首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The N-terminal acetyltransferase NatB in Saccharomyces cerevisiae consists of the catalytic subunit Nat3p and the associated subunit Mdm20p. We here extend our present knowledge about the physiological role of NatB by a combined proteomics and phenomics approach. We found that strains deleted for either NAT3 or MDM20 displayed different growth rates and morphologies in specific stress conditions, demonstrating that the two NatB subunits have partly individual functions. Earlier reported phenotypes of the nat3Delta strain have been associated with altered functionality of actin cables. However, we found that point mutants of tropomyosin that suppress the actin cable defect observed in nat3Delta only partially restores wild-type growth and morphology, indicating the existence of functionally important acetylations unrelated to actin cable function. Predicted NatB substrates were dramatically overrepresented in a distinct set of biological processes, mainly related to DNA processing and cell cycle progression. Three of these proteins, Cac2p, Pac10p, and Swc7p, were identified as true NatB substrates. To identify N-terminal acetylations potentially important for protein function, we performed a large-scale comparative phenotypic analysis including nat3Delta and strains deleted for the putative NatB substrates involved in cell cycle regulation and DNA processing. By this procedure we predicted functional importance of the N-terminal acetylation for 31 proteins.  相似文献   

2.
Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry was used to determine the state of N-terminal acetylation of 68 ribosomal proteins from a normal strain of Saccharomyces cerevisiae and from the ard1-Delta, nat3-Delta, and mak3-Delta mutants (), each lacking a catalytic subunit of three different N-terminal acetyltransferases. A total 30 of the of 68 ribosomal proteins were N-terminal-acetylated, and 24 of these (80%) were NatA substrates, unacetylated in solely the ard1-Delta mutant and having mainly Ac-Ser- termini and a few with Ac-Ala- or Ac-Thr- termini. Only 4 (13%) were NatB substrates, unacetylated in solely the nat3-Delta mutant, and having Ac-Met-Asp- or Ac-Met-Glu- termini. No NatC substrates were uncovered, e.g. unacetylated in solely mak3-Delta mutants, consistent with finding that none of the ribosomal proteins had Ac-Met-Ile-, Ac-Met-Leu-, or Ac-Met-Phe- termini. Interestingly, two new types of the unusual NatD substrates were uncovered, having either Ac-Ser-Asp-Phe- or Ac-Ser-Asp-Ala- termini that were unacetylated in the ard1-Delta mutant, and only partially acetylated in the mak3-Delta mutant and, for one case, also only partially in the nat3-Delta mutant. We suggest that the acetylation of NatD substrates requires not only Ard1p and Nat1p, but also auxiliary factors that are acetylated by the Mak3p and Nat3p N-terminal acetyltransferases.  相似文献   

3.
N(alpha) acetylation is one of the most abundant protein modifications in eukaryotes and is catalyzed by N-terminal acetyltransferases (NATs). NatA, the major NAT in Saccharomyces cerevisiae, consists of the subunits Nat1p, Ard1p, and Nat5p and is necessary for the assembly of repressive chromatin structures. Here, we found that Orc1p, the large subunit of the origin recognition complex (ORC), required NatA acetylation for its role in telomeric silencing. NatA functioned genetically through the ORC binding site of the HMR-E silencer. Furthermore, tethering Orc1p directly to the silencer circumvented the requirement for NatA in silencing. Orc1p was N(alpha) acetylated in vivo by NatA. Mutations that abrogated its ability to be acetylated caused strong telomeric derepression. Thus, N(alpha) acetylation of Orc1p represents a protein modification that modulates chromatin function in S. cerevisiae. Genetic evidence further supported a functional link between NatA and ORC: (i) nat1Delta was synthetically lethal with orc2-1 and (ii) the synthetic lethality between nat1Delta and SUM1-1 required the Orc1 N terminus. We also found Sir3p to be acetylated by NatA. In summary, we propose a model by which N(alpha) acetylation is required for the binding of silencing factors to the N terminus of Orc1p and Sir3p to recruit heterochromatic factors and establish repression.  相似文献   

4.
N(alpha)-terminal acetylation occurs in the yeast Saccharomyces cerevisiae by any of three N-terminal acetyltransferases (NAT), NatA, NatB, and NatC, which contain Ard1p, Nat3p and Mak3p catalytic subunits, respectively. The N-terminal sequences required for N-terminal acetylation, i.e. the NatA, NatB, and NatC substrates, were evaluated by considering over 450 yeast proteins previously examined in numerous studies, and were compared to the N-terminal sequences of more than 300 acetylated mammalian proteins. In addition, acetylated sequences of eukaryotic proteins were compared to the N termini of 810 eubacterial and 175 archaeal proteins, which are rarely acetylated. Protein orthologs of Ard1p, Nat3p and Mak3p were identified with the eukaryotic genomes of the sequences of model organisms, including Caenorhabditis elegans, Drosophila melanogaster, Arabidopsis thaliana, Mus musculus and Homo sapiens. Those and other putative acetyltransferases were assigned by phylogenetic analysis to the following six protein families: Ard1p; Nat3p; Mak3p; CAM; BAA; and Nat5p. The first three families correspond to the catalytic subunits of three major yeast NATs; these orthologous proteins were identified in eukaryotes, but not in prokaryotes; the CAM family include mammalian orthologs of the recently described Camello1 and Camello2 proteins whose substrates are unknown; the BAA family comprise bacterial and archaeal putative acetyltransferases whose biochemical activity have not been characterized; and the new Nat5p family assignment was on the basis of putative yeast NAT, Nat5p (YOR253W). Overall patterns of N-terminal acetylated proteins and the orthologous genes possibly encoding NATs suggest that yeast and higher eukaryotes have the same systems for N-terminal acetylation.  相似文献   

5.
The majority of cytosolic proteins in eukaryotes contain a covalently linked acetyl moiety at their very N terminus. The mechanism by which the acetyl moiety is efficiently transferred to a large variety of nascent polypeptides is currently only poorly understood. Yeast N(alpha)-acetyltransferase NatA, consisting of the known subunits Nat1p and the catalytically active Ard1p, recognizes a wide range of sequences and is thought to act cotranslationally. We found that NatA was quantitatively bound to ribosomes via Nat1p and contained a previously unrecognized third subunit, the N(alpha)-acetyltransferase homologue Nat5p. Nat1p not only anchored Ard1p and Nat5p to the ribosome but also was in close proximity to nascent polypeptides, independent of whether they were substrates for N(alpha)-acetylation or not. Besides Nat1p, NAC (nascent polypeptide-associated complex) and the Hsp70 homologue Ssb1/2p interact with a variety of nascent polypeptides on the yeast ribosome. A direct comparison revealed that Nat1p required longer nascent polypeptides for interaction than NAC and Ssb1/2p. Delta nat1 or Delta ard1 deletion strains were temperature sensitive and showed derepression of silent mating type loci while Delta nat5 did not display any obvious phenotype. Temperature sensitivity and derepression of silent mating type loci caused by Delta nat1 or Delta ard1 were partially suppressed by overexpression of SSB1. The combination of data suggests that Nat1p presents the N termini of nascent polypeptides for acetylation and might serve additional roles during protein synthesis.  相似文献   

6.
Saccharomyces cerevisiae contains three N-terminal acetyltransferases (NATs), NatA, NatB, and NatC, composed of the following catalytic and auxiliary subunits: Ard1p and Nat1p (NatA); Nat3p and Mdm20p (NatB); and Mak3p, Mak10, and Mak31p (NatC). The overall patterns of N-terminally acetylated proteins and NAT orthologous genes suggest that yeast and higher eukaryotes have similar systems for N-terminal acetylation. The differential expression of certain NAT subunits during development or in carcinomas of higher eukaryotes suggests that the NATs are more highly expressed in cells undergoing rapid protein synthesis. Although Mak3p is functionally the same in yeast and plants, findings with TE2 (a human Ard1p ortholog) and Tbdn100 (a mouse Nat1p ortholog) suggest that certain of the NAT subunits may have functions other than their role in NATs or that these orthologs are not functionally equivalent. Thus, the vertebrate NATs remain to be definitively identified, and, furthermore, it remains to be seen if any of the yeast NATs contribute to other functions.  相似文献   

7.
NatB Nalpha-terminal acetyltransferase of Saccharomyces cerevisiae acts cotranslationally on proteins with Met-Glu- or Met-Asp- termini and subclasses of proteins with Met-Asn- and Met-Met- termini. NatB is composed of the interacting Nat3p and Mdm20p subunits, both of which are required for acetyltransferase activity. The phenotypes of nat3-Delta and mdm20-Delta mutants are identical or nearly the same and include the following: diminished growth at elevated temperatures and on hyperosmotic and nonfermentable media; diminished mating; defective actin cables formation; abnormal mitochondrial and vacuolar inheritance; inhibition of growth by DNA-damaging agents such as methyl methanesulfonate, bleomycin, camptothecin, and hydroxyurea; and inhibition of growth by the antimitotic drugs benomyl and thiabendazole. The similarity of these phenotypes to the phenotypes of certain act1 and tpm1 mutants suggests that such multiple defects are caused by the lack of acetylation of actin and tropomyosins. However, the lack of acetylation of other unidentified proteins conceivably could cause the same phenotypes. Furthermore, unacetylated actin and certain N-terminally altered actins have comparable defective properties in vitro, particularly actin-activated ATPase activity and sliding velocity.  相似文献   

8.
Mdm20 is an auxiliary subunit of the NatB complex, which includes Nat5, the catalytic subunit for protein N-terminal acetylation. The NatB complex catalyzes N-acetylation during de novo protein synthesis initiation; however, recent evidence from yeast suggests that NatB also affects post-translational modification of tropomyosin, which is involved in intracellular sorting of aggregated proteins. We hypothesized that an acetylation complex such as NatB may contribute to protein clearance and/or proteostasis in mammalian cells. Using a poly glutamine (polyQ) aggregation system, we examined whether the NatB complex or its components affect protein aggregation in rat primary cultured hippocampal neurons and HEK293 cells. The number of polyQ aggregates increased in Mdm20 over-expressing (OE) cells, but not in Nat5-OE cells. Conversely, in Mdm20 knockdown (KD) cells, but not in Nat5-KD cells, polyQ aggregation was significantly reduced. Although Mdm20 directly associates with Nat5, the overall cellular localization of the two proteins was slightly distinct, and Mdm20 apparently co-localized with the polyQ aggregates. Furthermore, in Mdm20-KD cells, a punctate appearance of LC3 was evident, suggesting the induction of autophagy. Consistent with this notion, phosphorylation of Akt, most notably at Ser473, was greatly reduced in Mdm20-KD cells. These results demonstrate that Mdm20, the so-called auxiliary subunit of the translation-coupled protein N-acetylation complex, contributes to protein clearance and/or aggregate formation by affecting the phosphorylation level of Akt indepenently from the function of Nat5.  相似文献   

9.
Tfs1p and Ylr179cp are yeast proteins belonging to the PEBP family. Tfs1p, but not Ylr179cp, has been shown to interact with and inhibit Ira2p, a GTPase-activating protein of Ras. Tfs1p has been shown to be a specific inhibitor of the CPY protease and the 3D structure of the complex has been resolved. To shed light on the molecular determinants of Tfs1p involved in the Tfs1/Ira2 interaction, the 3D structure of Ylr179cp has been modelled and compared to that of Tfs1p. Tfs1p point mutants and Tfs1 hybrid proteins combining regions of Tfs1p and Ylr179cp were also designed and their function was tested. Results, interpreted from a structural point of view, show that the accessibility of the surface pocket of Tfs1p, its N-terminal region and the specific electrostatic properties of a large surface region containing these two elements, play a crucial role in this interaction.  相似文献   

10.
N-terminal acetylation in the yeast Saccharomyces cerevisiae is catalysed by any of three N-terminal acetyltransferases (NAT), NatA, NatB, and NatC, which contain the catalytic subunits Ard1p, Nat3p and Mak3p, respectively. Yeast 6-phosphofructo-2-kinase (PFK2) was found to be acetylated at the amino acid lysine 3. The Lys3-Arg mutant was not acetylated and the mutation causes a slight decrease in enzyme activity. PFK2 from yeast cells exposed to hypo-osmotic stress is known to be phosphorylated at Ser8 and Ser652 (Dihazi et al., 2001a). We have taken a mass spectrometric approach to investigate the influence of PFK2 acetylation on its phosphorylation. Wild-type PFK2 and the Lys3-Arg mutant were purified from hypo-osmotically stressed cells and analysed with MALDI-TOF MS for phosphorylation. Wild-type PFK2 without any tag sequence was found to be acetylated and two times phosphorylated at the N-terminal peptide T(1-40) carrying the acetylation. The same results were observed with C-terminally His-tagged PFK2. When the His-tag was added to the N-terminus of the protein PFK2, acetylation was found to be incomplete and only one phosphate was incorporated in the peptide T(1-41). The Lys3-Arg mutant of PFK2 was not at all post-translationally modified at the N-terminal peptide. Our data indicate that Lys3 acetylation affects the N-terminal phosphorylation of PFK2 under hypo-osmotic stress.  相似文献   

11.
12.
Protein N(alpha)-terminal acetylation is a conserved and widespread protein modification in eukaryotes. Several studies have linked it to normal cell function and cancer development, but nevertheless, little is known about its biological function. In yeast, protein N(alpha)-terminal acetylation is performed by the N-acetyltransferase complexes NatA, NatB and NatC. In humans, only the NatA complex has been identified and characterized. In the present study we present the components of hNatB (human NatB complex). It consists of the Nat3p homologue hNAT3 (human N-acetyltransferase 3) and the Mdm20p homologue hMDM20 (human mitochondrial distribution and morphology 20). They form a stable complex and in vitro display sequence-specific N(alpha)-acetyltransferase activity on a peptide with the N-terminus Met-Asp-. hNAT3 and hMDM20 co-sediment with ribosomal pellets, thus supporting a model where hNatB acts co-translationally on nascent polypeptides. Specific knockdown of hNAT3 and hMDM20 disrupts normal cell-cycle progression, and induces growth inhibition in HeLa cells and the thyroid cancer cell line CAL-62. hNAT3 knockdown results in an increase in G(0)/G(1)-phase cells, whereas hMDM20 knockdown decreased the fraction of cells in G(0)/G(1)-phase and increased the fraction of cells in the sub-G(0)/G(1)-phase. In summary, we show for the first time a vertebrate NatB protein N(alpha)-acetyltransferase complex essential for normal cell proliferation.  相似文献   

13.
N-terminal acetylation is one of the most common modifications, occurring on the vast majority of eukaryotic proteins. Saccharomyces cerevisiae contains three major NATs, designated NatA, NatB, and NatC, with each having catalytic subunits Ard1p, Nat3p, and Mak3p, respectively. Gautschi et al. (Gautschi et al. [2003] Mol Cell Biol 23: 7403) previously demonstrated with peptide crosslinking experiments that NatA is bound to ribosomes. In our studies, biochemical fractionation in linear sucrose density gradients revealed that all of the NATs are associated with mono- and polyribosome fractions. However only a minor portion of Nat3p colocalized with the polyribosomes. Disruption of the polyribosomes did not cause dissociation of the NATs from ribosomal subparticles. The NAT auxiliary subunits, Nat1p and Mdm20p, apparently are required for efficient binding of the corresponding catalytic subunits to the ribosomes. Deletions of the genes corresponding to auxiliary subunits significantly diminish the protein levels of the catalytic subunits, especially Nat3p, while deletions of the catalytic subunits produced less effect on the stability of Nat1p and Mdm20p. Also two ribosomal proteins, Rpl25p and Rpl35p, were identified in a TAP-affinity purified NatA sample. Moreover, Ard1p copurifies with Rpl35p-TAP. We suggest that these two ribosomal proteins, which are in close proximity to the ribosomal exit tunnel, may play a role in NatA attachment to the ribosome.  相似文献   

14.
A yeast gene has been identified that encodes a novel, evolutionarily conserved Nalpha-acetyltransferase responsible for acetylation of the N-terminal residues of histones H4 and H2A. The gene has been named NAT4. Recombinant Nat4 protein acetylated a peptide corresponding to the N-terminal tail of H4, but not an H3 peptide nor the peptide adrenocorticotropin. H4 and H2A are N-terminally acetylated in all species from yeast to mammals and hence blocked from sequencing by Edman degradation. In contrast, H4 and H2A purified from a nat4 mutant were unacetylated and could be sequenced. Analysis of yeast histones by acid-urea gel electrophoresis showed that all the H4 and H2A from the mutant migrated more rapidly than the same histones from a wild type strain, consistent with the histones from the mutant having one extra positive charge due to one less acetylated amino group. A comparison of yeast proteins from wild type and a nat4 mutant by two-dimensional gel electrophoresis showed no evidence that other yeast proteins are substrates of this acetyltransferase. Thus, Nat4 may be dedicated specifically to the N-terminal acetylation of histones H4 and H2A. Surprisingly, nat4 mutants grow at a normal rate and have no readily observable phenotypes.  相似文献   

15.
NatB is an N-terminal acetyltransferase consisting of a catalytic Nat5 subunit and an auxiliary Mdm20 subunit. In yeast, NatB acetylates N-terminal methionines of proteins during de novo protein synthesis and also regulates actin remodeling through N-terminal acetylation of tropomyosin (Trpm), which stabilizes the actin cytoskeleton by interacting with actin. However, in mammalian cells, the biological functions of the Mdm20 and Nat5 subunits are not well understood. In the present study, we show for the first time that Mdm20-knockdown (KD), but not Nat5-KD, in HEK293 and HeLa cells suppresses not only cell growth, but also cellular motility. Although stress fibers were formed in Mdm20-KD cells, and not in control or Nat5-KD cells, the localization of Trpm did not coincide with the formation of stress fibers in Mdm20-KD cells. Notably, knockdown of Mdm20 reduced the expression of Rictor, an mTORC2 complex component, through post-translational regulation. Additionally, PKCαS657 phosphorylation, which regulates the organization of the actin cytoskeleton, was also reduced in Mdm20-KD cells. Our data also suggest that FoxO1 phosphorylation is regulated by the Mdm20-mTORC2-Akt pathway in response to serum starvation and insulin stimulation. Taken together, the present findings suggest that Mdm20 acts as a novel regulator of Rictor, thereby controlling mTORC2 activity, and leading to the activation of PKCαS657 and FoxO1.  相似文献   

16.
N-terminal acetylation can occur cotranslationally on the initiator methionine residue or on the penultimate residue if the methionine is cleaved. We investigated the three N-terminal acetyltransferases (NATs), Ard1p/Nat1p, Nat3p and Mak3p. Ard1p and Mak3p are significantly related to each other by amino acid sequence, as is Nat3p, which was uncovered in this study using programming alignment procedures. Mutants deleted in any one of these NAT genes were viable, but some exhibited diminished mating efficiency and reduced growth at 37 degrees C, and on glycerol and NaCl-containing media. The three NATs had the following substrate specificities as determined in vivo by examining acetylation of 14 altered forms of iso-1-cytochrome c and 55 abundant normal proteins in each of the deleted strains: Ard1p/Nat1p, subclasses with Ser-, Ala-, Gly- and Thr-termini; Nat3p, Met-Glu- and Met-Asp- and a subclass of Met-Asn-termini; and Mak3p subclasses with Met-Ile- and Met-Leu-termini. In addition, a special subclass of substrates with Ser-Glu- Phe-, Ala-Glu-Phe- and Gly-Glu-Phe-termini required all three NATs for acetylation.  相似文献   

17.
Schizosaccharomyces pombe has four alpha-amylase homologs (Aah1p-Aah4p) with a glycosylphosphatidylinositol (GPI) modification site at the C-terminal end. Disruption mutants of aah genes were tested for mislocalization of vacuolar carboxypeptidase Y (CPY), and aah3Delta was found to secrete CPY. The conversion rate from pro- to mature CPY was greatly impaired in aah3Delta, and fluorescence microscopy inidicated that a sorting receptor for CPY, Vps10p, mislocalized to the vacuolar membrane. These results indicate that aah3Delta had a defect in the retrograde transport of Vps10p, and that Aah3p is the first S. pombe specific protein required for vacuolar protein sorting.  相似文献   

18.
19.
Protein acetylation is a widespread modification that is mediated by site-selective acetyltransferases. KATs (lysine Nϵ-acetyltransferases), modify the side chain of specific lysines on histones and other proteins, a central process in regulating gene expression. Nα-terminal acetylation occurs on the ribosome where the α amino group of nascent polypeptides is acetylated by NATs (N-terminal acetyltransferase). In yeast, three different NAT complexes were identified NatA, NatB, and NatC. NatA is composed of two main subunits, the catalytic subunit Naa10p (Ard1p) and Naa15p (Nat1p). Naa50p (Nat5) is physically associated with NatA. In man, hNaa50p was shown to have acetyltransferase activity and to be important for chromosome segregation. In this study, we used purified recombinant hNaa50p and multiple oligopeptide substrates to identify and characterize an Nα-acetyltransferase activity of hNaa50p. As the preferred substrate this activity acetylates oligopeptides with N termini Met-Leu-Xxx-Pro. Furthermore, hNaa50p autoacetylates lysines 34, 37, and 140 in vitro, modulating hNaa50p substrate specificity. In addition, histone 4 was detected as a hNaa50p KAT substrate in vitro. Our findings thus provide the first experimental evidence of an enzyme having both KAT and NAT activities.  相似文献   

20.
Lu A  Hirsch JP 《Eukaryotic cell》2005,4(11):1794-1800
Pseudohyphal and invasive growth in the yeast Saccharomyces cerevisiae is regulated by the kelch repeat-containing proteins Gpb1p and Gpb2p, which act downstream of the G protein alpha-subunit Gpa2p. Here we show that deletion of GPB1 and GPB2 causes increased haploid invasive growth in cells containing any one of the three protein kinase A (PKA) catalytic subunits, suggesting that Gpb1p and Gpb2p are able to inhibit each of these kinases. Cells containing gpb1Delta gpb2Delta mutations also display increased phosphorylation of the PKA substrates Sfl1p and Msn2p, indicating that Gpb1p and Gpb2p are negative regulators of PKA substrate phosphorylation. Stimulation of PKA-dependent signaling by gpb1Delta gpb2Delta mutations occurs in cells that lack both adenylyl cyclase and the high-affinity cyclic AMP (cAMP) phosphodiesterase. This effect is also seen in cells that lack the low-affinity cAMP phosphodiesterase. Given that these three enzymes control the synthesis and degradation of cAMP, these results indicate that the effect of Gpb1p and Gpb2p on PKA substrate phosphorylation does not occur by regulating the intracellular cAMP concentration. These findings suggest that Gpb1p and Gpb2p mediate their effects on the cAMP/PKA signaling pathway either by inhibiting the activity of PKA in a cAMP-independent manner or by activating phosphatases that act on PKA substrates.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号