首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
2.
The production and removal of regulatory RNAs must be controlled to ensure proper physiological responses. SsrA RNA (tmRNA), a regulatory RNA conserved in all bacteria, is cell cycle regulated and is important for control of cell cycle progression in Caulobacter crescentus. We report that RNase R, a highly conserved 3' to 5' exoribonuclease, is required for the selective degradation of SsrA RNA in stalked cells. Purified RNase R degrades SsrA RNA in vitro, and is kinetically competent to account for all SsrA RNA turnover. SmpB, a tmRNA-binding protein, protects SsrA RNA from RNase R degradation in vitro, and the levels of SmpB protein during the cell cycle correlate with SsrA RNA stability. These results suggest that SmpB binding controls the timing of SsrA RNA degradation by RNase R. We propose a model for the regulated degradation of SsrA RNA in which RNase R degrades SsrA RNA from a non-tRNA-like 3' end, and SmpB specifically protects SsrA RNA from RNase R. This model explains the regulation of SsrA RNA in other bacteria, and suggests that a highly conserved regulatory mechanism controls SsrA activity.  相似文献   

3.
Small protein B (SmpB) is a requisite component of the transfer messenger RNA (tmRNA)-mediated bacterial translational quality control system known as trans-translation. The initial binding of tmRNA and its subsequent accommodation into the ribosomal A-site are activities intimately linked to SmpB protein function. From a mechanistic perspective, two key unanswered questions that require further investigation are: 1) what constitutes a stalled ribosome recognition complex and 2) does SmpB pre-bind ribosomes to recruit tmRNA. We have assessed, both in vivo and in vitro, the nature and stability of free SmpB interactions with stalled ribosomes and examined whether these interactions are functionally relevant. We present evidence to demonstrate that interaction of free SmpB with ribosomes is salt sensitive and significantly more labile than interaction of the SmpB.tmRNA complex with ribosomes. Upon dissociation of 70 S ribosomes SmpB partitions primarily with tmRNA rather than ribosomal subunits. This finding is consistent with biochemical and structural data demonstrating that tmRNA is the high-affinity binding partner of SmpB. Moreover, we show that under normal physiological conditions roughly similar numbers of SmpB and tmRNA molecules are present in cells. Our investigations also reveal that upon induction of a nonstop mRNA, SmpB is enriched in stalled ribosome fractions only in the presence of tmRNA. Based on these findings, we conclude that SmpB does not pre-bind stalled ribosome and that functional SmpB-stalled ribosome interactions require tmRNA. We propose that a 1:1:1 complex of SmpB.tmRNA.EF-Tu(GTP) recognizes and binds a stalled ribosome to initiate trans-translation.  相似文献   

4.
In bacteria, stalled ribosomes are recycled by a hybrid transfer-messenger RNA (tmRNA). Like tRNA, tmRNA is aminoacylated with alanine and is delivered to the ribosome by EF-Tu, where it reacts with the growing polypeptide chain. tmRNA entry into stalled ribosomes poses a challenge to our understanding of ribosome function because it occurs in the absence of a codon-anticodon interaction. Instead, tmRNA entry is licensed by the binding of its protein partner, SmpB, to the ribosomal decoding center. We analyzed a series of SmpB mutants and found that its C-terminal tail is essential for tmRNA accommodation but not for EF-Tu activation. We obtained evidence that the tail likely functions as a helix on the ribosome to promote accommodation and identified key residues in the tail essential for this step. In addition, our mutational analysis points to a role for the conserved K(131)GKK tail residues in trans-translation after peptidyl transfer to tmRNA, presumably EF-G-mediated translocation or translation of the tmRNA template. Surprisingly, analysis of A1492, A1493, and G530 mutants reveals that while these ribosomal nucleotides are essential for normal tRNA selection, they play little to no role in peptidyl transfer to tmRNA. These studies clarify how SmpB interacts with the ribosomal decoding center to license tmRNA entry into stalled ribosomes.  相似文献   

5.
SsrA, or tmRNA, is a small RNA that interacts with selected translating ribosomes to target the nascent polypeptides for degradation. Here we report that SsrA activity is required for normal timing of the G(1)-to-S transition in Caulobacter crescentus. A deletion of the ssrA gene, or of the gene encoding SmpB, a protein required for SsrA activity, results in a specific delay in the cell cycle during the G(1)-to-S transition. The ssrA deletion phenotype is not due to accumulation of stalled ribosomes, because the deletion is not complemented by a mutated version of SsrA that releases ribosomes but does not target proteins for degradation. Degradation of the CtrA response regulator normally coincides with initiation of DNA replication, but in strains lacking SsrA activity there is a 40-min delay between the degradation of CtrA and replication initiation. This uncoupling of initiation of replication from CtrA degradation indicates that there is an SsrA-dependent pathway required for correct timing of DNA replication.  相似文献   

6.
Bacteria contain a remarkable RNA molecule - known alternatively as SsrA RNA, tmRNA, or 10Sa RNA - that acts both as a tRNA and as an mRNA to direct the modification of proteins whose biosynthesis has stalled or has been interrupted. These incomplete proteins are marked for degradation by cotranslational addition of peptide tags to their C-termini in a reaction that is mediated by ribosome-bound SsrA RNA and an associated protein factor, SmpB. This system plays a key role in intracellular protein quality control and also provides a mechanism to clear jammed or obstructed ribosomes. Here the structural, functional and phylogenetic properties of this unique RNA and its associated factors are reviewed, and the intracellular proteases that act to degrade the proteins tagged by this system are also discussed.  相似文献   

7.
The SsrA.SmpB quality control system adds a C-terminal degradation peptide (AANDENYALAA) to nascent chains on stalled ribosomes, thereby freeing the ribosome and ensuring proteolysis of the tagged protein. An SsrA mutant with the tag sequence AANDEHHHHHH was used to slow degradation and facilitate Ni2+-nitrilotriacetic acid affinity purification. Display of affinity-purified Escherichia coli proteins on two-dimensional gels revealed small quantities of a diverse set of SsrA-H6-tagged proteins, and mass spectroscopy identified LacI repressor, lambda cI repressor, YbeL, GalE, RbsK, and a SlyD-kan(R) fusion protein as members of this set. For lambda repressor and YbeL, the SsrA-H6 tag was added after the natural C terminus of the protein, suggesting that tagging occurred while the ribosome idled at the termination codon of these genes. Potential causes of tagging for the other proteins include interference from translation of downstream reading frames, rare codons, and gene disruption. These and previous results support a broad role for the SsrA.SmpB system in freeing stalled ribosomes and in directing degradation of the products of these frustrated protein synthesis reactions.  相似文献   

8.
To rescue stalled ribosomes, eubacteria employ a molecule, transfer messenger RNA (tmRNA), which functions both as a tRNA and as an mRNA. With the help of small protein B (SmpB), tmRNA restarts protein synthesis and adds by the trans-translation mechanism a peptide tag to the stalled protein to target it for destruction by cellular proteases. Here, the cellular location and expression of endogenous SmpB were monitored in vivo. We report that SmpB is associated with 70S ribosomes and not in the soluble fraction, independently of the presence of tmRNA. In vitro, SmpB that is pre-bound to a stalled ribosome can trigger initiation of trans-translation. Our results demonstrate the existence of a novel pathway for the entry of tmRNA to the ribosome and for the trans-transfer of a nascent peptide chain from peptidyl-tRNA to charged tmRNA.  相似文献   

9.
Transfer-messenger RNA (tmRNA) acts first as a tRNA and then as an mRNA template to rescue stalled ribosomes in eubacteria. Together with its protein partner, SmpB (small protein B), tmRNA enters stalled ribosomes and transfers an Ala residue to the growing polypeptide chain. A remarkable step then occurs: the ribosome leaves the stalled mRNA and resumes translation using tmRNA as a template, adding a short peptide tag that destines the aborted protein for destruction. Exactly how the ribosome switches templates, resuming translation on tmRNA in the proper reading frame, remains unknown. Within the tmRNA sequence itself, five nucleotides (U85AGUC) immediately upstream of the first codon appear to direct frame selection. In particular, mutation of the conserved A86 results in severe loss of function both in vitro and in vivo. The A86C mutation causes translation to resume exclusively in the + 1 frame. Several candidate binding partners for this upstream sequence have been identified in vitro. Using a genetic selection for tmRNA activity in Escherichia coli, we identified mutations in the SmpB protein that restore the function of A86C tmRNA in vivo. The SmpB mutants increase tagging in the normal reading frame and reduce tagging in the + 1 frame. These results demonstrate that SmpB is functionally linked with the sequence upstream of the tmRNA template; both contribute to reading frame selection on tmRNA.  相似文献   

10.
Tight recognition of codon–anticodon pairings by the ribosome ensures the accuracy and fidelity of protein synthesis. In eubacteria, translational surveillance and ribosome rescue are performed by the ‘tmRNA–SmpB’ system (transfer messenger RNA–small protein B). Remarkably, entry and accommodation of aminoacylated‐tmRNA into stalled ribosomes occur without a codon–anticodon interaction but in the presence of SmpB. Here, we show that within a stalled ribosome, SmpB interacts with the three universally conserved bases G530, A1492 and A1493 that form the 30S subunit decoding centre, in which canonical codon–anticodon pairing occurs. The footprints at positions A1492 and A1493 of a small decoding centre, as well as on a set of conserved SmpB amino acids, were identified by nuclear magnetic resonance. Mutants at these residues display the same growth defects as for ΔsmpB strains. The SmpB protein has functional and structural similarities with initiation factor 1, and is proposed to be a functional mimic of the pairing between a codon and an anticodon.  相似文献   

11.
Stalled bacterial ribosomes are freed by transfer-messenger RNA (tmRNA). With the help of small protein B (SmpB), protein synthesis restarts and tmRNA adds a tag to the stalled protein for destruction. The conformation of a 347 nt long tmRNA from a thermophile and its interactions with SmpB were monitored using structural probes. The RNA is highly folded, including the reading frame, with <30% of unpaired residues. Footprints between SmpB and tmRNA are in the elbow of the tRNA domain, in some pseudoknots including one essential for function and in the lower part of the stem exiting the tRNA domain. The footprints outside the tRNA domain are scattered onto the tmRNA sequence, but form a cluster onto its tertiary structure derived from cryo-EM data. Some footprints flank the first triplet to be translated in tmRNA, suggesting that SmpB participates in the insertion of the tmRNA-encoded reading frame into the decoding center. To discriminate between a conformational rearrangement of tmRNA and independent binding sites, surface plasmon resonance was used and has identified three independent binding sites of SmpB on the RNA, including the site on the tRNA domain. Accordingly, SmpB is proposed to move on the tmRNA scaffold during trans-translation.  相似文献   

12.
Saccharomyces cerevisiae Cet1p is the prototype of a family of metal-dependent RNA 5'-triphosphatases/NTPases encoded by fungi and DNA viruses; the family is defined by conserved sequence motifs A, B, and C. We tested the effects of 12 alanine substitutions and 16 conservative modifications at 18 positions of the motifs. Eight residues were identified as important for triphosphatase activity. These were Glu-305, Glu-307, and Phe-310 in motif A (IELEMKF); Arg-454 and Lys-456 in motif B (RTK); Glu-492, Glu-494, and Glu-496 in motif C (EVELE). Four acidic residues, Glu-305, Glu-307, Glu-494, and Glu-496, may comprise the metal-binding site(s), insofar as their replacement by glutamine inactivated Cet1p. E492Q retained triphosphatase activity. Basic residues Arg-454 and Lys-456 in motif B are implicated in binding to the 5'-triphosphate. Changing Arg-454 to alanine or glutamine resulted in a 30-fold increase in the K(m) for ATP, whereas substitution with lysine increased K(m) 6-fold. Changing Lys-456 to alanine or glutamine increased K(m) an order of magnitude; ATP binding was restored when arginine was introduced. Alanine in lieu of Phe-310 inactivated Cet1p, whereas Tyr or Leu restored function. Alanine mutations at aliphatic residues Leu-306, Val-493, and Leu-495 resulted in thermal instability in vivo and in vitro. A second S. cerevisiae RNA triphosphatase/NTPase (named Cth1p) containing motifs A, B, and C was identified and characterized. Cth1p activity was abolished by E87A and E89A mutations in motif A. Cth1p is nonessential for yeast growth and, by itself, cannot fulfill the essential role played by Cet1p in vivo. Yet, fusion of Cth1p in cis to the guanylyltransferase domain of mammalian capping enzyme allowed Cth1p to complement growth of cet1Delta yeast cells. This finding illustrates that mammalian guanylyltransferase can be used as a vehicle to deliver enzymes to nascent pre-mRNAs in vivo, most likely through its binding to the phosphorylated CTD of RNA polymerase II.  相似文献   

13.
14.
trans-Translation, orchestrated by SmpB and tmRNA, is the principal eubacterial pathway for resolving stalled translation complexes. RNase R, the leading nonstop mRNA surveillance factor, is recruited to stalled ribosomes in a trans-translation dependent process. To elucidate the contributions of SmpB and tmRNA to RNase R recruitment, we evaluated Escherichia coliFrancisella tularensis chimeric variants of tmRNA and SmpB. This evaluation showed that while the hybrid tmRNA supported nascent polypeptide tagging and ribosome rescue, it suffered defects in facilitating RNase R recruitment to stalled ribosomes. To gain further insights, we used established tmRNA and SmpB variants that impact distinct stages of the trans-translation process. Analysis of select tmRNA variants revealed that the sequence composition and positioning of the ultimate and penultimate codons of the tmRNA ORF play a crucial role in recruiting RNase R to rescued ribosomes. Evaluation of defined SmpB C-terminal tail variants highlighted the importance of establishing the tmRNA reading frame, and provided valuable clues into the timing of RNase R recruitment to rescued ribosomes. Taken together, these studies demonstrate that productive RNase R-ribosomes engagement requires active trans-translation, and suggest that RNase R captures the emerging nonstop mRNA at an early stage after establishment of the tmRNA ORF as the surrogate mRNA template.  相似文献   

15.
Eubacterial ribosomes stalled on defective mRNAs are released through a mechanism referred to as trans-translation, depending on the coordinated actions of small protein B (SmpB) and transfer messenger RNA (tmRNA). A series of tmRNA variants with deletions in each structural domain were produced. Their structures were monitored by enzymatic and chemical probes in vitro, in the presence and absence of SmpB. Dissociation constants between these RNAs and SmpB from Aquifex aeolicus were derived by surface plasmon resonance (SPR) combined with filter binding assays. Three independent experimental evidences, including filter binding assays, SPR, and concentration titrations of the RNA–protein reactivity changes toward structural probes, indicate that the binding site that has the highest affinity for the protein is located outside the tRNA domain, upstream of the internal tag. The minimal tmRNA fragment that contains this high affinity site for SmpB, and also contains another site of lower affinity, includes the tag reading frame and three downstream pseudoknots that form a ring structure in solution.  相似文献   

16.
Translational pausing in Escherichia coli can lead to mRNA cleavage within the ribosomal A-site. A-site mRNA cleavage is thought to facilitate transfer-messenger RNA (tmRNA)·SmpB- mediated recycling of stalled ribosome complexes. Here, we demonstrate that the aminoglycosides paromomycin and streptomycin inhibit A-site cleavage of stop codons during inefficient translation termination. Aminoglycosides also induced stop codon read-through, suggesting that these antibiotics alleviate ribosome pausing during termination. Streptomycin did not inhibit A-site cleavage in rpsL mutants, which express streptomycin-resistant variants of ribosomal protein S12. However, rpsL strains exhibited reduced A-site mRNA cleavage compared with rpsL+ cells. Additionally, tmRNA·SmpB-mediated SsrA peptide tagging was significantly reduced in several rpsL strains but could be fully restored in a subset of mutants when treated with streptomycin. The streptomycin-dependent rpsL(P90K) mutant also showed significantly lower levels of A-site cleavage and tmRNA·SmpB activity. Mutations in rpsD (encoding ribosomal protein S4), which suppressed streptomycin dependence, were able to partially restore A-site cleavage to rpsL(P90K) cells but failed to increase tmRNA·SmpB activity. Taken together, these results show that perturbations to A-site structure and function modulate A-site mRNA cleavage and tmRNA·SmpB activity. We propose that tmRNA·SmpB binds to streptomycin-resistant rpsL ribosomes less efficiently, leading to a partial loss of ribosome rescue function in these mutants.  相似文献   

17.
Small protein B (SmpB) is an essential component of the highly conserved tmRNA-SmpB system that has the dual function of releasing stalled ribosomes from damaged messenger RNAs and targeting incompletely synthesized protein fragments for degradation. Nuclear magnetic resonance (NMR) analysis of SmpB from Aquifex aeolicus revealed an antiparallel beta-barrel structure, with three helices packed outside the core of the barrel. While the overall structure of SmpB appears to be unique, the structure does contain an embedded oligonucleotide binding fold; in this respect SmpB has similarity to several other RNA-binding proteins that are known to be associated with translation, including IF1, ribosomal protein S17 and the N-terminal domain of aspartyl tRNA synthetase. Conserved amino acids on the protein surface that are most likely to directly interact with the tmRNA were identified. The presence of widely separated clusters of conserved amino acids suggests that SmpB could function either by stabilizing two distal regions of the tmRNA, or by facilitating an interaction between the tmRNA and another component of the translational apparatus.  相似文献   

18.
Transfer-messenger RNA (tmRNA) mimics functions of aminoacyl-tRNA and mRNA, subsequently, when rescuing stalled ribosomes on a 3' truncated mRNA without stop codon in bacteria. In addition, this mechanism marks prematurely terminated proteins by a C-terminal peptide tag as a signal for degradation by specific cellular proteases. For Escherichia coli, previous studies on initial steps of this "trans-translation" mechanism revealed that tmRNA alanylation by Ala-tRNA synthetase and binding of Ala-tmRNA by EF-Tu-GTP for subsequent delivery to stalled ribosomes are inefficient when compared to analogous reactions with canonical tRNA(Ala). In other studies, protein SmpB and ribosomal protein S1 appeared to bind directly to tmRNA and to be indispensable for trans-translation. Here, we have searched for additional and synergistic effects of the latter two on tmRNA alanylation and its subsequent binding to EF-Tu-GTP. Kinetic analysis of functioning combined with band-shift experiments and structural probing demonstrate, that tmRNA may indeed form a multimeric complex with SmpB, S1 and EF-Tu-GTP, which leads to a considerably enhanced efficiency of the initial steps of trans-translation. Whereas S1 binds to the mRNA region of tmRNA, we have found that SmpB and EF-Tu both interact with its acceptor arm region. Interaction with SmpB and EF-Tu was also observed at the acceptor arm of Ala-tRNA(Ala), but there the alanylation efficiency was inhibited rather than stimulated by SmpB. Therefore, SmpB may function as an essential modulator of the tRNA-like acceptor arm of tmRNA during its successive steps in trans-translation.  相似文献   

19.
To add a tag-peptide for degradation to the nascent polypeptide in a stalled ribosome, an unusual translation called trans-translation is facilitated by transfer-messenger RNA (tmRNA) having an upper half of the tRNA structure and the sequence encoding the tag-peptide except the first alanine. During this event, tmRNA enters the vacant A-site of the stalled ribosome without a codon–anticodon interaction, but with a protein factor SmpB. Here, we studied the sites and modes of binding of SmpB to the ribosome by directed hydroxyl radical probing from Fe(II) tethered to SmpB variants. It revealed two SmpB-binding sites, A-site and P-site, on the ribosome. Each SmpB can be superimposed on the lower half of tRNA behaving in translation. The sites of cleavages from Fe(II) tethered to the C-terminal residues of A-site SmpB are aligned along the mRNA path towards the downstream tunnel, while those of P-site SmpB are found almost exclusively around the region of the codon–anticodon interaction in the P-site. We propose a new model of trans-translation in that the C-terminal tail of SmpB initially recognizes the decoding region and the mRNA path free of mRNA by mimicking mRNA.  相似文献   

20.
During trans-translation, stalled bacterial ribosomes are rescued by small protein B (SmpB) and by transfer-messenger RNA (tmRNA). Stalled ribosomes switch translation from the defective messages to a short internal reading frame on tmRNA that tags the nascent peptide chain for degradation and recycles the ribosomes. We present evidences that SmpB binds the large and small ribosomal subunits in vivo and in vitro. The binding between SmpB and the ribosomal subunits is very tight, with a dissociation constant of 1.7 × 10−10 M, similar to its KD for the 70S ribosome or for tmRNA. tmRNA displaces SmpB from its 50S binding but not from the 30S. In vivo, SmpB is detected on the 50S when trans-translation is impaired by lacking tmRNA or a functional SmpB. SmpB contacts the large subunit transiently and early during the trans-translational process. The affinity of SmpB for the two ribosomal subunits is modulated by tmRNA in the course of trans-translation. It is the first example of two copies of the same protein interacting with two different functional sites of the ribosomes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号