首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A major virulence determinant of swine vesicular disease virus (SVDV), an Enterovirus that causes an acute vesicular disease, has been mapped to residue 20 of the 2A protease. The SVDV 2A protease cleaves the 1D-2A junction in the viral polyprotein, induces cleavage of translation initiation factor eIF4GI, and stimulates the activity of enterovirus internal ribosome entry sites (IRESs). The 2A protease from an attenuated strain of SVDV (Ile at residue 20) is significantly defective at inducing cleavage of eIF4GI and the activation of IRES-dependent translation compared to the 2A protease from a pathogenic strain (J1/73, Arg at residue 20), but the two proteases have similar 1D-2A cleavage activities (Y. Sakoda, N. Ross-Smith, T. Inoue, and G. J. Belsham, J. Virol. 75:10643-10650, 2001). Residue 20 has now been modified to every possible amino acid, and the activities of each mutant 2A protease has been analyzed. Selected mutants were reconstructed into full-length SVDV cDNA, and viruses were rescued. The rate of virus growth in cultured swine kidney cells reflected the efficiency of 2A protease activity. In experimentally infected pigs, all four of the mutant viruses tested displayed much-reduced virulence compared to the J1/73 virus but a significant, albeit reduced, level of viral replication and excretion was detected. Direct sequencing of cDNA derived from samples taken early and late in infection indicated that a gradual selection-reversion to a more efficient protease occurred. The data indicated that extensive sequence change and selection may introduce a severe bottleneck in virus replication, leading to a decreased viral load and reduced or no clinical disease.  相似文献   

2.
The ability of different picornavirus internal ribosome entry site (IRES) elements to direct initiation of protein synthesis has been assayed in different cell lines in the presence and absence of viral proteases that inhibit cap-dependent protein synthesis. Reporter plasmids that express dicistronic mRNAs, containing different IRES elements, with the general structure CAT/IRES/LUC, have been assayed. In each plasmid, the CAT sequence encodes chloramphenicol acetyl transferase and the LUC sequence encodes luciferase. The poliovirus (PV) 2A protease and the foot-and-mouth disease virus (FMDV) Lb protease induce the cleavage of the translation initiation factor elF4G and hence inhibit the activity of the cap-binding complex, elF4F. In human osteosarcoma (HTK-143) cells, each of the various IRES elements functioned efficiently. In these cells, the co-expression of the viral proteases severely inhibited the expression of CAT, but the proteases had little effect on the activities of the various IRES elements. In contrast, in baby hamster kidney (BHK) cells, the efficiencies of the different IRES elements varied significantly, whereas, in normal rat kidney (NRK) cells, each of the IRES elements was relatively inefficient. In both BHK and NRK cells, the activities of those IRES elements that functioned inefficiently were strongly stimulated by the co-expression of the PV 2A or FMDV Lb proteases. This stimulation was independent of the loss of cap-dependent protein synthesis and was not achieved by the co-expression of the C-terminal fragment of elF4G. The results suggest that the PV 2A and FMDV Lb proteases induce the cleavage of another cellular protein, in addition to elF4G, which influences IRES function.  相似文献   

3.
A biological agent, Newcastle disease virus, stimulated the synthesis of stress proteins in cultured chicken embryo cells. Previously, only physical and chemical agents were known to induce these proteins. The levels of translatable stress mRNAs were elevated in cells infected with avirulent or virulent strains; however, stress protein synthesis was stimulated strongly only in cells infected by avirulent strains. As did several other paramyxoviruses, avirulent strains of Newcastle disease virus stimulated the synthesis of glucose-regulated proteins as well as stress proteins. Possible stimuli of the synthesis of these two sets of proteins in paramyxovirus-infected cells are considered.  相似文献   

4.
Kaku Y  Chard LS  Inoue T  Belsham GJ 《Journal of virology》2002,76(22):11721-11728
The teschoviruses constitute a recently defined picornavirus genus. Most of the genome sequence of the porcine teschovirus-1 (PTV) Talfan and several other strains is known. We now demonstrate that initiation of protein synthesis occurs at nucleotide (nt) 412 on the PTV Talfan RNA and that nt 1 to 405 contains an internal ribosome entry site (IRES) that functions efficiently in vitro and within mammalian cells. In comparison with other picornavirus IRES elements, the PTV IRES is relatively short and lacks a significant polypyrimidine tract near the 3' end. Expression of an enterovirus 2A protease, which induces cleavage of eIF4G within the translation initiation complex eIF4F, has little effect on the PTV IRES activity within BHK cells. The PTV IRES has a unique set of properties and represents a new class of picornavirus IRES element.  相似文献   

5.
The role of the cap-binding complex, eIF4F, in the translation of vaccinia virus mRNAs has been analyzed within infected cells. Plasmid DNAs, which express dicistronic mRNAs containing a picornavirus internal ribosome entry site, produced within vaccinia virus-infected cells both β-glucuronidase and a cell surface-targeted single-chain antibody (sFv). Cells expressing sFv were selected from nonexpressing cells, enabling analysis of protein synthesis specifically within the transfected cells. Coexpression of poliovirus 2A or foot-and-mouth disease virus Lb proteases, which cleaved translation initiation factor eIF4G, greatly inhibited cap-dependent protein (β-glucuronidase) synthesis. Under these conditions, internal ribosome entry site-directed expression of sFv continued and cell selection was maintained. Furthermore, vaccinia virus protein synthesis persisted in the selected cells containing cleaved eIF4G. Thus, late vaccinia virus protein synthesis has a low requirement for the intact cap-binding complex eIF4F. This may be attributed to the short unstructured 5′ noncoding regions of the vaccinia virus mRNAs, possibly aided by the presence of poly(A) at both 5′ and 3′ termini.  相似文献   

6.
In April 1983, an influenza virus of low virulence appeared in chickens in Pennsylvania. Subsequently, in October 1983, the virus became virulent and caused high mortality in poultry. The causative agent has been identified as an influenza virus of the H5N2 serotype. The hemagglutinin is antigenically closely related to tern/South Africa/61 (H5N3) and the neuraminidase is similar to that from human H2N2 strains (e.g., A/Japan/305/57) and from some avian influenza virus strains (e.g., A/turkey/Mass/66 [H6N2]). Comparison of the genome RNAs of chicken/Penn with other influenza virus isolates by RNA-RNA hybridization indicated that all of the genes of this virus were closely related to those of various other influenza virus isolates from wild birds. Chickens infected with the virulent strain shed high concentrations of virus in their feces (10(7) 50% egg infective dose per g), and the virus was isolated from the albumin and yolk of eggs layed just before death. Virus was also isolated from house flies in chicken houses. Serological and virological studies showed that humans are not susceptible to infection with the virus, but can serve as short-term mechanical carriers. Analysis of the RNA of the viruses isolated in April and October by gel migration and RNA-RNA hybridization suggested that these strains were very closely related. Oligonucleotide mapping of the individual genes of virulent and avirulent strains showed a limited number of changes in the genome RNAs, but no consistent differences between the virulent and avirulent strains that could be correlated with pathogenicity were found. Polyacrylamide gel analysis of the early (avirulent) isolates demonstrated the presence of low-molecular-weight RNA bands which is indicative of defective-interfering particles. These RNAs were not present in the virulent isolates. Experimental infection of chickens with mixtures of the avirulent and virulent strains demonstrated that the avirulent virus interferes with the pathogenicity of the virulent virus. The results suggest that the original avirulent virus was probably derived from influenza viruses from wild birds and that the virulent strain was derived from the avirulent strain by selective adaptation rather than by recombination or the introduction of a new virus into the population. This adaptation may have involved the loss of defective RNAs, as well as mutations, and thus provides a possible model for a role of defective-interfering particles in nature.  相似文献   

7.
8.
To investigate the degree of similarity between picornavirus proteases, we cloned the genomic cDNAs of an enterovirus, echovirus 9 (strain Barty), and two rhinoviruses, serotypes 1A and 14LP, and determined the nucleotide sequence of the region which, by analogy to poliovirus, encodes the protease. The nucleotide sequence of the region encoding the genome-linked protein VPg, immediately adjacent to the protease, was also determined. Comparison of nucleotide and deduced amino acid sequences with other available picornavirus sequences showed remarkable homology in proteases and among VPgs. Three highly conserved peptide regions were identified in the protease; one of these is specific for human picornaviruses and has no obvious counterpart in encephalomyocarditis virus, foot-and-mouth disease virus, or cowpea mosaic virus proteases. Within the other two peptide regions two conserved amino acids, Cys 147 and His 161, could be the reactive residues of the active site. We used a statistical method to predict certain features of the secondary structures, such as alpha helices, beta sheets, and turns, and found many of these conformations to be conserved. The hydropathy profiles of the compared proteases were also strikingly similar. Thus, the proteases of human picornaviruses very probably have a similar three-dimensional structure.  相似文献   

9.
The initiation factor eIF4G plays a central role in the regulation of translation. In picornaviruses, as well as in human immunodeficiency virus type 1 (HIV-1), cleavage of eIF4G by the viral protease leads to inhibition of protein synthesis directed by capped cellular mRNAs. In the present work, cleavage of both eIF4GI and eIF4GII has been analyzed by employing the proteases encoded within the genomes of several members of the family Retroviridae, e.g., Moloney murine leukemia virus (MoMLV), mouse mammary tumor virus, human T-cell leukemia virus type 1, HIV-2, and simian immunodeficiency virus. All of the retroviral proteases examined were able to cleave the initiation factor eIF4GI both in intact cells and in cell-free systems, albeit with different efficiencies. The eIF4GI hydrolysis patterns obtained with HIV-1 and HIV-2 proteases were very similar to each other but rather different from those obtained with MoMLV protease. Both eIF4GI and eIF4GII were cleaved very efficiently by the MoMLV protease. However, eIF4GII was a poor substrate for HIV proteases. Proteolytic cleavage of eIF4G led to a profound inhibition of cap-dependent translation, while protein synthesis driven by mRNAs containing internal ribosome entry site elements remained unaffected or was even stimulated in transfected cells.  相似文献   

10.
The amino acid composition of cell walls and surface proteins, isolated from virulent (M+) and avirulent (M-) streptococcal strains (group A, type 29) has been determined by the method of E. H. Beachey et al. The kinetics of the lysis and proteolysis of streptococcal cell walls with muramidase and protease obtained from Actinomyces levoris and streptolysin has been studied. The constants describing the progress rates of these processes has been determined; their values in case of both lysis and proteolysis are higher in virulent strains than in avirulent ones.  相似文献   

11.
The fusion (F) protein precursor of virulent Newcastle disease virus (NDV) strains has two pairs of basic amino acids at the cleavage site, and its intracellular cleavage activation occurs in a variety of cells; therefore, the viruses cause systemic infections in poultry. To explore the protease responsible for the cleavage in the natural host, we examined detailed substrate specificity of the enzyme in chick embryo fibroblasts (CEF) using a panel of the F protein mutants at the cleavage site expressed by vaccinia virus vectors, and compared the specificity with those of mammalian subtilisin-like proteases such as furin, PC6 and PACE4 which are candidates for F protein processing enzymes. It was demonstrated in CEF cells that Arg residues at the -4, -2 and -1 positions upstream of the cleavage site were essential, and that at the -5 position was required for maximal cleavage. Phe at the +1 position was also important for efficient cleavage. On the other hand, furin and PC6 expressed by vaccinia virus vectors showed cleavage specificities against the F protein mutants consistent with that shown by the processing enzyme of CEF cells, but PACE4 hardly cleaved the F proteins including the wild type. These results indicate that the proteolytic processing enzymes of poultry for virulent NDV F proteins could be furin and/or PC6 but not PACE4. The significance of individual contribution of the three amino acids at the -5, -2 and +1 positions to cleavability was discussed in relation to the evolution of virulent and avirulent NDV strains.  相似文献   

12.
13.
Aichi virus 2A protein is involved in viral RNA replication   总被引:1,自引:0,他引:1  
The Aichi virus 2A protein is not a protease, unlike many other picornavirus 2A proteins, and it is related to a cellular protein, H-rev107. Here, we examined the replication properties of two 2A mutants in Vero cells and a cell-free translation/replication system. In one mutant, amino acids 36 to 126 were replaced with an unrelated amino acid sequence. In the other mutant, the NC motif conserved in the H-rev107 family of proteins was changed to alanine residues. The two mutations abolished virus replication in cells. The mutations affected both negative- and positive-strand synthesis, the defect in positive-strand synthesis being more severe than that in negative-strand synthesis.  相似文献   

14.
Translation directed by several picornavirus IRES elements can usually take place after cleavage of eIF4G by picornavirus proteases 2Apro or Lpro. The hepatitis A virus (HAV) IRES is thought to be an exception to this rule because it requires intact eIF4F complex for translation. In line with previous results we report that poliovirus (PV) 2Apro strongly blocks protein synthesis directed by HAV IRES. However, in contrast to previous findings we now demonstrate that eIF4G cleavage by foot-and-mouth disease virus (FMDV) Lpro strongly stimulates HAV IRES-driven translation. Thus, this is the first observation that 2Apro and Lpro exhibit opposite effects to what was previously thought to be the case in HAV IRES. This effect has been observed both in hamster BHK and human hepatoma Huh7 cells. In addition, this stimulation of translation is also observed in cell free systems after addition of purified Lpro. Notably, in presence of this FMDV protease, translation directed by HAV IRES takes place when eIF2α has been inactivated by phosphorylation. Our present findings clearly demonstrate that protein synthesis directed by HAV IRES can occur when eIF4G has been cleaved and after inactivation of eIF2. Therefore, translation directed by HAV IRES without intact eIF4G and active eIF2 is similar to that observed with other picornavirus IRESs.  相似文献   

15.
Molecular basis of Sindbis virus neurovirulence in mice.   总被引:44,自引:37,他引:7       下载免费PDF全文
We examined a variety of strains of Sindbis virus for the genetic changes responsible for differences in neurovirulence in mice. SV1A (a low passage of the AR339 strain of Sindbis virus), a neuroadapted Sindbis virus (NSV), and two laboratory strains of Sindbis virus (HRSP and Toto1101) were examined. NSV causes severe encephalomyelitis with hind-limb paralysis and high mortality after intracerebral inoculation in weanling mice. In contrast, SV1A causes only mild, nonfatal disease in weanling mice; however, in suckling mice, SV1A causes a fatal encephalomyelitis after either intracerebral or subcutaneous inoculation. The two laboratory strains used have a greatly reduced neurovirulence for suckling mice and are avirulent for weanling mice. The nucleotide sequences and encoded amino acid sequences of the structural glycoproteins of these four strains were compared. Hybrid genomes were constructed by replacing restriction fragments in a full-length cDNA clone of Sindbis virus, from which infectious RNA can be transcribed in vitro, with fragments from cDNA clones of the various strains. These recombinant viruses allowed us to test the importance of each amino acid difference between the various strains for neurovirulence in weanling and suckling mice. Glycoproteins E2 and E1 were of paramount importance for neurovirulence in adult mice. Recombinant viruses containing the nonstructural protein region and the capsid protein region from an avirulent strain and the E1 and E2 glycoprotein regions from NSV were virulent, although they were less virulent than NSV. Furthermore, changes in either E2 (His-55 in NSV to Gln in SV1A) or E1 (Ala-72 in NSV to Val in SV1A and Asp-313 in NSV to Gly in SV1A) reduced virulence. For virulence in suckling mice, we found that a number of changes in E2 and E1 can lead to decreased virulence and that in fact, a gradient of virulence exists.  相似文献   

16.
17.
A HeLa cell clone (2A7d) that inducibly expresses the gene for poliovirus protease 2A (2A(pro)) under the control of tetracycline has been obtained. Synthesis of 2A(pro) induces severe morphological changes in 2A7d cells. One day after tetracycline removal, cells round up and a few hours later die. Poliovirus 2A(pro) cleaves both forms of initiation factor eIF4G, causing extensive inhibition of capped-mRNA translation a few hours after protease induction. Methoxysuccinyl-Ala-Ala-Pro-Val-chloromethylketone, a selective inhibitor of 2A(pro), prevents both eIF4G cleavage and inhibition of translation but not cellular death. Expression of 2A(pro) still allows both the replication of poliovirus and the translation of mRNAs containing a picornavirus leader sequence, while vaccinia virus replication is drastically inhibited. Translation of transfected capped mRNA is blocked in 2A7d-On cells, while luciferase synthesis from a mRNA bearing a picornavirus internal ribosome entry site (IRES) sequence is enhanced by the presence of 2A(pro). Moreover, synthesis of 2A(pro) in 2A7d cells complements the translational defect of a poliovirus 2A(pro)-defective variant. These results show that poliovirus 2A(pro) expression mimics some phenotypical characteristics of poliovirus-infected cells, such as cell rounding, inhibition of protein synthesis and enhancement of IRES-driven translation. This cell line constitutes a useful tool to further analyze 2A(pro) functions, to complement poliovirus 2A(pro) mutants, and to test antiviral compounds.  相似文献   

18.
E G Brown  C F Dimock    K Hannah 《Journal of virology》1992,66(11):6314-6321
On mouse adaption of A/FM/1/47, a variant, A/FM/1/47-MA (FM-MA), that had acquired the properties of increased virulence and interference was produced. Coinfection of cells with FM-MA and prototype strains of influenza virus yielded > 100-fold more FM-MA virus than prototype virus, whereas coinfection with the same prototype strains and the parental A/FM/1/47 virus produced equivalent yields, indicating that FM-MA had acquired mutations that confer the property of interference during mouse adaption. FM-MA is a nondefective interfering virus that grows to a high titer in vivo and in vitro. It has previously been shown that segments 4, 7, and 8 and possibly segment 5 account for the increased virulence. In this study we show by genetic analysis of FM-MA x A/HK/1/68 reassortants that segment 2, coding for the polymerase-associated protein PB1, and possibly segment 8, encoding the NS1 and NS2 proteins, control the ability of FM-MA to interfere. Interference could not be overcome by increasing the titer of the coinfecting strain, but delaying FM-MA infection by 4 to 6 h did avoid interference. During interference of A/HK/1/68, protein synthesis was inhibited by less than 65% throughout coinfection. Given the kinetics of interference and the small perturbation in protein synthesis, interference appeared to occur at the level of late genome replication or virus assembly. Virulence and interference in FM-MA were not linked. An interfering avirulent FM-MA x A/HK/1/68 reassortant, E07, was capable of protecting mice against lethal pneumonia due to a virulent noninterfering reassortant, H04.  相似文献   

19.
A virulent strain of Babesia bovis (“L” strain) was rendered avirulent by irradiation with 35 krads with a γ source. Another virulent strain of B. bovis (“C” strain) was made avirulent by rapid blood passage through 12 splenectomised calves. Both the parent virulent and their respective avirulent strains were injected into susceptible cattle. A nonfatal disease was observed in those intact cattle that had avirulent parasites; however, a fatal disease was produced in those animals that had received virulent parasites and in splenectomised calves that had received avirulent parasites. Blood kinin levels rose and plasma kininogen levels fell significantly in those animals infected with both virulent strains. Nonsignificant changes occurred with these parameters in animals infected with avirulent parasites. Preparations of disrupted parasites were obtained from the four parasite populations. Both virulent strains contained high levels of protease. The avirulent forms contained insignificant amounts. As parasite doubling times and maximum parasitaemias were the same for all four parasite populations, we conclude that these enzymes are not obligatory for parasite multiplication in the vertebrate host. Their role in producing pathological changes in the host is discussed.  相似文献   

20.
Two isolates of Bacillus thuringiensis subsp. kurstaki were examined which produced different levels of intracellular proteases. Although the crystals from both strains had comparable toxicity, one of the strains, LB1, had a strong polypeptide band at 68,000 molecular weight in the protein from the crystal; in the other, HD251, no such band was evident. When the intracellular proteases in both strains were measured, strain HD251 produced less than 10% of the proteolytic activity found in LB1. These proteases were primarily neutral metalloproteases, although low levels of other proteases were detected. In LB1, the synthesis of protease increased as the cells began to sporulate; however, in HD251, protease activity appeared much later in the sporulation cycle. The protease activity in strain LB1 was very high when the cells were making crystal toxin, whereas in HD251 reduced proteolytic activity was present during crystal toxin synthesis. The insecticidal toxin (molecular weight, 68,000) from both strains could be prepared by cleaving the protoxin (molecular weight, 135,000) with trypsin, followed by ion-exchange chromatography. The procedure described gave quantitative recovery of toxic activity, and approximately half of the total protein was recovered. Calculations show that these results correspond to stoichiometric conversion of protoxin to insecticidal toxin. The toxicities of whole crystals, soluble crystal protein, and purified toxin from both strains were comparable.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号