首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Purified enterotoxin from the bacterium Clostridium perfringens rapidly decreased the hormonally induced uptake of α-aminoisobutyric acid in primary cultures of adult rat hepatocytes. At 5 min after toxin addition the decrease in α-aminoisobutyric acid uptake appeared not due to increased passive permeation (estimated with l-glucose) or to increased α-aminoisobutyric acid efflux. When short uptake assay times were employed a depression of α-aminoisobutyric acid influx was observed in toxin-treated hepatocytes. The depression of α-aminoisobutyric acid influx was correlated with a rapid increase in intracellular Na+ (estimated using 22Na+) apparently effected by membrane damage. In contrast, the uptake of cycloleucine in the presence of unlabeled α-aminoisobutyric acid (assay for Na+-independent amino acid uptake) by hepatocytes treated with toxin for 5 min was decreased to only a small extent or not at all depending upon experimental design. At later times, C. perfringens enterotoxin increased the exodus of l-glucose, 3-O-methylglucose and α-aminoisobutyric acid from pre-loaded cells indicating that the toxin effects progressive membrane damage. When enterotoxin was removed by repeated washing after 5–20 min the decay of α-aminoisobutyric acid uptake ceased and appeared to undergo recovery towards the hormonally induced control level. The degree of recovery of α-aminoisobutyric acid uptake was inverse to the length of time of exposure to toxin. Adding at 10 min specific rabbit antiserum against C. perfringens enterotoxin without medium change also reversed the effect of toxin on increased intracellular 22Na+, and on the exodus (from preloaded cells) of α-aminoisobutyric acid, L-glucose, and 3-O-methylglucose.  相似文献   

2.
In dispersed rat thymocytes neither basal alpha-aminoisobutyric acid influx nor influx stimulated by insulin, prostaglandin theophylline, or butyryl adenosine 3':5'-monophosphate (cyclic AMP) depended on extracellular calcium or magnesium. The divalent cation ionophore A23187 inhibited both basal and stimulated alpha-aminoisobutyric acid influx. The extent to which influx was inhibited depended on ionophore concentration, extracellular calcium concentration, and time but did not depend on extracellular magnesium. Significant inhibition could be detected at an ionophore concentration of 1 muM and maximal inhibition occurred with 6 muM A23187. A23187 increased cellular uptake of calcium and there was good agred calcium uptake and that for ionophore inhibition of alpha-aminoisobutyric acid influx. Incubating cells with A23187 and then adding ethylene glycol bis(beta-aminoethyl ether)-N,N,N',N',-tetraacetic acid completely reversed ionophore-stimulated cellular calcum uptake but did not reverse inhibition of alpha-aminoisobutyric acid influx. Thus, A23187 produces irreversible inhibition of alpha-aminoisobutyric acid transport in dispersed rat thymocytes. Ethanol abolished insulin-stimulated alpha-aminoisobutyric acid influx but did not alter basal influx or that stimulated by prostaglandin E1, theophylline, or N6,O2'-dibutyryl adenosine 3':5'-monophosphate. Inhibition could be detected with 0.2% (v/v) ethanol and insulin-stimulated alpha-aminoisobutyric influx was abolished with 1% ethanol. The effect of ethanol occurred immediately and could be reversed completely. This ability of ethanol to inhibit selectively insulin-stimulated alpha-aminoisobutyric acid influx indicates that the mechanism through which insulin stimulates alpha-aminoisobutyric acid influx is functionally distinct from the stimulation produced by cyclic AMP.  相似文献   

3.
Amino acid transport was studied in primary cultures of parenchymal cells isolated from adult rat liver by a collagenase perfusion technique and maintained as a monolayer in a serum-free culture medium. Amino acid transport was assayed by measuring the uptake of the nonmetabolizable amino acid, alpha-aminoisobutyric acid. Rat liver parenchymal cells transported alpha-aminoisobutyric acid by an energy-dependent Na+-requiring system which displayed Michaelis-Menten kinetics. Addition of insulin to cultured rat liver parenchymal cells resulted in an increased influx of alpha-aminoisobutyric acid which was reflected in a higher initial rate of alpha-aminoisobutyric acid transport as well as an increased accumulation of alpha-aminoisobutyric acid at later time points. Cycloheximide effectively blocked the increase while results with actinomycin D were equivocal. Insulin at concentrations as low as 50 pM was effective in stimulating alpha-aminoisobutyric acid transport while the maximal response was observed at 80 nM.  相似文献   

4.
Insulin and glucagon stimulate amino acid transport in isolated rat hepatocytes. Amiloride, a specific Na+-influx inhibitor, completely inhibited the hormonal (glucagon or insulin) stimulation of alpha-aminoisobutyric acid influx by preventing the emergence of a high-affinity transport component. The drug also inhibited [14C]valine incorporation into hepatocyte protein. The half-maximal concentration of amiloride for inhibition of protein synthesis was similar to that required for inhibition of hormone-stimulated amino acid transport (approx. 0.1 mM). In primary cultured rat hepatocytes, amiloride markedly depressed the stimulation of alpha-aminoisobutyric acid transport by glucagon, or a mixture of glucagon, insulin and epidermal growth factor. These results suggest that amiloride inhibits the hormonal stimulation of hepatocyte amino acid transport by preventing the synthesis of high-affinity transport proteins. They also suggest that the hormonal stimulation of hepatocyte amino acid transport is dependent, at least partly, on Na+ influx.  相似文献   

5.
The transport of alpha-aminoisobutyric acid in freshly prepared rat liver cells was saturable and exhibited a Kt of 13.9 × 10?3M and amax of 28.6 umoles/ml intracellular fluid/30 min. The system required the presence of sodium and was sensitive to ouabain. Anaerobiosis, 2,4-dinitrophenol and low temperature suppressed the uptake of the amino acid. Efflux studies also indicated that the majority of the intracellular amino acid was rapidly exchangeable and therefore probably present in the cell water in a free state. It is suggested that alpha-aminoisobutyric acid is transported into isolated rat hepatocytes by an active carrier system.  相似文献   

6.
Active transport of myo-inositol in rat pancreatic islets.   总被引:4,自引:1,他引:4       下载免费PDF全文
myo-Inositol transport by isolated pancreatic islets was measured with a dual isotope technique. Uptake was saturable with a half-maximal response at approx. 75 microM. With 50 microM-inositol, uptake was linear for at least 2 h during which time the free intracellular concentration rose to double that of the incubation medium. Inositol transport is therefore active and probably energized by electrogenic co-transport of Na+ down its concentration gradient as uptake was inhibited by ouabain, Na+ removal or depolarizing K+ concentrations. Inositol transport was abolished by cytochalasin B which binds to hexose carriers, but not by carbamoylcholine or Li+ which respectively stimulate or inhibit phosphoinositide turnover. Uptake of inositol was not affected by 3-O-methylglucose or L-glucose (both 100 mM) nor by physiological concentrations of D-glucose. The results suggest that most intracellular inositol in pancreatic islets would be derived from the extracellular medium. Since the transport mechanism is distinct from that of glucose, inositol uptake would not be inhibited during periods of hyperglycaemia.  相似文献   

7.
The effects of insulin and glucagon on the (Na+-K+)-ATPase transport activity in freshly isolated rat hepatocytes were investigated by measuring the ouabain-sensitive, active uptake of 86Rb+. The active uptake of 86Rb+ was increased by 18% (p less than 0.05) in the presence of 100 nM insulin, and by 28% (p less than 0.005) in the presence of nM glucagon. These effects were detected as early as 2 min after hepatocyte exposure to either hormone. Half-maximal stimulation was observed with about 0.5 nm insulin and 0.3 nM glucagon. The stimulation of 86Rb+ uptake by insulin occurred in direct proportion to the steady state occupancy of a high affinity receptor by the hormone (the predominant insulin-binding species in hepatocytes at 37 degrees C. For glucagon, half-maximal response was obtained with about 5% of the total receptors occupied by the hormone. Amiloride (a specific inhibitor of Na+ influx) abolished the insulin stimulation of 86Rb+ uptake while inhibiting that of glucagon only partially. Accordingly, insulin was found to rapidly enhance the initial rate of 22Na+ uptake, whereas glucagon had no detectable effect on 22Na+ influx. These results indicate that monovalent cation transport is influenced by insulin and glucagon in isolated rat hepatocytes. In contrast to glucagon, which appears to enhance 86Rb+ influx through the (Na+-K+)-ATPase without affecting Na+ influx, insulin stimulates Na+ entry which in turn may increase the pump activity by increasing the availability of Na+ ions to internal Na+ transport sites of the (Na+-K+)-ATPase.  相似文献   

8.
Clostridium perfringens enterotoxin was detected intracellularly about 3 hr after the inoculation of vegetative cells into sporulation medium. The subsequent increase in intracellular enterotoxin concentration roughly paralleled but followed by 2.5 to 5 hr the increase in number of heat-resistant spores. The increase in biologically active toxin coincided with the increase in enterotoxin antigen. Enterotoxin was released from the sporangium with its lysis, concomitantly with the mature spore release.  相似文献   

9.
Membrane vesicles isolated from untransformed Balb/c and Swiss mouse fibroblasts and their SV 40-transformed derivatives were shown to catalyze carrier-mediated, intravesicular uptake of alpha-aminoisobutyric acid and D-glucose. Concentrative uptake of alpha-aminoisobutyric acid required the presence of a Na+-gradient (external greater than internal) and could occur independently of endogenous (Na+ + K+)ATPase activity. A K+ diffusion gradient (internal greater than external) in the presence of valinomycin, or the addition of the Na+ salt of a highly permeant anion, conditions expected to create an interior-negative membrane potential stimulated Na+-gradient-dependent uptake, suggesting this process is electrogenic. D-Glucose uptake was nonconcentrative and did not require ion gradients or metabolic conversion. Na+ gradient-dependent transport of alpha-aminoisobutyric acid was reduced both in initial rate and extent of uptake in vesicles from confluent untransformed cells and increased in those from SV 40-transformed cells, compared with activities observed in vesicles from proliferating untransformed cells. No changes in D-glucose carrier activity were observed when assayed at low glucose concentrations.  相似文献   

10.
We have quantified the effect of EGTA on K exodus and uptake in human blood lymphocytes. When lymphocytes were exposed to a medium containing an EGTA concentration that resulted in an ionized Calcium (Ca) of less than 10 μM, K exodus began to increase. This increase reached nearly threefold that of the control rate in a medium containing sufficient EGTA to reduce the ionized Ca concentration below 0.1 μM. When K exodus was increased, K uptake increased proportionately. This increase in K uptake represented active transport and was associated with an 80% increase in intracellular Na concentration from 15 to 27 mM. The addition of Ca to a medium containing EGTA reversed to normal the increased K exodus and uptake. Histidine, a potent chelator of divalent cations other than Ca, had no effect on K transport. These data indicate that extracellular Ca chelation leads to an increase in lymphocyte membrane permeability and cation leak. This increased leak is associated with an elevation of the cell Na and an increase in transport to a rate equivalent to that of the exodus rate. The compensatory increase in active transport maintains the cell monovalent cation concentration within 10 to 15 mM of unperturbed levels.  相似文献   

11.
To probe the mechanism by which intracellular ATP, Na+, and Cl- influence the activity of the NaK2Cl cotransporter, we measured bumetanide-sensitive (BS) 86Rb fluxes in the osteosarcoma cell line UMR- 106-01. Under physiological gradients of Na+, K+, and Cl-, depleting cellular ATP by incubation with deoxyglucose and antimycin A (DOG/AA) for 20 min at 37 degrees C reduced BS 86Rb uptake from 6 to 1 nmol/mg protein per min. Similar incubation with 0.5 mM ouabain to inhibit the Na+ pump had no effect on the uptake, excluding the possibility that DOG/AA inhibited the uptake by modifying the cellular Na+ and K+ gradients. Loading the cells with Na+ and depleting them of K+ by a 2-3- h incubation with ouabain or DOG/AA increased the rate of BS 86Rb uptake to approximately 12 nmol/mg protein per min. The unidirectional BS 86Rb influx into control cells was approximately 10 times faster than the unidirectional BS 86Rb efflux. On the other hand, at steady state the unidirectional BS 86Rb influx and efflux in ouabain-treated cells were similar, suggesting that most of the BS 86Rb uptake into the ouabain-treated cells is due to K+/K+ exchange. The entire BS 86Rb uptake into ouabain-treated cells was insensitive to depletion of cellular ATP. However, the influx could be converted to ATP-sensitive influx by reducing cellular Cl- and/or Na+ in ouabain-treated cells to impose conditions for net uptake of the ions. The BS 86Rb uptake in ouabain-treated cells required the presence of Na+, K+, and Cl- in the extracellular medium. Thus, loading the cells with Na+ induced rapid 86Rb (K+) influx and efflux which, unlike net uptake, were insensitive to cellular ATP. Therefore, we suggest that ATP regulates a step in the turnover cycle of the cotransporter that is required for net but not K+/K+ exchange fluxes. Depleting control cells of Cl- increased BS 86Rb uptake from medium-containing physiological Na+ and K+ concentrations from 6 to approximately 15 nmol/mg protein per min. The uptake was blocked by depletion of cellular ATP with DOG/AA and required the presence of all three ions in the external medium. Thus, intracellular Cl- appears to influence net uptake by the cotransporter. Depletion of intracellular Na+ was as effective as depletion of Cl- in stimulating BS 86Rb uptake.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

12.
Using a sensitive Vero (African green monkey kidney) cell model system, studies were performed to further investigate whether Clostridium perfringens enterotoxin acts via disruption of the colloid-osmotic equilibrium of sensitive cells. Enterotoxin was shown to cause a rapid loss of intracellular 86Rb+ (Mr approx. 100) with time- and dose-dependent kinetics. The enterotoxin-induced release of intracellular 86Rb+ preceded the loss of two larger labels, 51Cr label (Mr approx. 3500) and 3H-labeled nucleotides (Mr less than 1000). The osmotic stabilizers, sucrose and poly(ethylene glycol), differentially inhibited enterotoxin-induced larger label loss versus 86Rb+ loss. Further, enterotoxin was shown to cause a rapid influx of 24Na+ that was not significantly inhibited by osmotic stabilizers. Additional studies demonstrated that lysosomotropic agents were not protective against characteristic enterotoxin-induced membrane permeability alterations or morphological damage. Taken collectively, these results are consistent with an action for enterotoxin which involves a disruption of the osmotic equilibrium.  相似文献   

13.
Clostridium perfringens enterotoxin, when inoculated into the ligated intestinal loop of mice, caused marked distension due to fluid accumulation. The increase in weight of the intestinal loop was proportional to the log dose of enterotoxin within a range from 1 to 16 micrograms. The fluid accumulation was arrested by washing the loop with saline or by injection of the specific anti-enterotoxin serum into the loop 5 or even 30 min after inoculation of the enterotoxin. A significant increase in weight of the loop was found as early as 10 min after inoculation of the toxin. These results may suggest that entergotoxin is neither bound firmly to the mucosal membrane nor permeates into the cells of the intestinal wall. The mouse intestinal loop test is economical, simple to perform, and applicable for quantitative determination of the enteropathogenic activity of C. perfringens enterotoxin.  相似文献   

14.
Clostridium perfringens enterotoxin, when inoculated into the ligated intestinal loop of mice, caused marked distension due to fluid accumulation. The increase in weight of the intestinal loop was proportional to the log dose of enterotoxin within a range from 1 to 16 micrograms. The fluid accumulation was arrested by washing the loop with saline or by injection of the specific anti-enterotoxin serum into the loop 5 or even 30 min after inoculation of the enterotoxin. A significant increase in weight of the loop was found as early as 10 min after inoculation of the toxin. These results may suggest that entergotoxin is neither bound firmly to the mucosal membrane nor permeates into the cells of the intestinal wall. The mouse intestinal loop test is economical, simple to perform, and applicable for quantitative determination of the enteropathogenic activity of C. perfringens enterotoxin.  相似文献   

15.
The treatment of frog erythrocytes incubated in standard nitrate medium with 100 nM phorbol ester (PMA) induced a sharp increase in the 22Na uptake by the cells and intracellular Na(+) concentration. The PMA-induced enhancement in 22Na uptake was stimulated by the addition of 0.1 mM ouabain to the incubation medium and completely blocked by 1 mM amiloride. The time course of 22Na uptake by frog red cells in the presence of PMA showed a lag phase ( approximately 5 min), after which was linear within 5-15 min. The calculated Na(+) influx in erythrocytes treated with PMA was 49.4+/-3.7 mmol l(-1) cells h(-1) as compared with 1.2+/-0.25 mmol l(-1) h(-1) for control cells. 5-(N-ethyl-N-isopropyl)-amiloride, selective blocker of NHE1, caused a dose-dependent inhibition of the PMA-induced Na(+) influx with IC(50) of 0.27 microM. The PMA-induced Na(+) influx was almost completely inhibited by 0.1 microM staurosporine, protein kinase C blocker. Pretreatment of frog red blood cells for 5, 10 or 15 min with 10 mM NaF, non-selective inhibitor of protein phosphatase, led to a progressive stimulation of the PMA effect on Na(+) influx. Both amiloride and NaF did not affect the basal Na(+) influx in frog erythrocytes. The data indicate that the Na(+)-H(+) exchanger in the frog erythrocytes is quiescent under basal conditions and can be markedly stimulated by PMA.  相似文献   

16.
Current amino acid and monosaccharide transport models are based on an assumption which equates the intracellular chemical activity of a solute with its concentration. This assumption was tested for alpha-aminoisobutyric acid and 3-O-methylglucose in a giant cell, the amphibian oocyte, by using recently developed cryomicrodissection and internal reference phase techniques. We found the following. (i) alpha-Aminoisobutyric acid and 3-O-methylglucose activities were much greater in cytoplasm than was suggested by concentration data; i.e., activity coefficients were higher than in ordinary water solutions. This is attributable to the inaccessibility of considerable water as solvent (solute exclusion). (ii) Solute concentrations varied regionally as follows: nucleus > > animal cytoplasm > vegetal cytoplasm. Insulin increased the nucleus/cytoplasm concentration asymmetry, apparently by increasing cytoplasmic solute exclusion. (iii) Nuclear activity coefficients more closely resembled those of ordinary saline solutions so that nucleus/ extracellular concentration ratios reflected transmembrane activity gradients better than did cytoplasm (or whole cell)/extracellular ratios. (iv) Mediated passive alpha-aminoisobutyric acid and 3-O-methylglucose transport were constituent oocyte membrane properties. Membrane active transport was initiated with time (in the presence of substrate) and by insulin. (v) Increased temperature mimicked insulin in enhancing transmembrane alpha-aminoisobutyric acid activity gradients and increasing the nucleus/cytoplasm concentration asymmetry. These results indicated that concentration data are a misleading measure of cellular amino acid and monosaccharide activity; some consequences of this observation were explored. A model is proposed in which cell water has reduced solvent capacity or is compartmentalized (considered less likely) and is susceptible to physiological modulation. The model accounts for many observations in small cells, suggesting generality of the exclusion phenomenon and a previously unrecognized metabolic control mechanism.  相似文献   

17.
1. Preincubation of the immature rat uterus under physiological conditions was found to increase its subsequent ability to transport alpha-aminoisobutyric acid, l-proline, l-alanine and 1-aminocyclopentanecarboxylic acid. Uptakes of l-valine, l-phenylalanine and l-leucine were not affected. With alpha-aminoisobutyric acid, a doubling of the uptake could be obtained after a 3-5h preincubation period. Uteri from oestradiol-primed rats gave increases similar to those found in tissues from untreated animals. In both cases the preincubation increased the V(max.) of alpha-aminoisobutyric acid uptake but did not affect the K(m). 2. The conditions during the preincubation period determined the increase in subsequent uptake of alpha-aminoisobutyric acid. No increase in uptake was found if the preincubation was carried out at 1 degrees C, in the presence of cyanide or dinitrophenol, under anaerobiosis or with a concentration of puromycin that depressed incorporation of l-leucine into protein by 95%. The puromycin was also shown to prevent the increase in V(max.) normally found after the preincubation period. In addition, no increase was found if Na(+) was omitted from the preincubation medium. Other inorganic ions had smaller effects. 3. The uptake of alpha-aminoisobutyric acid by uteri before and after a preincubation period showed the same general patterns of sensitivity to competitive inhibitors, K(+), pH, temperature and 2,4-dinitrophenol. 4. The results suggest that the preincubation leads to an increase in a protein component of the ;A system' for amino acid transport in the uterus, and that metabolic energy is required for the reactions involved.  相似文献   

18.
3-O-[14C]Methylglucose was used to study the insulin action on the sugar transport in white fat cells. The experiments comprised determinations of the 3-O-methylglucose space at stationary distribution, of the rate constants for 3-O-methylglucose equilibrium exchange under various conditions, and of the 3-O-methylglucose inhibition of the lipogenesis from glucose. The following was found. The intracellular distribution space for 3-O-methylglucose at equilibrium was unaffected by insulin and was identical with the intracellular 3H2O space. The half-time for the equilibrium exchange of 3-O-methylglucose at a concentration of 25 mM was about 240 s in the absence of insulin and about 15 s with insulin (0.7 muM) present. Addition of phloridzin (5 mM) decreased the rate of the exchange process about 25-fold in both cases. The self-exchange of 3-O-methylglucose (1 mM) was at least 50 times faster than the self-exchange of L-glucose (1 mM). The concentration dependence of the 3-O-methylglucose exchange rate was approximately hyperbolic both in the absence and the presence of insulin, although the saturation of the transport mechanism at high concentrations of sugar was not as complete as predicted. In the absence of insulin the estimate of the half-saturation constant (Kt) was about 5 mM; that of the maximal exchange rate (Vmax) varied from 0.07 mmol s-1/liter of intracellular water to 0.2 mmol s-1 liter-1. In the presence of insulin Kt remained about 5 mM, whereas Vmax was increased to about 1.7 mmol s-1 liter-1. The latter estimate was reproducible within about 20%. The incorporation of trace amounts of [U-14C]glucose into intracellular lipids was inhibited by unlabeled 3-O-methylglucose pre-equilibrated over the membrane. The inhibition constant estimated from such experiments was about 5 mM both in the absence and the presence of insulin, and the insulin-induced increase in the rate of glucose incorporation was similar to the increase in the rate of the 3-O-methylglucose exchange process. It is concluded that exchange of 3-O-methylglucose proceeds via a mechanism which shows stereospecificity and saturability and that insulin acts by increasing the maximal transport capacity without changing the half-saturation constant.  相似文献   

19.
Rat liver parenchymal cells (hepatocytes) were isolated by a collagenase perfusion technique and maintained as monolayers in serum-free medium in collagen-coated culture dishes. Glucagon, in combination with dexamethasone, induced α-aminoisobutyric acid transport in these cells. Addition of purified Clostridiumperfringens enterotoxin to hepatocytes preinduced by glucagon and dexamethasone rapidly depressed (but did not abolish) α-aminoisobutyric acid transport. The toxin effect was dose dependent: 1000 or 300 ng/ml produced maximal depression whereas 100 or 40 ng/ml were without effect in 120 minutes. The effect was eliminated by pretreating the toxin with heat or specific antisera. The effect of enterotoxin on α-aminoisobutyric acid transport in two cultured rat hepatoma cell lines (H4-II-E-C3 and McA-RH 7777) was also investigated. Only the McA-RH 7777 cells were sensitive to the toxin suggesting that the enterotoxin may interact with specific membrane components of normal rat liver cells which are also present on some (but not all) cancerous rat liver cells.  相似文献   

20.
Transport of K(+) by K(+)-depleted cells of marine pseudomonad B-16 (ATCC 19855) exhibited saturation kinetics. Rb(+) inhibited both K(+) transport and the K(+)-dependent transport of alpha-aminoisobutyric acid (AIB) into K(+)-depleted cells of the organism in proportion to the concentration of Rb(+) in the suspending medium. Inhibition of the K(+)-dependent uptake of AIB into K(+)-depleted cells by Rb(+) could be overcome by increasing the concentration of K(+) in the medium. When AIB and K(+) were added simultaneously to a suspension of K(+)-depleted cells, the uptake of K(+) occurred immediately and rapidly, whereas the accumulation of AIB occurred only after a lag. The initial uptake rate of AIB was directly proportional to the intracellular K(+) concentration. The intracellular concentration of K(+) and AIB at their steady-state levels increased to a maximum as the Na(+) concentration in the suspending medium was increased. At Na(+) concentrations between 0.2 and 0.3 M, the molar ratio of K(+) to AIB at their intracellular steady-state concentrations was constant at 1.6. At external Na(+) concentrations less than 0.2 M, the cells maintained a relatively higher K(+) intracellular steady-state level than AIB.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号