共查询到20条相似文献,搜索用时 9 毫秒
1.
Concentrations of 0.5% O2 immediately inhibited CH4 production from methanol by Methanosarcina barkeri. Simultaneously, the redox potential of the medium increased to about +100 mV. However, the rates of CH4 production were not significantly affected, when the redox potential of an anoxic medium was adjusted to values between -420 mV and +100 mV by addition of titanium (III) citrate, sodium dithionite, flavin adenine dinucleotide, or sodium ascorbate. When the redox potential was adjusted to values between -80 mV and +550 mV by means of mixtures of ferrocyanide and ferricyanide, CH4 production was not inhibited until a redox potential of about +420 mV was reached. M. barkeri was able to reduce 0.5 mM ferricyanide solution at +430 mV within <30 min to a value of about +50 mV, and then to start CH4 production. Higher ferricyanide concentrations were only partially reduced. The extent of reduction of ferricyanide was also dependent on the substrate concentration (methanol) and the density of the bacterial suspension. The results show that M. barkeri was able to generate to a certain extent by itself the redox environment which suited the production of CH4. However, the bacteria probably have not enough reducing power to decrease the redox potential below the critical level of +50 mV, if O2 is present at concentrations >0.005%. 相似文献
2.
3.
A trimethylamine:2-mercaptoethanesulfonate (HS-coenzyme M) methyltransferase has been shown to be present in trimethylamine-grown cells but not in methanol-grown cells of Methanosarcina barkeri. The transfer of one methyl group was catalyzed by this enzyme so that dimethylamine and methyl-S-coenzyme M were the products. Enzyme activity required the presence of ATP and preincubation of the protein solution under H2. Fifty percent of the maximum activity was obtained under N2 in the presence of NAD(P)H plus dithioerythritol.Abbreviations HS-coenzyme M
2-mercaptoethanesulfonic acid
- methyl-S-coenzyme M
2-(methylthio)ethanesulfonic acid
- TES
N-tris (hydroxymethyl)-methyl-2-aminoethanesulfonic acid
- DTE
1,4-dithioerythritol
- BrES
2-bromoethanesulfonic acid
- DTT
1,4-dithiothreotol 相似文献
4.
During growth of Methanosarcina barkeri strain Fusaro on a mixture of trimethylamine and acetate, methane production and acetate consumption were biphasic. In the first phase trimethylamine (33 mmol x l-1) was depleted and some acetate (11–14 from 50 mmol x l-1) was metabolized simultaneously. In the second phase the remaining acetate was cleaved stoichiometrically into CH4 and CO2. Kinetic experiments with (2-14C)acetate revealed that only 2.5% of the methane produced in the first phase originated from acetate: 18% of the acetate metabolized was cleaved into CH4 and CO2, 23% of the acetate was oxidized, and 55% was assimilated. Methane produced from CD3–COOH in the first phase consisted of CD2H2 and CD3H in a ratio of 1:1. 相似文献
5.
Cell extracts of Methanosarcina barkeri grown on methanol in media supplemented with molybdate exhibited a specific activity of formylmethanofuran dehydrogenase of approximately 1 U (1 mol/min)/mg protein. When the growth medium was supplemented with tungstate rather than with molybdate, the specific activity was only 0.04 U/mg. Despite this reduction in specific activity growth on methanol was not inhibited. An inhibition of both growth and synthesis of active formylmethanofuran dehydrogenase was observed, however, when H2 and CO2 were the energy substrates. The results indicate that, in contrast to Methanobacterium wolfei and Methanobacterium thermoautotrophicum, M. barkeri possesses only a molybdenum containing formylmethanofuran dehydrogenase and not in addition a tungsten isoenzyme. 相似文献
6.
Cell extracts (27000xg supernatant) of acetate grown Methanosarcina barkeri were found to have carbonic anhydrase activity (0.41 U/mg protein), which was lost upon heating or incubation with proteinase K. The activity was inhibited by Diamox (apparent K
i=0.5 mM), by azide (apparent K
i=1 mM), and by cyanide (apparent K
i=0.02 mM). These and other properties indicate that the archaebacterium contains the enzyme carbonic anhydrase (EC 4.2.1.1). Evidence is presented that the protein is probably located in the cytoplasm. Methanol or H2/CO2 grown cells of M. barkeri showed no or only very little carbonic anhydrase activity. After transfer of these cells to acetate medium the activity was induced suggesting a function of this enzyme in acetate fermentation to CO2 and CH4. Interestingly, Desulfobacter postgatei and Desulfotomaculum acetoxidans, which oxidize acetate to 2 CO2 with sulfate as electron acceptor, were also found to exhibit carbonic anhydrase activity (0.2 U/mg protein). 相似文献
7.
Hydrogenase was solubilized from the membrane of acetate-grown Methanosarcina barkeri MS and purification was carried out under aerobic conditions. The enzyme was reactivated under reducing conditions in the presence of H2. The enzyme showed a maximal activity of 120±40 mol H2 oxidized · min–1 · min–1 with methyl viologen as an electron acceptor, a maximal hydrogen production rate of 45±4 mol H2 · min–1 · mg–1 with methyl viologen as electron donor, and an apparent K
m for hydrogen oxidation of 5.6±1.7 M. The molecular weight estimated by gel filtration was 98,000. SDS-PAGE showed the enzyme to consist of two polypeptides of 57,000 and 35,000 present in a 1:1 ratio. The native protein contained 8±2 mol Fe, 8±2 mol S2–, and 0.5 mol Ni/mol enzyme. Cytochrome b was reduced by hydrogen in a solubilized membrane preparation. The hydrogenase did not couple with autologous F420 or ferredoxin, nor with FAD, FMN, or NAD(P)+. The physiological function of the membrane-bound hydrogenase in hydrogen consumption is discussed.Abbreviation CoM-S-S-HTP
the heterodisulfide of 7-mercaptoheptanoylthrconine phosphate and coenzyme M (mercaptoethanesulfonic acid) 相似文献
8.
Cell extracts (100,000×g) of acetate grown Methanosarcina barkeri (strain MS) catalyzed CH4 and CO2 formation from acetyl-CoA with specific activities of 50 nmol·min-1·mg protein-1. CH4 formation was found to be dependent on tetrahydromethanopterin (H4MPT) (apparent K
M=4 μM), coenzyme M (H-S-CoM), and 7-mercaptoheptanoylthreonine phosphate (H-S-HTP=component B) rather than on methanofuran
(MFR) and coenzyme F420 (F420). Methyl-H4MPT was identified as an intermediate. This compound accumulated when H-S-CoM and H-S-HTP were omitted from the assays. These
and previous results indicate that methanogenesis from acetate proceeds via acetyl phosphate, acetyl-CoA, methyl-H4MPT, and CH3-S-CoM as intermediates. The disproportionation of formaldehyde to CO2 and CH4 was also studied. This reaction was shown to be dependent on H4MPT, MFR, F420, H-S-CoM, and H-S-HTP. 相似文献
9.
The dehydrogenation of N
5,N
10-methylenetetrahydromethanopterin (CH2=H4MPT) to N
5,N
10-methenyltetrahydromethanopterin (CH≡H4MPT+) is an intermediate step in the oxidation of methanol to CO2 in Methanosarcina barkeri. The reaction is catalyzed by CH2=H4MPT dehydrogenase, which was found to be specific for coenzyme F420 as electron acceptor; neither NAD, NADP nor viologen dyes could substitute for the 5-deazaflavin. The dehydrogenase was anaerobically
purified almost 90-fold to apparent homogeneity in a 32% yield by anion exchange chromatography on DEAE Sepharose and Mono
Q HR, and by affinity chromatography on Blue Sepharose. Sodium dodecyl sulfate/polyacrylamide gel electrophoresis revealed
only one protein band with an apparent mass of 31 kDa. The apparent molecular mass of the native enzyme determined by polyacrylamide
gradient gel electrophoresis was 240 kDa. The ultraviolet/visible spectrum of the purified enzyme was almost identical to
that of albumin suggesting the absence of a chromophoric prosthetic group. Reciprocal plots of the enzyme activity versus
the substrate concentrations were linear: the apparent K
m for CH2=H4MPT and for coenzyme F420 were found to be 6 μM and 25 μM, respectively. Vmax was 4,000 μmol min-1·mg-1 protein (kcat=2,066 s-1) at pH 6 (the pH optimum) and 37°C. The Arrhenius activation energy was 40 kJ/mol. The N-terminal amino acid sequence was found to be 50% identical with that of the F420-dependent CH2=H4MPT dehydrogenase isolated from H2/CO2 grown Methanobacterium thermoautotrophicum. 相似文献
10.
Acetate-grown cells of Methanosarcina barkeri MS were found to form methane from H2:CO2 at the same rate as hydrogen-grown cells. Cells grown on acetate had similar levels of soluble F420-reactive hydrogenase I, and higher levels of cytochrome-linked hydrogenase II compared to hydrogen-grown cells. The hydrogenase I and II activities in the crude extract of acetate-grown cells were separated by differential binding properties to an immobilized Cu2+ column. Hydrogenase II did not react with ferredoxin or F420, whereas hydrogenase I coupled to both ferredoxin and F420. A reconstituted soluble protein system composed of purified CO dehydrogenase, F420-reactive hydrogenase I fraction, and ferredoxin produced H2 from CO oxidation at a rate of 2.5 nmol/min · mg protein. Membrane-bound hydrogenase II coupled H2 consumption to the reduction of CoM-S-S-HTP and the synthesis of ATP. The differential function of hydrogenase I and II is ascribed to ferredoxin-linked hydrogen production from CO and cytochrome b-linked H2 consumption coupled to methanogenesis and ATP synthesis, respectively. 相似文献
11.
Methane formation from acetate in cell suspensions of Methanosarcina barkeri was inhibited by low concentrations (5 M) of propyl iodide. Inhibition was abolished by short exposure of the suspension to light which strongly indicates that a corrinoid enzyme is involved in methanogenesis from acetate. Propyl iodide (5M) had no effect on the exchange reaction between the carboxyl group of acetate and 14CO2, and on methane formation from methanol, from H2 and methanol, or from H2 and CO2. These findings indicate that the proposed corrinoid enzyme has a role in methyl group transfer to coenzyme M after C-C cleavage of acetate.Dedicated to Professor N. Pfennig on the occasion of his 60th birthday 相似文献
12.
The conversion of methyl-tetrahydromethanopterin to methylcoenzyme M inMethanosarcina barkeri is catalyzed by two enzymes: an enzyme with a bound corrinoid, which becomes methylated during the reaction and an enzyme which tranfers the methyl group from this corrinoid to coenzyme M. As in the similar methyltransfer reaction inMethanobacterium thermoautotrophicum the corrinoid enzyme inM. barkeri needs to be activated by H2 and ATP. ATP can be replaced by Ti(III)citrate or CO. 相似文献
13.
Isolated cell walls of Bacillus subtilis have a striated appearance in the electron microscope. The structure persists when teichoic acids are removed. It is inferred that the structure bears on the arrangement of the peptidoglycan chains. 相似文献
14.
From our previous studies on the mechanism of methane formation from acetate it was known that cell extracts of acetate-grown Methanosarcina barkeri (100 000 × g supernatant) catalyze the conversion of acetyl-CoA plus tetrahydromethanopterin (=H4MPT) to methyl-H4MPT, CoA, CO2 and presumably H2. We report here that these extracts, in the absence of H4MPT, mediated an isotope exchange between CO2 ([S]0.5 v=0.2% in the gas phase) and the carbonyl group of acetyl-CoA at almost the same specific rate as the above conversion (10 nmol · min–1 · mg protein–1). Both the exchange and the formation of methyl-H4MPT were inhibited by N2O, suggesting that a corrinoid could be the primary methyl group acceptor in the acetyl-CoA C-C-cleavage reaction. Both activities were dependent on the presence of H2 (E0=–414 mV). Ti(III)citrate (E0=–480 mV) was found to substitute for H2, indicating a reductive activation of the system. In the presence of Ti(III)citrate it was shown that the formation of CO2 from the carbonyl group of acetyl-CoA is associated with a 1:1 stoichiometric generation of H2. Free CO, a possible intermediate in CO2 and H2 formation, was not detected.Non-standard abbreviations AcCoA
acetyl-CoA
- acetyl-P
acetyl phosphate
- OH-B12
hydroxocobalamin
- H-S-CoM
coenzyme M = 2-mercaptoethanesulfonate
- CH3-S-CoM
methyl-coenzyme M = 2-(methylthio)ethanesulfonate
- H-S-HTP
N-7-mercaptoheptanoylthreonine phosphate
- HTP-S-S-HTP
disulfide of H-S-HTP
- CoM-S-S-HTP
disulfide of H-S-CoM and H-S-HTP
- H4MPT
tetrahydromethanopterin
- CH3-H4MPT
N5-methyl-H4MPT
- DTT
dithiothreitol
- MOPS
morpholinopropane sulfonic acid 相似文献
15.
Paul Scherer Vera Höllriegel Christine Krug Michael Bokel Paul Renz 《Archives of microbiology》1984,138(4):354-359
Exogenous 5-hydroxy-[2-14C]benzimidazole was transformed by Methanosarcina barkeri into 5-hydroxy-[2-14C]benzimidazolylcobamide. Thereby the endogenous biosynthesis of 5-hydroxybenzimidazole was completely blocked.Benzimidazole and 5,6-dimethylbenzimidazole were used by M. barkeri to form benzimidazolylcobamide respectively 5,6-dimethylbenzimidazolylcobamide (vitamin B12), but in these cases the endogenous biosynthesis of factor III was not completely suppressed.With [2-14C]benzimidazole it was demonstrated that this base as well as the benzimidazolylcobamide formed thereof are no precursors in the biosynthesis of 5-hydroxybenzimidazolylcobamide.Glycine instead was found to be a building block for the biosynthesis of 5-hydroxybenzimidazole, since radioactivity from [1-14C] and [2-14C]glycine was incorporated, into the base moiety of factor III, but not into its corrin moiety. With [1-13C]glycine and 13C-NMR-spectroscopy it was shown that C-1 of glycine gets C-3a of 5-hydroxybenzimidazole.[1-13C]glycine also led to a single prominent signal in the 13C-NMR-spectrum of coenzyme F420, this was assigned to C-10a.Thus C-1 of glycine was incorporated into the hydroxybenzene part of 5-hydroxybenzimidazole, whereas it was not incorporated into this part of coenzyme F420, indicating that the hydroxybenzene part of these two compounds is not formed from a common intermediate.
L-[U-14C]glutamate led to the exclusive labeling of the corrin ring of factor III, showing that the corrin precursor 5-aminolevulinic acid is formed by the C-5 pathway in M. barkeri.These experiments indicate that the biosynthesis of factor III in the archaebacterium M. barkeri is similar to the corrinoid biosynthesis in the anaerobic eubacteria Eubacterium limosum, Clostridium barkeri, and Clostridium thermoaceticum. 相似文献
16.
Jochen R. Golecki 《Archives of microbiology》1977,114(1):35-41
The multilayered cell wall of the cyanobacterium Anacystis nidulans was studied by the freezeetching technique. A characteristic fracture face in the outer cell wall was demonstrated which is densely packed with particles of a diameter of 60–75 Å. This particle layer is comparable with layers which have been described in many cell walls of Gram-negative prokaryotes.The outer membrane of the cell wall was solubilised by extraction with phenol/water or sodium dodecyl sulfate (SDS). In the SDS-extract 31 bands were separated by polyacrylamide gel electrophoresis, among them 3–5 major proteins with molecular weights of approximately 60, 40, and 10 kdaltons, respectively. Several polypeptides of the Anacystis cell wall were comparable in their mobility with polypeptides extracted from cell walls of different Gramnegative bacteria. The analysis of the SDS-unsoluble electron dense layer (sacculi) revealed the typical components of peptidoglycan diaminopimelic acid, muramic acid, glutamic acid, glucosamine and alamine in the molar ratio of 1.0:0.9:1.1:1.5:1.9. In addition, other amino acids (molar ratio from 0.05–0.36), mannosamine (molar ratio 0.54), and lipopolysaccharide components were detected in low concentration.Abbreviations SDS
sodium dodecyl sulfate
- EDTA
ethylene diamine tetraacetate 相似文献
17.
D. J. W. Moriarty 《Archives of microbiology》1979,120(3):191-193
Muramic acid has been detected in Prochloron with the aid of two different techniques. It was assayed by cleaving D-lactate from muramic acid and then reducing NAD with D-lactate dehydrogenase and measuring the NADH with bacterial luciferase. Gas-liquid chromatography of trimethylsilyl derivatives of cell extracts confirmed that muramic acid was present in about the quantity given by the D-lactate assay. The amount of muramic acid present was 1.7±0.2 g/mg dry weight or 1.3fg/m2 of cell surface. This suggests that the thickness of the peptidoglycan layer in Prochloron is similar to that in blue-green algae.Abbreviations
D-LDH
d-lactate dehydrogenase
- MA
muramic acid
- TMS
trimethylsilyl
- TLE
thin layer electrophoresis
- GLC
gas-liquid chromatography 相似文献
18.
The structure of Eubacterium nodatum cell wall peptidoglycan was investigated. The peptide subunit of E. nodatum peptidoglycan has the following structure: L-Ala-D-Glu (Gly)-L-Orn-D-Ala. The carboxyl group of alanine occupying position 4 is attached to the -amino group of ornithine of an other subunit by the cross-linking bridge L-Ala-L-Ala-L-Orn. All glycine molecules are connected with the -carboxyl group of glutamic acid with the ratio being 0.5–1. The hydrolysis of E. nodatum peptidoglycan by the S. albus G enzyme proceeds primarily due to the activity of alanyl-alanine endopeptidase, ornithyl-ornithine endopeptidase, ornithyl-alanine endopeptidase, N-acetyl-muramyl-alanine amidase, N-acetylmuramidase and N-acetylglucosaminidase. 相似文献
19.
The mechanism of lysis of Eubacterium alactolyticum cell walls by Streptomyces albus G enzyme was studied. The analysis of the peptide terminal groups and peptide subunits isolated from the cell wall digest, released during solubilization of the cell walls, revealed that lytic action of S. albus G enzyme was mainly due to D-alanyl-A2pm endopeptidase, N-acetylmuramyl-L-alanine amidase, N-acetylmuramidase and N-acetylglucosaminidase. E. alactolyticum cell wall peptidoglycan is composed mainly of glucosamine, muramic acid, D-glutamic acid, L- and D-alanine, meso-diaminopimelic acid and glycine. The peptide subunit consists of L-alanyl-D-glutamyl-meso-A2pm-D-alanine. D-Alanine is connected directly with the amino group of the meso-A2pm residue of another peptide subunit. All of the L-amino groups of meso-diaminopimelic acid are involved in cross-linking.The possible structure of the peptide moiety of E. alactolyticum cell wall peptidoglycan is presented. 相似文献
20.
Cell suspensions of Methanosarcina barkeri (strain Fusaro) grown on acetate were found to catalyze the formation of methane and CO2 from acetate (30–40 nmol/min·mg protein) and an isotopic exchange between the carboxyl group of acetate and 14CO2 (30–40 nmol/min·mg protein). An isotopic exchange between [14C]-formate and acetate was not observed. Cells grown on methanol mediated neither methane formation from acetate nor the exchange reactions. The data indicate that the isotopic exchange between CO2 and the carboxyl group of acetate is a partial reaction of methanogenesis from acetate. Both reactions were completely inhibited by low concentrations of cyanide (20 M) or of hydrogen (0.5% in the gas phase). Methane formation from acetate was also completely inhibited by low concentrations of carbon monoxide (0.2% in the gas phase) whereas only significantly higher concentrations of CO had an effect on the exchange reaction. In the concentration range tested KCN, H2 and CO had no effect on methane formation from methanol or from H2 and CO2; however, cyanide (20 M) also affected methane formation from CO. The results are discussed with respect to proposed mechanisms of methane and CO2 formation from acetate. 相似文献