首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
2.
Myocardial sodium-pump activity was examined from ouabain-sensitive 86Rb+ uptake using myocytes isolated from guinea-pig heart. Either sodium loading or the sodium ionophore, monensin, increased 86Rb+ uptake by over 400%, indicating that the amount of Na+ available to the pump is the primary determinant of its activity, and that the sodium pump has a substantial reserve capacity in quiescent myocytes. Moreover, the degree of the above stimulation is markedly higher than corresponding values reported with multicellular preparations, suggesting that diffusion barriers make it impossible to observe the capacity of the sodium pump in the latter preparations. Removal of extracellular Ca2+ increased ouabain-sensitive 86Rb+ uptake, probably by enhancing turnover of the sodium pump rather than increasing availability of Na+ to the pump.  相似文献   

3.
Cyclic AMP stimulation of Na-K pump activity in quiescent swiss 3T3 cells   总被引:3,自引:0,他引:3  
Recently, we have found that an increase in the intracellular level of cAMP acts as a mitogenic signal for Swiss 3T3 cells (Rozengurt et al., Proc. Natl. Acad, Sci. USA, 78:4392, 1981). The results presented in this paper demonstrate that addition of cAMP-elevating agents to confluent and quiescent cultures of Swiss 3T# causes a marked increase in the rate of 86Rb+ uptake but has no effect on the rate of cation efflux. The stimulation of ion uptake is mediated by the Na-K pump as shown by the ouabain sensitivity of the 86Rb+ fluxes. The increase in Na-K pump activity occurs whether cAMP is generated endogenously by stimulation of adenylate cyclase activity by cholera toxin, adenosine agonists, or PGE1 or added exogenously as 8BrcAMP. The stimulatory effect of these compounds on 86Rb+ uptake is potentiated by inhibitors of cyclic nucleotide phosphodiesterase activity. Cholera toxin stimulates the Na-K pump in a dose-dependent manner; half-maximal effect is achieved at 0.7 ng/ml. The stimulation of ouabain-sensitive 86Rb+ uptake by cAMP-elevating agents reaches a maximum after 2-3 h of incubation. This contrasts with the rapid (within minutes) stimulation of the Na-K pump caused by serum and other mitogenic agents. Further, cAMP-elevating agents fail to increase Na+ influx into 3T3 cells whereas serum causes a marked increase in Na+ influx, under identical experimental conditions. These findings suggest that the stimulation of Na-K pump activity caused by increased cAMP levels contrasts mechanistically with the rapid control of pump activity by serum which is primarily mediated by increased Na+ entry into the cells.  相似文献   

4.
86Rb+ was used as an isotopic tracer for the measurement of K+-uptake into quiescent murine bone marrow-derived macrophages. 86Rb+ uptake was inhibited by ouabain indicating a Na+K+-ATPase is being measured. In support of this finding, increased sensitivity to ouabain inhibition was seen when the K+ content of the medium was reduced. A purified colony stimulating factor (CSF-1) was shown to stimulate the ouabain-sensitive 86Rb+ uptake in a dose-dependent manner. Such colony stimulating factor stimulation of 86Rb+ (K+) influx was rapid, with a maximal effect seen 10 minutes after growth factor addition followed by a gradual decrease. Thus increased Na+K+-ATPase activity was an early response of macrophages to the colony stimulating factor.  相似文献   

5.
Angiotensin peptides (AI, AII, AIII) increased the rate of Na+ accumulation by smooth muscle cells (SMC) cultured from rat aorta. The stimulatory effect of AII on Na+ uptake was observed when Na+ exodus via the Na+/K+ pump was blocked either by ouabain or by the removal of extracellular K+. AII was at least ten times more potent than AIII and about 100 times more potent than AI in stimulating Na+ uptake. Saralasin had little effect on Na+ uptake by itself but almost completely blocked the increase caused by AII. The stimulation of net Na+ entry by AI, but not AII, was prevented by protease inhibitors. The stimulation of Na+ uptake was almost completely blocked by amiloride. Tetrodotoxin, which prevented veratridine from increasing Na+ uptake, had no effect on the response to AII. Angiotensin increased the rate of ouabain-sensitive 86Rb+ uptake (Na+/K+ pump activity) but had no effect on ouabain-sensitive ATPase activity in frozen-thawed SMC or in microsomal membranes isolated from cultured SMC. The stimulation of ouabain-sensitive 86Rb+ uptake by AII was blocked by saralasin. Omitting Na+ from the external medium prevented AII from increasing 86Rb+ uptake. AII had no effect on cell volume or cyclic AMP levels in the cultured SMC. These results suggest that angiotensin peptides activate an amiloride-sensitive Na+ transporter which supplies the Na+/K+ pump with more Na+, its rate-limiting substrate.  相似文献   

6.
In this report, we elucidate the role of Na(+)-K+ pump in the regulation of polyamine spermidine (Spd) transport in murine leukemia (L 1210) cells in culture. Ouabain, known to bind extracellularly to the alpha-subunit of the Na(+)-K+ pump, inhibits the pump activity. The L 1210 cells were found to possess ouabain binding sites at 7.5 fmol/10(6) cells. Ouabain significantly inhibited the Spd uptake in a dose-dependent manner. The maximum inhibition of Spd uptake by ouabain was observed beyond 200 microM. Spd transport was inversely correlated with the [3H]ouabain binding to L 1210 cells: an increase in the saturation of ouabain binding to L 1210 cells resulted in a decrease of the Spd uptake process. Treatment of L 1210 cells with protein kinase C activator phorbol esters increased the Spd transport and, also, ouabain-sensitive 86Rb+ uptake, a measure of the activity of the Na(+)-K+ pump. H-7, a protein kinase C inhibitor, significantly inhibited the ouabain-sensitive 86Rb+ uptake by L 1210 cells. Phorbol esters stimulated the level, but not the rate, of 22Na+ influx. Addition of H-7 to L 1210 cells inhibited the 22Na+ influx process. A concomitant phorbol ester-induced increase in 22Na+ influx, [14C]Spd uptake, together with the functioning of Na(+)-K+ pump, indicates the role of the "Na+ cycle" in the regulation of the polyamine transport process.  相似文献   

7.
The relationship between Na entry and the activity of the Na-K pump has been investigated in a variety of cell types by testing the effect of the Naionophore monensin, mitogenic stimulation with serum and oncogenic transformation by SV40 and polyoma virus. We found that addition of monensin increases intracellular Na in quiescent cultures of murine, hamster, and human cells. In each case, the rise in intracellular Na by monensin is associated with an increase in the activity of the Na-K pump, which was measured as ouabain-inhibitable 86Rb uptake. The addition of serum to quiescent cultures stimulates 86Rb uptake in all cell types studied. Serum alone causes an increase in intracellular potassium with no consistent change in intracellular Na. In the presence of the Na-K pump inhibitor ouabain, serum causes a marked increase in intracellular Na, with little change in intracellular K. This pattern is interpreted as indicating that the primary effect of serum is to increase Na entry into the cells. A low concentration of monensin (0.2 μg/ml) mimics the effect of serum on ion fluxes and content, which supports the conclusion that serum and monensin stimulate 86Rb uptake in the same manner, namely by increasing Na entry into the cells. In addition, a partially purified platelet extract stimulates Na entry and 86Rb uptake in quiescent 3T3 cells. Finally 3T3 cells transformed by SV40 or polyoma virus exhibit a higher rate of Na entry and of Na-K pump activity than their untransformed 3T3 counterparts. All these results indicate that the rate of Na entry plays an important role in the regulation of the activity of the Na-K pump and that an increase in Na and K movements is a rapid response elicited by serum in a variety of cell types.  相似文献   

8.
The amphibian tetradecapeptide, bombesin, and structurally related peptides caused a marked increase in ouabain-sensitive 86Rb+ uptake (a measure of Na+/K+ pump activity) in quiescent Swiss 3T3 cells. This effect occurred within seconds after the addition of the peptide and appeared to be mediated by an increase in Na+ entry into the cells. The effect of bombesin on Na+ entry and Na+/K+ pump activity was concentration dependent with half-maximal stimulation occurring at 0.3-0.4 nM. The structurally related peptides litorin, gastrin-releasing peptide, and neuromedin B also stimulated ouabain-sensitive 86Rb+ uptake; the relative potencies of these peptides in stimulating the Na+/K+ pump were comparable to their potencies in increasing DNA synthesis (Zachary, I., and E. Rozengurt, 1985, Proc. Natl. Acad. Sci. USA., 82:7616-7620). Bombesin increased Na+ influx, at least in part, through an Na+/H+ antiport. The peptide augmented intracellular pH and this effect was abolished in the absence of extracellular Na+. In addition to monovalent ion transport, bombesin and the structurally related peptides rapidly increased the efflux of 45Ca2+ from quiescent Swiss 3T3 cells. This Ca2+ came from an intracellular pool and the efflux was associated with a 50% decrease in total intracellular Ca2+. The peptides also caused a rapid increase in cytosolic free calcium concentration. Prolonged pretreatment of Swiss 3T3 cells with phorbol dibutyrate, which causes a loss of protein kinase C activity (Rodriguez-Pena, A., and E. Rozengurt, 1984, Biochem. Biophys. Res. Commun., 120:1053-1059), greatly decreased the stimulation of 86Rb+ uptake and Na+ entry by bombesin implicating this phosphotransferase system in the mediation of part of these responses to bombesin. Since some activation of monovalent ion transport by bombesin was seen in phorbol dibutyrate-pretreated cells, it is likely that the peptide also stimulates monovalent ion transport by a second mechanism.  相似文献   

9.
It is presently unknown whether Ca2+ plays a role in the physiological control of Na+/K+-ATPase or sodium pump activity. Because the enzyme is exposed to markedly different intra- and extracellular Ca2+ concentrations, tissue homogenates or purified enzyme preparations may not provide pertinent information regarding this question. Therefore, the effects of Ca2+ on the sodium pump were examined with studies of [3H]ouabain binding and 86Rb+ uptake using viable myocytes isolated from guinea-pig heart and apparently maintaining ion gradients. In the presence of K+, a reduction of the extracellular Ca2+ increased specific [3H]ouabain binding observed at apparent binding equilibria: a half-maximal stimulation was observed when extracellular Ca2+ was lowered to about 50 microM. The change in [3H]ouabain binding was caused by a change in the number of binding sites accessible by ouabain instead of a change in their affinity for the glycoside. Ouabain-sensitive 86Rb+ uptake was increased by a reduction of extracellular Ca2+ concentration. Benzocaine in concentrations reported to reduce the rate of Na+ influx failed to influence the inhibitory effect of Ca2+ on glycoside binding. When [3H]ouabain binding was at equilibrium, the addition of Ca2+ decreased and that of EGTA increased the glycoside binding. Mn2+, which does not penetrate the cell membrane, had effects similar to Ca2+. In the absence of K+, cells lose their tolerance to Ca2+. Reducing Ca2+ concentration prevented the loss of rod-shaped cells but failed to affect specific [3H]ouabain binding observed in the absence of K+. These results indicate that a large change in extracellular Ca2+ directly affects the sodium pump in cardiac myocytes isolated from guinea pigs.  相似文献   

10.
Since the mechanism underlying the insulin stimulation of (Na+,K+)-ATPase transport activity observed in multiple tissues has remained undetermined, we have examined (Na+,K+)-ATPase transport activity (ouabain-sensitive 86Rb+ uptake) and Na+/H+ exchange transport (amiloride-sensitive 22Na+ influx) in differentiated BC3H-1 cultured myocytes as a model of insulin action in muscle. The active uptake of 86Rb+ was sensitive to physiological insulin concentrations (1 nM), yielding a maximum increase of 60% without any change in 86Rb+ permeability. In order to determine the mechanism of insulin stimulation of (Na+,K+)-ATPase activity, we demonstrated that insulin also stimulates passive 22Na+ influx by Na+/H+ exchange transport (maximal 200% increase) and an 80% increase in intracellular Na+ concentration with an identical time course and dose-response curve as insulin-stimulated (Na+,K+)-ATPase transport activity. Incubation of the cells with high [Na+] (195 mM) significantly potentiated insulin stimulation of ouabain-inhibitable 86Rb+ uptake. The ionophore monensin, which also promotes passive Na+ entry into BC3H-1 cells, mimics the insulin stimulation of ouabain-inhibitable 86Rb+ uptake. In contrast, incubation with amiloride or low [Na+] (10 mM), both of which inhibit Na+/H+ exchange transport, abolished the insulin stimulation of (Na+,K+)-ATPase transport activity. Furthermore, each of these insulin-stimulated transport activities displayed a similar sensitivity to amiloride. These results indicate that insulin stimulates a large increase in Na+/H+ exchange transport and that the resulting Na+ influx increases the intracellular Na+ concentration, thus activating the internal Na+ transport sites of the (Na+,K+)-ATPase. This Na+ influx is, therefore, the mediator of the insulin-induced stimulation of membrane (Na+,K+)-ATPase transport activity classically observed in muscle.  相似文献   

11.
[3H]Acetylcholine efflux and Na+-K+ ATPase ion pump activity were measured concomitantly in rat cortical synaptosomes. Ouabain (500 microM), strophanthidin (500 microM), and parachloromercuribenzene sulfonate (500 microM) each inhibited ouabain-sensitive 86Rb uptake and elevated [3H]acetylcholine release independently of the external calcium concentration. Veratridine (10 microM), electrical field stimulation (60 V, 60 Hz, 5-ms pulse duration), or the calcium ionophore A23187 (10 micrograms/ml) also inhibited ouabain-sensitive 86Rb uptake and released [3H]acetylcholine, but via a calcium-dependent process. Veratridine-induced [3H]acetylcholine release and ion pump inhibition were correlated over a wide range of drug concentrations and both effects were blocked by pre-treatment with tetrodotoxin (1 microM). The rate of [3H]acetylcholine efflux from superfused synaptosomes was increased within 15 s of exposure to ouabain, strophanthidin, veratridine, A23187, or field stimulation, while ouabain-sensitive 86Rb uptake was significantly decreased within a similar interval. These results suggest that [3H]acetylcholine release is due at least in part to inhibition of Na+-K+ ATPase.  相似文献   

12.
Potassium influx has been investigated in XTH-2 cells, a line derived from tadpole heart endothelia. In this line, the density at which the cultures become confluent is clearly separated from the density at which growth arrest takes place. Density-related changes in K+ influx were monitored by determining the uptake of 86Rb into well adhering cells kept in culture medium. The main observations were 1) 86Rb uptake is highest in single cells, and on confluency it reaches a low level, which is kept constant at higher cell density regardless of whether the cultures are stationary or still in logarithmic growth phase; 2) the relative amount of 86Rb taken up via the Na+ -K+ -2Cl- cotransport pathway and via the Na+/K+ pump changes from low cell density to confluent cultures; 86Rb uptake of single cells is nearly insensitive to ouabain, a maximum of ouabain sensitivity is reached around confluency, whereas piretanide-sensitive 86Rb uptake is highest in single cells and seems to reach a minimum at the onset of confluency; 3) the variations in Na+/K+ pumping rate reflect neither differences in the amount of enzyme present nor changes in enzyme repartition between apical and basolateral plasma membranes; they seem to result from either "masking" or "unmasking" of the enzyme; 4) no alterations in K+ uptake occur that would be characteristic of the "stationary growth phase." The only changes that seem to be related to arrest of proliferation are concerned with the Na+/K+-ATPase, which achieves an extraordinary susceptibility to stimulation by monensin and exhibits an increase in PNPPase activity.  相似文献   

13.
Microdissected, beta-cell-rich pancreatic islets from ob/ob mice were used in studies of 86Rb+ transport. D-Glucose (20 mM) induced a biphasic reduction in 86Rb+ efflux. The reduction stabilized within 10 min at 34% of the efflux rate at zero glucose. The initial 86Rb+ uptake (5 min) was dose-dependently reduced by ouabain with maximum inhibition at 1 mM. D-Glucose (20 mM) did not affect the ouabain-sensitive 86Rb+ influx but markedly reduced (48%) the ouabain-resistant isotope influx. The results suggest that D-glucose does not affect the Na+/K+ pump in pancreatic beta-cells and that the glucose-sensitive K+-transporting modalities (K+ channels) in the beta-cells can mediate both inward and outward K+ flux.  相似文献   

14.
The effects of insulin and glucagon on the (Na+-K+)-ATPase transport activity in freshly isolated rat hepatocytes were investigated by measuring the ouabain-sensitive, active uptake of 86Rb+. The active uptake of 86Rb+ was increased by 18% (p less than 0.05) in the presence of 100 nM insulin, and by 28% (p less than 0.005) in the presence of nM glucagon. These effects were detected as early as 2 min after hepatocyte exposure to either hormone. Half-maximal stimulation was observed with about 0.5 nm insulin and 0.3 nM glucagon. The stimulation of 86Rb+ uptake by insulin occurred in direct proportion to the steady state occupancy of a high affinity receptor by the hormone (the predominant insulin-binding species in hepatocytes at 37 degrees C. For glucagon, half-maximal response was obtained with about 5% of the total receptors occupied by the hormone. Amiloride (a specific inhibitor of Na+ influx) abolished the insulin stimulation of 86Rb+ uptake while inhibiting that of glucagon only partially. Accordingly, insulin was found to rapidly enhance the initial rate of 22Na+ uptake, whereas glucagon had no detectable effect on 22Na+ influx. These results indicate that monovalent cation transport is influenced by insulin and glucagon in isolated rat hepatocytes. In contrast to glucagon, which appears to enhance 86Rb+ influx through the (Na+-K+)-ATPase without affecting Na+ influx, insulin stimulates Na+ entry which in turn may increase the pump activity by increasing the availability of Na+ ions to internal Na+ transport sites of the (Na+-K+)-ATPase.  相似文献   

15.
The cation-transporting activity and Na,K-ATPase activity of CV-1 cell recipients of the mouse ouabain resistance gene (ouaR6, or OR6 cells; see Levenson, R., Racaniello, V., Albritton, L., and Housman, D. (1984) Proc. Natl. Acad. Sci. U. S. A. 81, 1489-1493) have been further characterized. OR6 cells grown in strophanthidin (a cardiac aglycon which may be removed rapidly from the Na,K-ATPase) possess both ouabain-sensitive and -insensitive 86Rb+ uptake activities. The ouabain-sensitive 86Rb+ uptake activity of these cells (OR6-S cells) exhibits the same Ki for ouabain as that of the CV-1 parent cells (Ki(app) = 3 x 10(-7) M ouabain), but accounts for only approximately 30% of total 86Rb+ uptake into Na+-loaded OR6-S cells, compared to 80% for CV-1 cells. Most of the ouabain-resistant 86Rb+ uptake in OR6-S cells is dependent on internal Na+ and is insensitive to furosemide, suggesting that it is due to an ouabain-resistant Na,K pump. In OR6-S cell lysates, 50% of Na+-dependent ATPase activity is insensitive to 1 mM ouabain, compared to less than 5% in CV-1 cell lysates. In addition, purified plasma membranes from OR6-S cells contain a 100-kDa protein which is transiently phosphorylated by ATP in an Na+-dependent, K+-sensitive manner, like the alpha subunit of the CV-1 Na,K-ATPase and the canine renal Na,K-ATPase, but which is unaffected by preincubation in 1 mM ouabain. All of these data suggest that OR6-S cells possess a ouabain-insensitive Na,K pump with characteristics similar to the ouabain-sensitive pump of CV-1 parent cells. Since the mouse ouabain resistance gene does not encode either subunit of the Na,K-ATPase, these results suggest that the ouabain resistance gene product may modify the ouabain sensitivity of the endogenous CV-1 Na,K pump.  相似文献   

16.
Addition of (Arg) vasopressin to quiescent cultures of Swiss 3T3 cells rapidly stimulates an ouabain-sensitive 86Rb uptake. In contrast the hormone has no significant effect on the rate of efflux of this cation from preloaded cells. The stimulation of 86Rb uptake is cycloheximide-insensitive, occurs within minutes of hormone addition and results from an increase in the Vmax of the uptake system. Vasopressin stimulates ion uptake in a concentration-dependent fashion (1-100 ng/ml); oxytocin also stimulated the Na-K pump but at significantly higher concentrations. The stimulation of the Na-K pump by vasopressin is apparently mediated by an increase in Na entry into the cells, since the hormone (1) strikingly shifts the concentration dependence on Na+ of the Na-K pump, (2) increases 22Na uptake, and (3) increases intracellular Na contents when the efflux of this ion is blocked by ouabain. Since vasopressin is a potent mitogen for Swiss 3T3 cells, the results provide further evidence in support of a possible role of monovalent ion fluxes in signalling the initiation of growth stimulation.  相似文献   

17.
The preceding paper (Ciapa et al., 1984) provided biochemical and kinetic characterization of the Na+-K+ exchange in Paracentrotus lividus eggs. The present work is a study of the ionic events involved in the stimulation of the Na+-K+ transporter after fertilization. Fertilization in low Na+-external medium containing amiloride (0.1 mM) suppresses the stimulation of the net efflux of H+ and 86Rb uptake. Activation of eggs with the ionophore A23187 leads to stimulation of both Na+-H+ exchange and ouabain-sensitive 86Rb influx. When eggs were activated with A23187 in artificial seawater, 86Rb uptake and 24Na influx showed similar saturable kinetics with respect to the external Na+. A23187 treatment of eggs in Na+-free artificial seawater did not stimulate the Na+-K+ exchange until 10 mEq Na+ was added. Activation of eggs by NH4Cl (5 mM) stimulated 86Rb influx and Na+ exit; both fluxes were ouabain sensitive. Monensin increased cell Na+ of unfertilized eggs without any significant increase in intracellular pH: a condition in which 86Rb influx was not markedly stimulated. Addition of 10 mEq Na+ to unfertilized eggs in Na+-free artificial seawater stimulated 86Rb uptake but to a lower extent that did 10 mEq Na+ plus sperm. It is concluded that (1) the stimulation of the Na+-K+ pump at fertilization has an absolute requirement for the Na+-H+ exchange; (2) the alkalinization of eggs resulting from the acid efflux is a prerequisite for the enhancement of the Na+-K+ pump; (3) the amount of Na+ entering eggs at fertilization determines the intensity of the Na+-K+ exchange; (4) early events of fertilization such as exocytosis and calcium release which may be involved in the stimulation of the Na+-K+ pump must necessarily be coupled to cell alkalinization.  相似文献   

18.
Myocardial sodium-pump activity was examined from ouabain-sensitive 86Rb+ uptake using myocytes isolated from guinea-pig heart. Either sodium loading or the sodium ionophore, monensin, increased 86Rb+ uptake by over 400%, indicating that the amount of Na+ available to the pump is the primary determinant of its activity, and that the sodium pump has a substantial reserve capacity in quiescent myocytes. Moreover, the degree of the above stimulation is markedly higher than corresponding values reported with multicellular preparations, suggesting that diffusion barriers make it impossible to observe the capacity of the sodium pump in the latter preparations. Removal of extracellular Ca2+ increased ouabain-sensitive 86Rb+ uptake, probably by enhancing turnover of the sodium pump rather than increasing availability of Na+ to the pump.  相似文献   

19.
The effects of amino acids present in minimal essential medium were investigated on 86Rb+ -fluxes and on the membrane-potential dependent accumulation of the lipophilic cation [3H]tetraphenylphosphonium (TTP+) in logarithmically growing Friend erythroleukemia cells. The ouabain-sensitive 86Rb+ -uptake measured as well in complete growth medium as in Earle's balanced salt solution (EBSS) with amino acid composition present in growth medium, was 3 to 4-fold increased in comparison to the 86Rb+-uptake measured in pure EBSS only. The Na+,K+,2Cl- -cotransport measured as piretanide-sensitive 86Rb+-uptake was reduced in the presence of amino acids. Stimulation of the ouabain-sensitive 86Rb+ -uptake could be brought about by the addition of alanine alone or of the sodium ionophore monensin. In spite of the activation of the Na+,K+ -pump the membrane-potential dependent accumulation of [3H]TPP+ was about 40 per cent reduced in the presence of medium amino acids indicating a decreased membrane potential under these conditions. On the other hand, monensin which induces an electrically silent Na+ -influx via Na+/H+ -exchange was shown to hyperpolarize the membrane on the basis of [3H]TPP+-accumulation. These results suggest that the intensive uptake of neutral amino acids by Na+-cotransport in rapidly growing cells may be responsible for both stimulation of the Na+,K+ -pump and decrease in the transmembrane potential.  相似文献   

20.
Using inside-out vesicles of human red cell membranes, the effects of cytoplasmic Na+ in the range 0-5 mM on ATP-dependent 22Na+ influx (normal efflux) and 86Rb+ efflux (normal influx) were tested. The sodium pump stoichiometry, i.e. the ratio of net 22Na+ influx:86Rb+ efflux was reduced markedly when the cytoplasmic Na+ was reduced to less than 1 mM. Reduction in cytoplasmic Na+ concentration was associated also with a decreased sensitivity of the pump to effects of extracellular Rb+. Thus, extracellular (intravesicular) Rb+ stimulation observed at high ATP concentration and inhibition observed at low ATP concentration were not observed when the cytoplasmic (extravesicular) Na+ concentration was reduced to less than or equal to 0.2 mM. It is suggested that at low cytoplasmic Na+, the pump can operate with less than maximal sites filled with Na+ ions. Under this condition, it is likely that an enzymic step associated with either the ion translocation step or the enzyme's conformational transition becomes rate-limiting.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号