首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Mutants of the cyanobacterium Synechocystis sp. Pasteur Culture Collection (PCC) 6803 that specifically lack the extrinsic 33-kDa manganese-stabilizing polypeptide of the photosystem II oxygen-evolving complex have been constructed by two independent methods. Cartridge mutagenesis was used to insertionally inactivate the psbO gene of one mutant and completely delete the psbO gene of the other mutant. These mutants have no detectable manganese-stabilizing polypeptide, but they do accumulate steady-state levels of the intrinsic photosystem II polypeptides D1, D2, and CP-43 that are comparable to wild-type, as determined by immunoblot analysis. Measurement of the evolution of the relative quantum yields of chlorophyll fluorescence following actinic flash excitation indicates that though the concentration of reaction centers in mutant cells is comparable to that of wild-type cells, approximately 40% of these centers harbor a fluorescence-quenching species other than P680+. The mutants are capable of photoautotrophic growth at a slower rate than that of wild-type. Under conditions of Ca2+ depletion where wild-type growth is unaffected, the mutants are unable to grow at all. The manganese-stabilizing protein, therefore, enhances the binding of Ca2+ or protects the reaction center at low Ca2+ concentrations. The mutant evolve oxygen at approximately 70% of the wild-type rate, but are completely photoinactivated by high light intensities. Our results indicate that the manganese-stabilizing polypeptide is not absolutely required for photosystem II assembly or function in cyanobacteria, but its absence does lead to an enhanced sensitivity to photoinhibition.  相似文献   

2.
Weng J  Tan C  Shen JR  Yu Y  Zeng X  Xu C  Ruan K 《Biochemistry》2004,43(16):4855-4861
In this paper, we analyzed the pH-induced changes in the conformational states of the manganese-stabilizing protein (MSP) of photosystem II. Distinct conformational states of MSP were identified using fluorescence spectra, far-UV circular dichroism, and pressure-induced unfolding at varying suspension pH values, and four different conformational states of MSP were clearly distinguished using the center of fluorescence spectra mass when suspension pH was altered from 2 to 12. MSP was completely unfolded at a suspension pH above 11 and partly unfolded below a pH of 3. Analysis of the center of fluorescence spectral mass showed that the MSP structure appears stably folded around pH 6 and 4. The conformational state of MSP at pH 4 seems more stable than that at pH 6. Studies of peak positions of tryptophan fluorescence and MSP-bound 1-anilinonaphthalene-8-sulfonic acid fluorescence spectra supported this observation. A decrease in the suspension pH to 2 resulted in significant alterations in the MSP structure possibly because of protonation of unprotonated residues at lower pH, suggesting the existence of a large number of unprotonated amino acid residues at neutral pH possibly useful for proton transport in oxygen evolution. The acidic pH-induced conformational changes of MSP were reversible upon increase of pH to neutral pH; however, N-bromosuccinimide modification of tryptophan (Trp241) blocks the recovery of pH-induced conformational changes in MSP, implying that Trp241 is a key residue for the unfolded protein to form a functional structure. Thus, pH-induced structural changes of stable MSP (pH 6-4) may be utilized to analyze its functionality as a cofactor for oxygen evolution.  相似文献   

3.
Site-directed mutagenesis was performed to investigate whether the two protease-sensitive sequences Phe(156)-Gly(163) and Arg(184)-Ser(191), of the manganese-stabilizing protein (MSP) from a thermophilic cyanobacterium, Synechococcus elongatus (Motoki, A., Shimazu, T., Hirano, M., and Katoh, S. (1998) Biochim. Biophys. Acta 1365, 492-502), are involved in functional interaction with photosystem II (PSII). The ability of MSP to bind to its functional site on the PSII complex and to reactivate oxygen evolution was dramatically reduced by the substitution of Arg(152), Asp(158), Lys(160), or Arg(162) with uncharged residues, by insertion of a single residue between Phe(156) and Leu(157), or by deletion of Leu(157). Substitution of each of the four charged residues with an identically charged residue showed that the charges at Asp(158), and possibly Lys(160), are important for the electrostatic interaction with PSII. The reactivating ability was also strongly affected by the alteration of Phe(156) to Leu. Replacement of Lys(188), the only strictly conserved charged residue in the Arg(184)-Ser(191) sequence, by Gln had only a marginal effect on the function of MSP. High affinity binding of MSP to PSII was also affected significantly by mutation at Arg(152), which is located in a region (Val(148)-Arg(152)) strictly conserved among the 14 sequences so far reported. These results imply that the Val(148)-Gly(163) sequence, which is well conserved among MSPs from cyanobacteria to higher plants, is a domain of MSP for functional interaction with PSII.  相似文献   

4.
In the recombination process of Photosystem II (S(2)Q(A)(-)-->S(1)Q(A)) the limiting step is the electron transfer from the reduced primary acceptor pheophytin Ph(-) to the oxidized primary donor P(+) and the rate depends on the equilibrium constant between states S(2)PPhQ(A)(-) and S(1)P(+)Ph(-)Q(A). Accordingly, mutations that affect the midpoint potential of Ph or of P result in a modified recombination rate. A strong correlation is observed between the effects on the recombination rate and on thermoluminescence (TL, the light emission from S(2)Q(A)(-) during a warming ramp): a slower recombination corresponds to a large enhancement and higher temperature of the TL peak. The current theory of TL does not account for these effects, because it is based on the assumption that the rate-limiting step coincides with the radiative process. When implementing the known fact that the radiative pathway represents a minor leak, the modified TL theory readily accounts qualitatively for the observed behavior. However, the peak temperature is still lower than predicted from the temperature-dependence of recombination. We argue that this reflects the heterogeneity of the recombination process combined with the enhanced sensitivity of TL to slower components. The recombination kinetics are accurately fitted as a sum of two exponentials and we show that this is not due to a progressive stabilization of the charge-separated state, but to a pre-existing conformational heterogeneity.  相似文献   

5.
L K Frankel  T M Bricker 《Biochemistry》1992,31(45):11059-11064
The structural organization of photosystem II proteins has been investigated by use of the amino group-labeling reagent N-hydroxysuccinimidobiotin (NHS-biotin) and calcium chloride-washed photosystem II membranes. We have previously shown that the presence of the extrinsic, manganese-stabilizing protein on photosystem II membranes prevents the modification of lysyl residues located on the chlorophyll protein CPa-1 (CP-47) by NHS-biotin [Bricker, T. M., Odom, W. R., & Queirolo, C. B. (1988) FEBS Lett. 231, 111-117]. Upon removal of the manganese-stabilizing protein by calcium chloride-washing, CPa-1 can be specifically modified by treatment with NHS-biotin. Preparative quantities of biotinylated CPa-1 were subjected to chemical cleavage with cyanogen bromide. Two major biotinylated peptides were identified with apparent molecular masses of 11.8 and 15.7 kDa. N-terminal sequence analysis of these peptides indicated that the 11.8-kDa peptide was 232G-330M and that the 15.7-kDa peptide was 360P-508V. The 15.7-kDa CNBr peptide was subjected to limited tryptic digestion. The two smallest tryptic fragments identified migrated at apparent molecular masses of 9.1 (nonbiotinylated) and 7.5 kDa (biotinylated). N-terminal sequence analysis and examination of the predicted amino acid sequences of these peptides suggest that the 9.1-kDa fragment was 422R-508V and that the 7.5-kDa fragment was 360P-421A. These results strongly suggest that two NHS-biotinylated domains, 304K-321K and 389K-419K, become exposed on CPa-1 when the manganese-stabilizing protein is removed by CaCl2 treatment. Both of these domains lie in the large extrinsic loop E of CPa-1.  相似文献   

6.
Frankel LK  Cruz JA  Bricker TM 《Biochemistry》1999,38(43):14271-14278
The effects of the modification of carboxylate groups on the manganese-stabilizing protein of photosystem II were investigated. Carboxylate groups (including possibly the C-terminus) on the manganese-stabilizing protein were modified with glycine methyl ester in a reaction facilitated by 1-ethyl-3-[3-(dimethylamino)propyl]carbodiimide. The manganese-stabilizing protein that was modified while associated with NaCl-washed photosystem II membranes contained 1-2 modified carboxylates, whereas the protein that was modified while free in solution contained 4 modified carboxylates. Both types of modified protein could reconstitute oxygen evolution at high manganese-stabilizing protein to photosystem II reaction center ratios. However, the protein that had been modified in solution exhibited a dramatically altered binding affinity for photosystem II. No such alteration in binding affinity was observed for the protein that had been modified while associated with the photosystem. Mapping of the sites of modification was carried out by trypsin and Staphylococcus V8 protease digestion of the modified proteins and analysis by matrix-assisted laser desorption/ionization mass spectrometry. These studies indicated that the domains (157)D-(168)D and (212)E-(247)Q (C-terminus) are labeled only when the manganese-stabilizing protein is modified in solution. Modified carboxylates in these domains are responsible for the altered binding affinity of this protein for the photosystem.  相似文献   

7.
T M Bricker 《Biochemistry》1992,31(19):4623-4628
There has been a considerable amount of controversy concerning the ability of photosystem II to evolve oxygen in the absence of the 33-kDa, manganese-stabilizing protein. Early reports indicated that some capacity for oxygen evolution existed in manganese-stabilizing protein-depleted membranes while more recent studies have suggested that the observed oxygen evolution activity arose from residual manganese-stabilizing protein present in the salt-washed preparations. In this paper, it is conclusively demonstrated that significant rates of steady-state oxygen evolution are observed in oxygen-evolving photosystem II membranes in the absence of detectable quantities of the manganese-stabilizing protein. More then 99% of the manganese-stabilizing protein was removed by either one CaCl2 or two NaCl-urea washes. The amount of manganese-stabilizing protein removed was quantified immunologically using mouse polyclonal antibodies. Oxygen evolution rates of 115-140 mumol of O2 (mg of Chl)-1 h-1 were observed in the NaCl-urea-washed preparations. These rates represent about 24% of the rate observed in untreated membranes [450-600 mumol of O2 (mg of Chl)-1 h-1]. Somewhat lower, although still significant rates were observed in the CaCl2-washed preparations. Optimal rates of oxygen-evolving activity in NaCl-urea-washed membranes which are devoid of the manganese-stabilizing protein required high concentrations of calcium and chloride.  相似文献   

8.
Roose JL  Yocum CF  Popelkova H 《Biochemistry》2011,50(27):5988-5998
It has been reported previously that the two subunits of PsbO, the photosystem II (PSII) manganese stabilizing protein, have unique functions in relation to the Mn, Ca(2+), and Cl(-) cofactors in eukaryotic PSII [Popelkova; (2008) Biochemistry 47, 12593]. The experiments reported here utilize a set of N-terminal truncation mutants of PsbO, which exhibit altered subunit binding to PSII, to further characterize its role in establishing efficient O(2) evolution activity. The effects of PsbO binding stoichiometry, affinity, and specificity on Q(A)(-) reoxidation kinetics after a single turnover flash, S-state transitions, and O(2) release time have been examined. The data presented here show that weak rebinding of a single PsbO subunit to PsbO-depleted PSII repairs many of the defects in PSII resulting from the removal of the protein, but many of these are not sustainable, as indicated by low steady-state activities of the reconstituted samples [Popelkova; (2003) Biochemistry 42 , 6193]. High affinity binding of PsbO to PSII is required to produce more stable and efficient cycling of the water oxidation reaction. Reconstitution of the second PsbO subunit is needed to further optimize redox reactions on the PSII oxidizing side. Native PsbO and recombinant wild-type PsbO from spinach facilitate PSII redox reactions in a very similar manner, and nonspecific binding of PsbO to PSII has no significance in these reactions.  相似文献   

9.
Interfering RNA was used to suppress the expression of two genes that encode the manganese-stabilizing protein of photosystem II in Arabidopsis thaliana, MSP-1 (encoded by psbO-1, At5g66570), and MSP-2 (encoded by psbO-2, At3g50820). A phenotypic series of transgenic plants was recovered that expressed high, intermediate, and low amounts of these two manganese-stabilizing proteins. Chlorophyll fluorescence induction and decay analyses were performed. Decreasing amounts of expressed protein led to the progressive loss of variable fluorescence and a marked decrease in the fluorescence quantum yield (F(v)/F(m)) in both the absence and the presence of dichloromethylurea. This result indicated that the amount of functional photosystem II reaction centers was compromised in the plants that exhibited intermediate and low amounts of the manganese-stabilizing proteins. An analysis of the decay of the variable fluorescence in the presence of dichlorophenyldimethylurea indicated that charge recombination between Q ((A-)) and the S(2) state of the oxygen-evolving complex was seriously retarded in the plants that expressed low amounts of the manganese stabilizing proteins. This may have indicated a stabilization of the S(2) state in the absence of the extrinsic component. Immunological analysis of the photosystem II protein complement indicated that significant losses of the CP47, CP43, and D1 proteins occurred upon the loss of the manganese-stabilizing proteins. This indicated that these extrinsic proteins were required for photosystem II core assembly/stability. Additionally, although the quantity of the 24-kDa extrinsic protein was only modestly affected by the loss of the manganese-stabilizing proteins, the 17-kDa extrinsic protein dramatically decreased. The control proteins ribulose bisphosphate carboxylase and cytochrome f were not affected by the loss of the manganese-stabilizing proteins; the photosystem I PsaB protein, however, was significantly reduced in the low expressing transgenic plants. Finally, it was determined that the transgenic plants that expressed low amounts of the manganese-stabilizing proteins could not grow photoautotrophically.  相似文献   

10.
Bricker TM  Frankel LK 《Biochemistry》2003,42(7):2056-2061
The effects of the modification of carboxylate groups on the manganese-stabilizing protein on the binding of the 24 kDa extrinsic protein to Photosystem II were investigated. Carboxylate groups on the manganese-stabilizing protein were modified with glycine methyl ester in a reaction facilitated by 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide. The manganese-stabilizing protein which was modified while associated with NaCl-washed membranes could bind to calcium chloride-washed PS II membranes and reconstitute oxygen evolution in a manner similar to that observed for unmodified manganese-stabilizing protein (Frankel, L.K, Cruz, J. C. and Bricker, T. M. (1999) Biochemistry 38, 14271-14278). However, PS II membranes reconstituted with this modified protein were defective in their ability to bind the extrinsic 24 kDa protein of Photosystem II. Mapping of the sites of modification was carried out by trypsin and Staphylococcus V8 protease digestion of the modified protein and analysis by MALDI mass spectrometry. These studies indicated that the domains (1)E-(71)D, (97)D-(144)D, and (180)D-(187)E are labeled when the manganese-stabilizing protein is bound to NaCl-washed Photosystem II membranes. We hypothesize that modified carboxylates, possibly residues (1)E, (32)E, (139)E, and/or (187)E, in these domains are responsible for the altered binding affinity of the 24 kDa protein observed.  相似文献   

11.
A photosystem II (PSII) core complex lacking the internal antenna CP43 protein was isolated from the photosystem II of Synechocystis PCC6803, which lacks photosystem I (PSI). CP47-RC and reaction centre (RCII) complexes were also obtained in a single procedure by direct solubilization of whole thylakoid membranes. The CP47-RC subcore complex was characterized by SDS/PAGE, immunoblotting, MALDI MS, visible and fluorescence spectroscopy, and absorption detected magnetic resonance. The purity and functionality of RCII was also assayed. These preparations may be useful for mutational analysis of PSII RC and CP47-RC in studying primary reactions of oxygenic photosynthesis.  相似文献   

12.
The polypeptide composition and membrane structure of a variegated mutant of tobacco have been investigated. The pale green mutant leaf regions contain chloroplasts in which the amount of membrane stacking has been reduced (although not totally eliminated). The mutant membranes are almost totally deficient in Photosystem II when compared to wild-type chloroplast membranes, but still show near-normal levels of Photosystem I activity. The pattern of membrane polypeptides separated by sodium dodecyl sulfate-polyacrylamide gel electrophoresis shows several differences between mutant and wild-type membranes, although the major chlorophyll-protein complexes described in many other plant species are present in both mutant and wild-type samples. Freeze-fracture analysis of the internal structure of these photosynthetic membranes shows that the Photosystem II-deficient membranes lack the characteristic large particle associated with the E fracture face of the thylakoid. These membranes also lack a tetramer-like particle visible on the inner (ES) surface of the membrane. The other characteristics of the photosynthetic membrane, including the small particles observed on the P fracture faces in both stacked and unstacked regions, and the characteristic changes in the background matrix of the E fracture face which accompany thylakoid stacking, are unaltered in the mutant. From these and other observations we conclude that the large (EF and ES) particle represents an amalgam of many components comprising the Photosystem II reaction complex, that the absence of one or more of its components may prevent the structure from assembling, and that in its absence, Photosystem II activity cannot be observed.  相似文献   

13.
Gregor W  Cinco RM  Yu H  Yachandra VK  Britt RD 《Biochemistry》2005,44(24):8817-8825
The 33 kDa manganese-stabilizing extrinsic protein binds to the lumenal side of photosystem II (PS II) close to the Mn(4)Ca cluster of the oxygen-evolving complex, where it limits access of small molecules to the metal site. Our previous finding that the removal of this protein did not alter the magnetic coupling regime within the manganese cluster, measured by electron spin-echo envelope modulation [Gregor, W., and Britt, R. D. (2000) Photosynth. Res. 65, 175-185], prompted us to examine whether this accessibility control is also true for substrate water, using the same pulsed EPR technique. Comparing the deuteron modulation of the S(2)-state multiline signal of PS II membranes, equilibrated with deuterated water (D(2)O) after removal or retention of the 33 kDa protein, we observed no change in the number and the distance of deuterons magnetically coupled to manganese, indicating that the number and distance of water molecules bound to the manganese cluster are independent of bound 33 kDa protein in the S(1) state, in which the sample was poised prior to cryogenic illumination. A simple modulation depth analysis revealed a distance of 2.5-2.6 A between the closest deuteron and manganese. These results are in agreement with our refined X-ray absorption analysis. The manganese K-edge positions, reflecting their oxidation states, and the extended X-ray absorption fine structure amplitudes and distances between the manganese ions and their oxygen and nitrogen ligands (1.8, 2.7, and 3.3-3.4 A) were independent of bound 33 kDa protein.  相似文献   

14.
Photosystem II (PSII) oxidizes water to molecular oxygen; the catalytic site is a cluster of four manganese ions. The catalytic site undergoes four sequential light-driven oxidation steps to form oxygen; these sequentially oxidized states are referred to as the Sn states, where n refers to the number of oxidizing equivalents stored. The extrinsic manganese stabilizing protein (MSP) of PSII influences the efficiency and stability of the manganese cluster, as well as the rates of the S state transitions. To understand how MSP influences photosynthetic water oxidation, we have employed isotope editing and difference Fourier transform infrared spectroscopy. MSP was expressed in Escherichia coli under conditions in which MSP aspartic and glutamic acid residues label at yields of 65 and 41%, respectively. Asparagine and glutamine were also labeled by this approach. GC/MS analysis was consistent with minimal scrambling of label into other amino acid residues and with no significant scrambling into the peptide bond. Selectively labeled MSP was then reconstituted to PSII, which had been stripped of native MSP. Difference Fourier transform infrared spectroscopy was used to probe the S1QA to S2QA- transition at 200 K, as well as the S1QB to S2QB- transition at 277 K. These experiments show that aspargine, glutamine, and glutamate residues in MSP are perturbed by photooxidation of manganese during the S1 to S2 transition.  相似文献   

15.
The involvement of the PsbI protein in the assembly and repair of the photosystem II (PSII) complex has been studied in the cyanobacterium Synechocystis sp. PCC 6803. Analysis of PSII complexes in the wild-type strain showed that the PsbI protein was present in dimeric and monomeric core complexes, core complexes lacking CP43, and in reaction center complexes containing D1, D2, and cytochrome b-559. In addition, immunoprecipitation experiments and the use of a histidine-tagged derivative of PsbI have revealed the presence in the thylakoid membrane of assembly complexes containing PsbI and either the precursor or mature forms of D1. Analysis of PSII assembly in the psbI deletion mutant and in strains lacking PsbI together with other PSII subunits showed that PsbI was not required for formation of PSII reaction center complexes or core complexes, although levels of unassembled D1 were reduced in its absence. However, loss of PsbI led to a dramatic destabilization of CP43 binding within monomeric and dimeric PSII core complexes. Despite the close structural relationship between D1 and PsbI in the PSII complex, PsbI turned over much slower than D1, whereas high light-induced turnover of D1 was accelerated in the absence of PsbI. Overall, our results suggest that PsbI is an early assembly partner for D1 and that it plays a functional role in stabilizing the binding of CP43 in the PSII holoenzyme.  相似文献   

16.
Using time-resolved single photon counting, fluorescence decay in photosystem I (PS I) was analyzed in mutant strains of Chlamydomonas reinhardtii that lack photosystem II. Two strains are compared: one with a wild-type PS I core antenna (120 chlorophyll a/P700) and a second showing an apparent reduction in core antenna size (60 chlorophyll a/P700). These data were calculated from the lifetimes of core antenna excited states (75 and 45 ps, respectively) and from pigment stoichiometries. Fluorescence decay in wild type PS I is composed of two components: a fast 75-ps decay that represents the photochemically limited lifetime of excited states in the core antenna, and a minor (less than 10%) 300-800 ps component that has spectral characteristics of both peripheral and core antenna pigments. Temporal and spectral properties of the fast PS I decay indicate that (a) excitations are nearly equilibrated among the range of spectral forms present in the PS I core antenna, (b) an average excitation visits a representative distribution of core antenna spectral forms on all pigment-binding subunits regardless of the origin of the excitation, (c) reduction in core antenna size does not alter the range of antenna spectral forms present, and (d) transfer from peripheral antennae to the PS I core complex is rapid (less than 5 ps).  相似文献   

17.
Synechococcus sp. PCC 7942 modulates photosynthetic function by transiently replacing the constitutive D1 photosystem II protein, D1:1, with an alternate form, D1:2, to help counteract photoinhibition under excess light. We show that a temperature drop from 37 to 25 degrees C also drives D1:1/D1:2 exchange under constant, moderate light. Chilling or light-induced D1 exchange results from rapid loss of psbAI message coding for D1:1 and accumulation of psbAII and psbAIII messages coding for D1:2. During chilling, a large pool of a novel form, D1:2*, transiently accumulates, distinguishable from normal D1 by an increase in apparent molecular mass. D1:2* is not phosphorylated and is probably a functionally inactive, incompletely processed precursor. After acclimation to 25 degrees C, D1:2* disappears and D1:1 again predominates, although substantial D1:2 remains. Partial inhibition of electron transport under constant, moderate light also triggers the D1 exchange process. These treatments all increase excitation pressure on photosystem II relative to electron transport. Therefore, information from photosynthetic electron transport regulates D1 exchange without any requirement for a change in light intensity or quality, possibly via a redox sensing mechanism proximal to photosystem II.  相似文献   

18.
Distribution of phycobilisomes between photosystem I (PSI) and photosystem II (PSII) complexes in the cyanobacterium Spirulina platensis has been studied by analysis of the action spectra of H2 and O2 photoevolution and by analysis of the 77 K fluorescence excitation and emission spectra of the photosystems. PSI monomers and trimers were spectrally discriminated in the cell by the unique 760 nm low-temperature fluorescence, emitted by the trimers under reductive conditions. The phycobilisome-specific 625 nm peak was observed in the action spectra of both PSI and PSII, as well as in the 77 K fluorescence excitation spectra for chlorophyll emission at 695 nm (PSII), 730 nm (PSI monomers), and 760 nm (PSI trimers). The contributions of phycobilisomes to the absorption, action, and excitation spectra were derived from the in vivo absorption coefficients of phycobiliproteins and of chlorophyll. Analyzing the sum of PSI and PSII action spectra against the absorption spectrum and estimating the P700:P680 reaction center ratio of 5.7 in Spirulina, we calculated that PSII contained only 5% of the total chlorophyll, while PSI carried the greatest part, about 95%. Quantitative analysis of the obtained data showed that about 20% of phycobilisomes in Spirulina cells are bound to PSII, while 60% of phycobilisomes transfer the energy to PSI trimers, and the remaining 20% are associated with PSI monomers. A relevant model of organization of phycobilisomes and chlorophyll pigment-protein complexes in Spirulina is proposed. It is suggested that phycobilisomes are connected with PSII dimers, PSI trimers, and coupled PSI monomers.  相似文献   

19.
The manganese-stabilizing protein (MSP) of Photosystem II was purified from spinach photosynthetic membranes. The MSP was crystallized in the presence of calcium. Despite the apparent purity of the isolated protein, the crystals grew to only about 0.05 mm in their largest dimension. The MSP was analyzed to identify possible sources of protein heterogeneity that could hinder crystal growth. Tandem reverse-phase HPLC/ electronspray ionization mass spectrometry analysis of the MSP showed a major peak and four smaller peaks. All five peaks had molecular masses of 26 535, as expected for mature MSP, indicating the absence of heterogeneities due to covalent modifications. MALDI mass spectroscopy was utilized to identify heterogeneities in the MSP oligomeric state. These measurements showed that purified MSP in solution is a mixture of monomers and dimers, while solubilized MSP crystals contained only dimers. Size-exclusion chromatography and dynamic light scattering were used to probe the effect of the crystallization conditions on the MSP. Size-exclusion chromatography of concentrated MSP showed the presence of aggregates and monomers, while dilute MSP contained monomers. Dynamic light scattering experiments in the absence, or in the presence of 10–50 mM or 100 mM calcium, yielded calculated molecular mass values of 34 kDa, 48 kDa and 68 kDa, respectively. These changes in the observed molecular mass of the MSP could have been caused by the formation of dimers and higher oligomers and/or significant conformational changes. Based on the results reported in this study, a model is presented which details the effect of oligomeric heterogeneity on the inhibition of MSP crystal growth. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

20.
The unicellular cyanobacterium Synechococcus sp. PCC 7942 has three psbA genes encoding two different forms of the photosystem II reaction centre protein D1 (D1:1 and D1:2). The level of expression of these psbA genes and the synthesis of D1:1 and D1:2 are strongly regulated under varying light conditions. In order to better understand the regulatory mechanisms underlying these processes, we have constructed a strain of Synechococcus sp. PCC 7942 capable of over-producing psbA mRNA and D1 protein. In this study, we describe the over-expression of D1:1 using a tac-hybrid promoter in front of the psbAI gene in combination with lacI Q repressor system. Over-production of D1:1 was induced by growing cells for 12 h at 50 mol photons m-2 s-1 in the presence of 40 or 80 g/ml IPTG. The amount of psbAI mRNA and that of D1:1 protein in cells grown with IPTG was three times and two times higher, respectively. A higher concentration of IPTG (i.e., 150 g/ml) did not further increase the production of the psbAI message or D1:1. The over-production of D1:1 caused a decrease in the level of D1:2 synthesised, resulting in most PSII reaction centres containing D1:1. However, the over-production of D1:1 had no effect on the pigment composition (chlorophyll a or phycocyanin/number of cells) or the light-saturated rate of photosynthesis. This and the fact that the total amounts of D1 and D2 proteins were not affected by IPTG suggest that the number of PSII centres within the membranes remained unchanged. From these results, we conclude that expression of psbAI can be regulated by using the tac promoter and lacI Q system. However, the accumulation of D1:1 protein into the membrane is regulated by the number of PSII centres.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号