首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The bacteriocin, boticin E, was produced by only a few strains of those clostridia which are nontoxigenic but otherwise identical to Clostridium botulinum type E. Boticin preparations from four different strains had identical spectra against indicator cultures. Experiments with bacterial lawns showed boticin to be sporostatic for all tested nonproteolytic C. botulinum (types B, E, and F) and nontoxigenic type E-related strains which included the producing strains as well as those different from type E in the fermentation of one to three carbohydrates. Boticin had no detectable effect on vegetative cells of boticinogenic strains but killed those of all other strains whose spores were sensitive. Cultures that were growing in an agar medium were more sensitive to the bacteriocin than those growing in broth. Vegetative cells of indicator strains adsorbed boticin, but cells of a boticin-resistant mutant did not. Boticin did not lyse suspensions of vegetative cells which had been killed previously by exposure to air but lysed actively growing protoplasts and L-forms of a strain whose normal vegetative cells are susceptible to lysis. Sporostasis resulted from inhibition of germination rather than of outgrowth. Proteolytic strains of C. botulinum (types A, B, and F) were resistant to boticin E.  相似文献   

2.
Reports that Clostridium botulinum toxin can sometimes be detected in the absence of indicators of overt spoilage led to a systematic study of this phenomenon in a model system. Media with various combinations of pH (5.0 to 7.0) and glucose (0.0 to 1.0%) were inoculated with vegetative cells of C. botulinum 62A and incubated anaerobically at 35 degrees C. Although growth and toxin production occurred at all pH and glucose combinations, accumulation of gas was delayed or absent in media with low pH, low glucose levels, or both. Other proteolytic C. botulinum strains gave similar results. Trypsin activation was required to detect toxin in some low pH cultures. The trypsinization requirement correlated with low proteolytic activity in the cultures. Proteolytic activity of the strains examined was 5- to 500-fold lower in botulinal assay medium than in cooked meat medium. The results indicate that the absence of gas accumulation does not preclude the presence of botulinal toxin and that proteolytic cultures grown under adverse conditions may require trypsinization for the detection of toxin.  相似文献   

3.
Reports that Clostridium botulinum toxin can sometimes be detected in the absence of indicators of overt spoilage led to a systematic study of this phenomenon in a model system. Media with various combinations of pH (5.0 to 7.0) and glucose (0.0 to 1.0%) were inoculated with vegetative cells of C. botulinum 62A and incubated anaerobically at 35 degrees C. Although growth and toxin production occurred at all pH and glucose combinations, accumulation of gas was delayed or absent in media with low pH, low glucose levels, or both. Other proteolytic C. botulinum strains gave similar results. Trypsin activation was required to detect toxin in some low pH cultures. The trypsinization requirement correlated with low proteolytic activity in the cultures. Proteolytic activity of the strains examined was 5- to 500-fold lower in botulinal assay medium than in cooked meat medium. The results indicate that the absence of gas accumulation does not preclude the presence of botulinal toxin and that proteolytic cultures grown under adverse conditions may require trypsinization for the detection of toxin.  相似文献   

4.
Y Zhou  H Sugiyama    E A Johnson 《Applied microbiology》1993,59(11):3825-3831
Two Clostridium butyricum strains from infant botulism cases produce a toxic molecule very similar to C. botulinum type E neurotoxin. Chromosomal, plasmid, and bacteriophage DNAs of toxigenic and nontoxigenic strains of C. butyricum and C. botulinum type E were probed with (i) a synthesized 30-mer oligonucleotide encoding part of the L chain of type E botulinum toxin and (ii) the DNA of phages lysogenizing these cultures. The toxin gene probe hybridized to the chromosomal DNA of toxigenic strains but not to their plasmid DNA. All toxigenic and most nontoxigenic strains tested were lysogenized by a prophage on the chromosome. Prophages of toxigenic strains, irrespective of species, had related or identical DNAs which differed from the DNAs of prophages in nontoxigenic strains. The prophage of toxigenic strains was adjacent or close to the toxin gene on the chromosome. Phage DNAs purified from toxigenic strains did not hybridize with the toxin gene probe but could act as the template of the polymerase chain reaction to amplify the toxin gene. The toxin gene was not transferred between C. botulinum and C. butyricum (either direction) when different pairs of a possible gene donor and a recipient strain were grown as mixed cultures. Nontoxigenic C. butyricum or C. botulinum type E-like strains did not become toxigenic when grown in broth containing the phage induced from a toxigenic strain of the other species.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

5.
The appearance of Clostridium botulinum type E organisms and of toxin in experimentally inoculated packages of turkey roll was followed to study the time relationship between the presence of vegetative cells and the demonstration of toxin. The presence of vegetative cells was determined by immunofluorescence, and animal tests were used to assay toxin production. Growth initiated from detoxified spores of C. botulinum type E resulted in toxin formation within 24 hr. Presence of fluorescing vegetative cells and of toxin coincided from 1 to 14 days of incubation. Beginning with the next testing date, day 21, differences were observed. Toxin could be detected for a longer time than vegetative cells. Neither toxin nor organisms could be found after 56 days of incubation. The mouse lethal dose tests (MLD per gram of turkey roll) showed fluctuations in the amount of toxin present throughout the period of testing. Maximal amounts of toxin were present during the period when fluorescing organisms were also more numerous. The applications of immunofluorescence in the study and in the diagnosis of botulism is discussed.  相似文献   

6.
Pure spore antigens for the immunization of rabbits were prepared by enzymic digestion of vegetative components and separation of the cleaned spores in polyethylene glycol. Spore antisera were prepared to strains representative of toxigenic Clostridium botulinum type E; nontoxigenic boticin E-producing variants; nontoxigenic nonproducers of boticin E; nontoxigenic "atypical" strains, which differ somewhat from C. botulinum type E in their physiology; C. botulinum types A and B; and C. bifermentans. They were tested against these and additional strains representative of the above groups, other types of C. botulinum, and other Clostridium species. There was no evidence of agglutination of flagellar or somatic antigens of vegetative cells by these antisera. Agglutination and agglutinin absorption tests showed common antigens among toxigenic type E strains and nontoxigenic variants, both producers and nonproducers of boticin E. Some nontoxigenic "atypical" strains varied in their ability to be agglutinated by type E antisera, and others did not agglutinate at all. Of those atypical strains that were not agglutinated, one was agglutinated by C. bifermentans antiserum. Antisera prepared against C. botulinum types A and B and C. bifermentans did not agglutinate the spores of type E or its variants nor share antigens common to each other. Similarly, antisera to type E, its nontoxigenic variants, and nontoxigenic atypical strains did not agglutinate other C. botulinum types or any other Clostridium species investigated.  相似文献   

7.
A monoclonal antibody-based amplified enzyme-linked immunosorbent assay (ELISA) method for detecting Clostridium botulinum type A toxin was evaluated for its ability to detect the toxin in the supernatant fluid of pure cultures and after growth from Cl. botulinum spores inoculated into pork slurries. Slurries containing NaCl (1.5-4.5% w/v) and polyphosphate (0.3% w/v) were either unheated or heated, 80 degrees C/5 min + 70 degrees C/2 h, before storage at 15 degrees, 20 degrees or 27 degrees C. The presence of specific toxin was confirmed by mouse bioassay and results compared with those of the amplified ELISA method. A total of 49 strains, 39 Cl. botulinum and 10 Cl. sporogenes (putrefactive anaerobes), and 95 slurry samples were tested. Fourteen of 15 strains of type A Cl. botulinum and 34 of 36 slurry samples containing type A toxin were positive by ELISA. No false positive reactions occurred with Cl. botulinum types B, C, D, E and F, or with the 10 strains of Cl. sporogenes. However, toxin produced by one strain of Cl. botulinum type A (NCTC 2012) was not detected by the amplified ELISA.  相似文献   

8.
A bacteriocin-like substance, active against strains of Clostridium botulinum type E, is produced by certain nontoxic organisms whose biochemical properties and morphological characteristics are similar to type E. The substance, for which the name "boticin E" is proposed, is bacteriolytic for vegetative cells and bacteriostatic for spores of type E. Its spectrum of activity is somewhat strain-specific. Of the clostridial species tested, only C. botulinum type E and, to a lesser extent, C. perfringens and C. acetobutylicum, but not C. botulinum types A, B, or F, are sensitive. Irreversibly resistant variants originating from both vegetative cells and spores of certain strains were obtained. The active substance is heat-stable and dialyzable, and is not inactivated by chloroform but is digested by trypsin. Ethyl alcohol and acetone precipitates are fully active, whereas trichloroacetic acid precipitates are only partially active. Other nontoxic organisms producing similar antagonistic substances are discussed.  相似文献   

9.
A monoclonal antibody-based amplified enzyme-linked immunosorbent assay (ELISA) method for detecting Clostridium botulinum type A toxin was evaluated for its ability to detect the toxin in the supernatant fluid of pure cultures and after growth from Cl. botulinum spores inoculated into pork slurries. Slurries containing NaCl (1.5–4.5% w/v) and polyphosphate (0.3% w/v) were either unheated or heated, 80°C/5 min + 70°C/2 h, before storage at 15°, 20° or 27°C. The presence of specific toxin was confirmed by mouse bioassay and results compared with those of the amplified ELISA method. A total of 49 strains, 39 Cl. botulinum and 10 Cl. sporogenes (putrefactive anaerobes), aiid 95 slurry samples were tested. Fourteen of 15 strains of type A Cl. botulinum and 34 of 36 slurry samples containing type A toxin were positive by ELISA. No false positive reactions occurred with Cl. botulinum types B, C, D, E and F, or with the 10 strains of Cl. sporogenes. However, toxin produced by one strain of Cl. botulinum type A (NCTC 2012) was not detected by the amplified ELISA.  相似文献   

10.
11.
A monoclonal antibody-based amplified ELISA method for detecting Clostridium botulinum type B toxin was evaluated for its ability to detect the toxin in the supernatant fluid of pure cultures and after growth from Cl. botulinum spores inoculated into pork slurries. Slurries containing NaCl (1.5-4.5% w/v) and polyphosphate (0.3% w/v) were either unheated or heated 80 degrees C/5 min followed by 70 degrees C/2 h before incubation at 15 degrees, 20 degrees or 27 degrees C. Presence of specific toxin was confirmed by mouse bioassay and results were compared with those of the amplified ELISA method. A total of 48 strains, consisting of 38 Cl. botulinum and 10 Cl. sporogenes (putrefactive anaerobes), and 140 slurry samples were tested. Cultures of eight out of nine strains of type B Cl botulinum and 73 of 101 slurry samples containing type B toxin were positive by ELISA; the remaining 28 slurry samples contained type B toxin at levels below or close to the detection limit (20 LD50/ml) of the type B ELISA. No false-positive reactions occurred with Cl. botulinum types A, C, D, E or F, or with the 10 strains of Cl. sporogenes. Toxin produced by one strain of Cl. botulinum type B (NCTC 3807) was not detected by this single monoclonal antibody-based amplified ELISA. With a mixture of two monoclonal antibodies, however, the toxin from NCTC 3807 could be detected without reducing the sensitivity of the ELISA.  相似文献   

12.
A monoclonal antibody-based amplified ELISA method for detecting Clostridium botulinum type B toxin was evaluated for its ability to detect the toxin in the supernatant fluid of pure cultures and after growth from Cl. botulinum spores inoculated into pork slurries. Slurries containing NaCl (1.5–4.5%w/v) and polyphosphate (0.3%w/v) were either unheated or heated 80°C/5 min followed by 70°C/2 h before incubation at 15°, 20° or 27°C. Presence of specific toxin was confirmed by mouse bioassay and results were compared with those of the amplified ELISA method. A total of 48 strains, consisting of 38 Cl. botulinum and 10 Cl. sporogenes (putrefactive anaerobes), and 140 slurry samples were tested. Cultures of eight out of nine strains of type B Cl. botulinum and 73 of 101 slurry samples containing type B toxin were positive by ELISA; the remaining 28 slurry samples contained type B toxin at levels below or close to the detection limit (20 LD50/ml) of the type B ELISA. No falsepositive reactions occurred with Cl. botulinum types A, C, D, E or F, or with the 10 strains of Cl. sporogenes. Toxin produced by one strain of Cl. botulinum type B (NCTC 3807) was not detected by this single monoclonal antibody-based amplified ELISA. With a mixture of two monoclonal antibodies, however, the toxin from NCTC 3807 could be detected without reducing the sensitivity of the ELISA.  相似文献   

13.
Some of the physiological and biochemical characteristics of a type F strain recently isolated from the United States were studied and compared with those of the prototype Langeland type F strain. The recent isolates were nonproteolytic, fermented sucrose and ribose, produced spores of low thermal resistance, produced a protoxin activated by trypsin, and grew and produced toxin at 38 F (3.3 C) from a spore inoculum. The prototype Langeland strain was proteolytic, did not ferment sucrose or ribose, and produced spores of relatively high thermal resistance, and the toxin of 3-day-old cultures was not activated by trypsin. Approximately two to three times the minimal lethal dose (MLD) of type F toxin from either Langeland or nonproteolytic strains was cross-neutralized by 1,000 anti-MLD of type E antitoxin. Antitoxin serums prepared by immunizing rabbits with the toxoid of the nonproteolytic type F isolate neutralized the toxin of the Langeland strain, but did not show cross-neutralization with the toxins of other types of Clostridium botulinum.  相似文献   

14.
A staining procedure was developed for screening Clostridium botulinum type A (tox+) cells fixed (smear) on glass slides. the method is based on reaction between cells and an immunoenzyme-conjugate consisting of antibody against type A toxin linked to horseradish peroxidase (HRPO) enzyme. Fixed smears were stained for perioxidase activity (30 min), using one drop of 3,3'-diaminobenzidine-hydrogen peroxide solution (pH 7.6) as oxidizable substrate, followed by washing, drying and microscopic examination (1000 X). the cell-walls of vegetative C. botulinum type A appeared reddish brown and periphery of spores (if present), stained dark brown. However, C. botulinum type B (tox+) cross-reacted (faint brown) with the same antibody-HRPO-conjugate. Specificity and sensitivity of this procedure compared well with the immunodiffusion method of Ferreira et al. (1981, 1983). Factors affecting cell-staining were: fixation time and type used, incubation time of antibody-HRPO-conjugate with cells, growth medium, culture age, and crowding of cells in smears. Ethanol fixation (5 min) of logarithmic and/or stationary phase cells and 30 min incubation with antibody-HRPO-conjugate were optimal and yielded the most appropriate procedure for detecting cells containing type A botulinum toxin.  相似文献   

15.
The sensitivity of an enrichment culture procedure for detecting Clostridium botulinum type E in whitefish chubs (Leucichthys sp.) was assayed. Data demonstrated that fish inoculated with 10 or more viable C. botulinum spores regularly develop specifically neutralizable enrichment cultures. Mild heat treatment (60 C, 15 min) substantially reduced the sensitivity of enrichment culturing. This effect was particularly noticeable in the culturing of fish which harbored fewer than 10 spores each. Evidence is presented which indicates that sensitivity of enrichment, without heat, approaches the level of one spore per fish. Smoked whitefish chubs, containing from one to several hundred spores each, were examined for toxin content after storage at 5, 10, 15, and 28 C for as long as 32 days. The lowest temperature at which detectable toxin was produced was 15 C. This occurred in 1 of 10 fish incubated for 14 days. C. botulinum was regularly recovered, by enrichment culture, from fish inoculated with small numbers of spores, even though toxin was not detected by direct extraction of incubated fish. Persistence of C. botulinum type E spores was observed to decline with an increase in the temperature and time at which inoculated fish were stored.  相似文献   

16.
Colony immunoblot assay of botulinal toxin.   总被引:2,自引:0,他引:2       下载免费PDF全文
Botulinal neurotoxin in and around colonies of Clostridium botulinum types A, B, and E and of toxigenic Clostridium butyricum was detected by an enzyme-linked immunoassay procedure whereby the toxin was transferred from the agar medium to a nitrocellulose support and the immobilized toxin was probed with type-specific antibodies. The method identified the toxin types of the colonies grown from a mixed inoculum of C. botulinum serotypes. The specificity of the antitoxins for type A and B toxins was improved by adsorption of the antitoxins with the antigens of heterologous type cultures.  相似文献   

17.
Growth initiated from detoxified spores of Clostridium botulinum 62A resulted in toxin production of 50 to 10,000 mouse lethal doses (MLD) per gram of processed soft surface-ripened cheese. Regular assays during subsequent storage of toxic samples at 2 to 4 C revealed a characteristic two- to fivefold increase in toxin titer during the initial 1 week to 12 months of storage. Thereafter, the toxin titer remained constant for 2 to 4 years, after which the toxicity declined rapidly. At the end of 6 years of storage at 2 to 4 C, the samples still contained 20 to 5,000 MLD of toxin per gram, with the usual toxin level at 200 to 500 MLD. Toxic culture filtrates of C. botulinum incorporated into cheese and stored at 30 C for 60 days showed no decline in toxin in processed type I cheese, but toxin decreased slightly in processed type II and type III cheese. The surface flora of these cheeses did not attack but, on the contrary, protected C. botulinum toxin during storage at 30 C. Initial difficulties in recovering C. botulinum organisms from type I cheese were traced to growth inhibitory activity which could be removed by washing with distilled water in a centrifuge. Viable spores or vegetative cells could be recovered from all samples after 4 to 5 years of storage at 2 to 4 C. After 6 years, organisms were recovered from all except three samples of type I cheese. Two other samples showed a large decrease in viable organisms. In type III cheese, spores remained remarkably stable for 6 years at the level of the initial inoculum, i.e., approximately 10(5) spores per gram.  相似文献   

18.
The polymerase chain reaction (PCR) was used as the basis for the development of highly sensitive and specific diagnostic tests for organisms harboring botulinum neurotoxin type A through E genes. Synthetic DNA primers were selected from nucleic acid sequence data for Clostridium botulinum neurotoxins. Individual components of the PCR for each serotype (serotypes A through E) were adjusted for optimal amplification of the target fragment. Each PCR assay was tested with organisms expressing each of the botulinum neurotoxin types (types A through G), Clostridium tetani, genetically related nontoxigenic organisms, and unrelated strains. Each assay was specific for the intended target. The PCR reliably identified multiple strains having the same neurotoxin type. The sensitivity of the test was determined with different concentrations of genomic DNA from strains producing each toxin type. As little as 10 fg of DNA (approximately three clostridial cells) was detected. C. botulinum neurotoxin types A, B, and E, which are most commonly associated with human botulism, could be amplified from crude DNA extracts, from vegetative cells, and from spore preparations. This suggests that there is great potential for the PCR in the identification and detection of botulinum neurotoxin-producing strains.  相似文献   

19.
Twelve strains of Clostridium botulinum type A and seven strains of Clostridium sporogenes were screened for plasmids by agarose gel electrophoresis of cleared lysates of cells from 5 ml of mid-log-phase culture. Nine type A strains had one or more plasmids of 4.3, 6.8, or 36 megadaltons (MDa); several strains showed a large plasmid of 61 MDa, but it was not consistently recovered. Four C. sporogenes strains had one or more plasmids of 4.3, 5.6 or 36 MDa. Isolates obtained from cultures of plasmid-containing C. botulinum type A strains grown in ionic detergent broth and from spontaneously arising variants were screened both for toxin production and for plasmid content. Toxigenicity of C. botulinum could not be correlated with the presence of any one plasmid.  相似文献   

20.
Twelve strains of Clostridium botulinum type A and seven strains of Clostridium sporogenes were screened for plasmids by agarose gel electrophoresis of cleared lysates of cells from 5 ml of mid-log-phase culture. Nine type A strains had one or more plasmids of 4.3, 6.8, or 36 megadaltons (MDa); several strains showed a large plasmid of 61 MDa, but it was not consistently recovered. Four C. sporogenes strains had one or more plasmids of 4.3, 5.6 or 36 MDa. Isolates obtained from cultures of plasmid-containing C. botulinum type A strains grown in ionic detergent broth and from spontaneously arising variants were screened both for toxin production and for plasmid content. Toxigenicity of C. botulinum could not be correlated with the presence of any one plasmid.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号