannulated Simmental steers (420 ± 20 kg) were used in a replicated 4 × 4 Latin square experiment. The treatments were control (without LaCl3); La-low; La-medium and La-high with 450, 900 and 1800 mg LaCl3 per steer per day, respectively. Diet consisted of 600 g/kg corn stover and 400 g/kg concentrate (dry matter [DM] basis). Dry matter intake (averaged 9 kg/day) was restricted to a maximum of 90% of ad libitum intake. Ruminal pH (range of 6.59–6.42) was quadratically (P<0.04) changed, whereas total volatile fatty acids (VFA) concentration (range of 74.16–88.61 mM) was linearly (P<0.01) and quadratically (P<0.01) increased with increasing La supplementation. Ratio of acetate to propionate decreased linearly (P<0.01) from 3.28 to 1.79 as La supplementation increased due to the increased in propionate production. In situ ruminal neutral detergent fibre (aNDF) degradation of corn stover was improved but the crude protein (CP) degradability of soybean meal was decreased with increasing La supplementation. Urinary excretion of purine derivatives was quadratically (P<0.01) changed with altering La supplementation (75.5, 81.0, 82.4 and 70.6 mmol/day for control, low-, medium- and high-LaCl3 supplementation, respectively). Similarly, digestibilities of organic matter, aNDF and CP in the total tract were also linearly and quadratically increased with increasing La supplementation. The present results indicate that supplementation of diet with LaCl3 improved rumen fermentation and feed digestion in beef cattle. It was suggested that the La stimulated the digestive microorganisms or enzymes in a dose-dependent manner. In the experimental conditions of this trial, the optimum La dose was about 900 mg LaCl3 per steer per day.  相似文献   

16.
Citrus pulp is an important by-product for sub-tropical and tropical ruminant animal production. In this study, three steers (average body weight = 324 ± 16 kg) were randomly assigned to three levels of pelleted citrus pulp (PCP) supplementation (0, 1.25, and 2.5 kg animal−1 d−1; as-fed) in a 3 × 3 Latin square design to evaluate its effects on forage intake, digestion, and ruminal pH. The basal diet was stargrass (Cynodon nlemfuensis) harvested and chopped every day and fed fresh. Supplementation with increasing amounts of PCP tended (P≤0.10) to result in a linear increase in digestibility of total diet dry matter (DM) and organic matter (OM), but no effects were noticed for digestibility of forage DM or total diet neutral detergent fiber. Forage DM intake decreased linearly (P=0.03) with increasing PCP supplementation, although the decrease tended (quadratic; P=0.08) to be of greater magnitude at the highest level of supplementation. Both a linear increase (P<0.01) and a quadratic trend (greatest increase with first level of supplementation; P=0.09) were also observed for intake of total digestible OM. Average ruminal pH was between 6.6 and 7.2 and was not affected (P=0.29) by supplementation treatment. Although supplementation with PCP depressed forage consumption somewhat, little effect on forage digestion was observed. The provision of digestible OM in the form of supplement was greater than that lost via depressed forage consumption, resulting in an overall increase in energy supply. Our results suggest that high levels of citrus pulp to beef cattle can lower forage intake, but increase total energy intake. High levels of citrus pulp supplementation could be beneficial in combination with forages high in rumen dagradable protein. Systems using grasses with higher ruminally degradable protein content than we used, may benefit from this extra supply of energy which should be tested in a further experiment.  相似文献   

17.
Since maize silage is an important forage in cattle nutrition, it is important to know its nutritive value. Much effort is put into breeding maize, and several new varieties are introduced on the market every year. This requires periodical analyses of the nutritive value of current maize varieties for the formulation of cattle rations. The aim of this study was to examine the nutritive value of whole crop maize silage (WCMS) from nine maize varieties in 3 consecutive years. For the analysis of nutrient composition and ruminal degradability of organic matter (OM), crude protein (CP), neutral detergent fibre (aNDFom) and non-fibre carbohydrates (NFC), varieties were harvested at three harvest dates (50%, 55% and 60% dry matter content in ear). Due to capacity limitations, the digestibility of WCMS was tested only for the middle harvest date. The CP and acid detergent fibre (ADFom) content was affected (p < 0.05) while aNDFom and NFC content was not influenced by variety. With advancing maturity, CP, aNDFom and ADFom content declined while NFC content increased. Variety influenced effective ruminal degradability (ED) of nutrients, except for CP. The ED of all examined nutrients decreased as maturity advanced from first to third harvest date. Digestibility of OM, ADFom and NFC was significantly and digestibility of aNDFom was tendentially (p = 0.064) influenced by variety. Additionally, an effect of year and a harvest date × year interaction was found for almost all examined parameters. In conclusion, variety, harvest date and year influence the nutritive value of WCMS. A comparison with earlier studies shows that current varieties have a higher fibre digestibility and a slower-ripening stover compared to older varieties.  相似文献   

18.
The aim of the present study was to determine the effect of zeolite A on several physiological parameters and on mineral metabolism in the rumino-intestinal-tract of cows. Eight double fistulated (rumen and proximal duodenum) cows were fed maize silage, grass silage and concentrate. Zeolite A was added to the ration over a period of three weeks at 0, 10 and 20 g/kg dry matter (DM). The daily feed amounts were adjusted to the current performance and varied between 3.9 and 15.5 kg/d. Rumen fluid, duodenal chyme and faeces were sampled to characterise the nutrient digestibility. Blood samples were taken to analyse the concentration of inorganic phosphate. Zeolite A supplementation led to a significantly reduced ruminal DM digestibility and fermentation of organic matter. The molar proportion of acetate in the rumen increased, and propionate as well as valerate decreased significantly after zeolite A supplementation. The concentration of the total fatty acids and ruminal pH were not affected. No effect on faecal digestion of DM, organic matter nor on calcium and magnesium digestion was observed. Otherwise the phosphorus (P) concentration in rumen fluid correlated negatively with the mean zeolite A intake (r 2 = 0.75; p = 0.0003). Further, the faecal excretion of P increased significantly for cows with the highest zeolite A dosage (36.9 g P/d) compared to the control group (29.9 g P/d). The lower digestibility of P resulted in a significantly decreased concentration of inorganic P in serum from a basal value of 2.05–1.16 mmol/l six days after starting zeolite A supplementation. The zeolite A treated cows showed a significantly higher Al concentration already in rumen fluid (14.31 and 13.84 mmol/l) compared to the control cows (6.33 mmol/l). The Al flow in the duodenum was also higher for zeolite A treated cows.  相似文献   

19.
Experiments were conducted to evaluate effects of supplementation of calcium salts of long chain fatty acids (Ca-LCFA) as a rumen inert fat (PF) on in vitro fermentation and apparent nutrient digestion in adult buffaloes fed wheat straw based diets. For the in vitro fermentation study, five total mixed rations (TMR) consisting of a concentrate mixture (CM), green Sorghum bicolor, WS and supplemented without (C) or with 30 g/kg dry matter (DM) rice bran fatty acid oil (RBO) (30 RBO) or 20 g/kg RBO + 10 g/kg PF (20 RBO/10 PF) or 10 g/kg RBO + 20 g/kg PF (10 RBO/20 PF) or 30 g/kg PF in the DM in the ratio of 340:50:580:30 were prepared. The in vitro DM degradability (IVDMD), TN, trichloro acetic acid precipitable N (TCA-N), non-protein N (NPN) and ammonia N (NH3-N) were similar among groups. Within the fat supplemented groups, total volatile fatty acid (TVFA) concentration increased linearly (P=0.025) with PF supplementation. Apparent nutrient digestibility was determined on 20 adult buffaloes divided into five equal groups fed CM supplemented without (C) or with 300 g RBO (30 RBO) or 200 g RBO + 100 g PF (20 RBO/10 PF) or 100 g RBO + 200 g PF (10 RBO/20 PF) or 300 g PF (30 PF) along with limited green S. bicolor and WS maintaining forage: concentrate ratio of 650:350. Fat supplementation had no effect on the DM intake and apparent digestibilities of DM, organic matter (OM), crude protein (CP), total carbohydrate (TCHO) and neutral detergent fiber (aNDF). Within fat supplemented groups, inclusion of PF increased digestibilities of DM, OM, ether extract (EE), TCHO, aNDF and ADF. Supplemental fat also increased the digestible energy (DE) and metabolizable energy (ME) content of the diet, which also increased linearly with PF supplementation. All buffaloes were in positive N, Ca and P balances. We conclude that 200–300 g supplemental PF in the form of Ca-LCFA can be included in straw based diets fed to buffaloes to increase its energy density without adversely affecting DM intake and digestibility.  相似文献   

20.
Replacing grass silage with maize silage results in a fundamental change in the ratio of structural to non-structural carbohydrates with commensurate changes in rumen fermentation patterns and nutrient utilisation. This study investigated the effects of feeding four forage mixtures, namely grass silage (G); 67 g/100 g grass silage + 33 g/100 g maize silage (GGM); 67 g/100 g maize silage + 33/100 g grass silage (MMG); maize silage (M) to four ruminally and duodenally canulated Holstein Friesian steers. All diets were formulated to be isonitrogenous (22.4 g N/kg DM) using a concentrate mixture. Dietary dry matter (DM) and organic matter (OM) digestibility increased with ascending maize silage inclusion (P < 0.1) whereas starch and neutral detergent fibre digestibility declined (P < 0.05). Ratio of non-glucogenic to glucogenic precursors in the rumen fluid increased with maize silage inclusion (P < 0.01) with a commensurate reduction in rumen pH (P < 0.05). Mean circulating concentrations of insulin were greatest and similar in diets MMG and GGM, lower in diet M and lowest in diet G (P < 0.01). There were no effects of diet on the mean circulating concentration of growth hormone (GH), or the frequency, amplitude and duration of GH pulses, or the mean circulating concentrations of IGF-1. Increasing levels of DM, OM and starch intakes with the substitution of grass silage with maize silage affected overall digestion, nutrient partitioning and subsequent circulating concentrations of insulin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号