首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Preconditioning (PC) protects against ischemia-reperfusion (I/R) injury via the activation of the JAK-STAT pathway. We hypothesized that the mediators responsible for PC can be transferred to naive myocardium through the coronary effluent. Langendorff-perfused hearts from male Sprague-Dawley rats were randomized to paired donor/acceptor protocols with or without PC in the presence or absence of the JAK-2 inhibitor AG-490 (n = 6 for each group). Warmed, oxygenated coronary effluent collected during the reperfusion phases of PC (3 cycles of 5 min ischemia and 5 min reperfusion) was administered to acceptor hearts. The hearts were then subjected to 30 min ischemia and 40 min reperfusion. The left ventricles were analyzed for phosphorylated (p)STAT-1, pSTAT-3, Bax, Bcl, Bcl-X(L)/Bcl-2-associated protein (BAD), and caspase-3 expression by Western blot. A separate group of hearts (n = 6) was analyzed for STAT activation immediately after the transfer of the PC effluent (no I-R). Baseline cardiodynamics were not different among the groups. End-reperfusion maximal change in pressure over time (+dP/dt(max)) was significantly (P < 0.05) improved in acceptor PC (3,637 +/- 199 mmHg/s) and donor PC (4,304 +/- 347 mmHg/s) hearts over non-PC donor (2,020 +/- 363 mmHg/s) and acceptor (2,624 +/- 345 mmHg/s) hearts. Similar differences were seen for minimal change in pressure over time (-dP/dt(min)). STAT-3 activation was significantly increased in donor and acceptor PC hearts compared with non-PC hearts. Conversely, pSTAT-1 and Bax expression was decreased in donor and acceptor PC hearts compared with non-PC hearts. No differences in Bcl, BAD, or caspase-3 expression were observed. Treatment with AG-490 attenuated the recovery of +/-dP/dt in acceptor PC hearts and significantly reduced pSTAT-3 expression. The PC coronary effluent activates JAK-STAT signaling, limits apoptosis, and protects myocardial performance from I/R injury.  相似文献   

2.
To determine whether sarcolemmal and/or mitochondrial ATP-sensitive potassium (K(ATP)) channels (sarcK(ATP), mitoK(ATP)) are involved in stretch-induced protection, isolated isovolumic rat hearts were assigned to the following protocols: nonstretched hearts were subjected to 20 min of global ischemia (Is) and 30 min of reperfusion, and before Is stretched hearts received 5 min of stretch + 10 min of no intervention. Stretch was induced by a transient increase in left ventricular end-diastolic pressure (LVEDP) from 10 to 40 mmHg. Other hearts received 5-hydroxydecanoate (5-HD; 100 microM), a selective inhibitor of mitoK(ATP), or HMR-1098 (20 microM), a selective inhibitor of sarcK(ATP), before the stretch protocol. Systolic function was assessed through left ventricular developed pressure (LVDP) and maximal rise in velocity of left ventricular pressure (+dP/dt(max)) and diastolic function through maximal decrease in velocity of left ventricular pressure (-dP/dt(max)) and LVEDP. Lactate dehydrogenase (LDH) release and ATP content were also measured. Stretch resulted in a significant increase of postischemic recovery and attenuation of diastolic stiffness. At 30 min of reperfusion LVDP and +dP/dt(max) were 87 +/- 4% and 92 +/- 6% and -dP/dt(max) and LVEDP were 95 +/- 9% and 10 +/- 4 mmHg vs. 57 +/- 6%, 53 +/- 6%, 57 +/- 10%, and 28 +/- 5 mmHg, respectively, in nonstretched hearts. Stretch increased ATP content and did not produce LDH release. 5-HD did not modify and HMR-1098 prevented the protection achieved by stretch. Our results show that the beneficial effects of stretch on postischemic myocardial dysfunction, cellular damage, and energetic state involve the participation of sarcK(ATP) but not mitoK(ATP).  相似文献   

3.
Decreased right as well as left ventricular function can be associated with pulmonary hypertension (PH). Numerous investigations have examined cardiac function following induction of pulmonary hypertension with monocrotaline (MCT) assuming that MCT has no direct cardiac effect. We tested this assumption by examining left ventricular function and histology of isolated and perfused hearts from MCT-treated rats. Experiments were performed on 50 male Sprague-Dawley rats [348 +/- 6 g (SD)]. Thirty-seven rats received MCT (50 mg/kg sc; MCT group) while the remainder did not (Control group). Three weeks later, pulmonary artery pressure was assessed echocardiographically in 20 MCT and 8 Control rats. The hearts were then excised and perfused in the constant pressure Langendorff mode to determine peak left ventricular pressure (LVP), the peak instantaneous rate of pressure increase (+dP/dtmax) and decrease (-dP/dtmax), as well as the rate pressure product (RPP). Histological sections were subsequently examined. Pulmonary artery pressure was higher in the MCT-treated group compared with the Control group [12.9 +/- 6 vs. 51 +/- 35.3 mmHg (P < 0.01)]. Left ventricular systolic function and diastolic relaxation were decreased in the MCT group compared with the Control group (+dP/dtmax 4,178 +/- 388 vs. 2,801 +/- 503 mmHg/s, LVP 115 +/- 11 vs. 83 +/- 14 mmHg, RPP 33,688 +/- 1,910 vs. 23,541 +/- 3,858 beats x min(-1) x mmHg(-1), -dP/dtmax -3,036 +/- 247 vs. -2,091 +/- 389 mmHg/s; P < 0.0001). The impairment of cardiac function was associated with myocarditis and coronary arteriolar medial thickening. Similarly depressed ventricular function and inflammatory infiltration was seen in 12 rats 7 days after MCT administration. Our findings appear unrelated to the degree of PH and indicate a direct cardiotoxic effect of MCT.  相似文献   

4.
Diastolic dysfunction in volume-overload hypertrophy by aortocaval fistula is characterized by increased passive stiffness of the left ventricle (LV). We hypothesized that changes in passive properties are associated with abnormal myolaminar sheet mechanics during diastolic filling. We determined three-dimensional finite deformation of myofiber and myolaminar sheets in the LV free wall of six dogs with cineradiography of implanted markers during development of volume-overload hypertrophy by aortocaval fistula. After 9 +/- 2 wk of volume overload, all dogs developed edema of extremities, pulmonary congestion, elevated LV end-diastolic pressure (5 +/- 2 vs. 21 +/- 4 mmHg, P < 0.05), and increased LV volume. There was no significant change in systolic function [dP/dt(max): 2,476 +/- 203 vs. 2,330 +/- 216 mmHg/s, P = not significant (NS)]. Diastolic relaxation was significantly reduced (dP/dt(min): -2,466 +/- 190 vs. -2,076 +/- 166 mmHg/s, P < 0.05; time constant of LV pressure decline: 32 +/- 2 vs. 43 +/- 1 ms, P < 0.05), whereas duration of diastolic filling was unchanged (304 +/- 33 vs. 244 +/- 42 ms, P = NS). Fiber stretch and sheet shear occur predominantly in the first third of diastolic filling, and chronic volume overload induced remodeling in lengthening of the fiber and reorientation of the laminar sheet architecture. Sheet shear was significantly increased and delayed at the subendocardial layer (P < 0.05), whereas magnitude of fiber stretch was not altered in volume overload (P = NS). These findings indicate that enhanced filling in volume-overload hypertrophy is achieved by enhanced sheet shear early in diastole. These results provide the first evidence that changes in motion of radially oriented laminar sheets may play an important functional role in pathology of diastolic dysfunction in this model.  相似文献   

5.
Obstructive sleep apnea (OSA) increases cardiovascular morbidity and mortality. We have reported that chronic intermittent hypoxia (CIH), a direct consequence during OSA, leads to left ventricular (LV) remodeling and dysfunction in rats. The present study is to determine LV myocardial cellular injury that is possibly associated with LV global dysfunction. Fifty-six rats were exposed either to CIH (nadir O(2) 4-5%) or sham (handled normoxic controls, HC), 8 h/day for 6 wk. At the end of the exposure, we studied LV global function by cardiac catheterization, and LV myocardial cellular injury by in vitro analyses. Compared with HC, CIH animals demonstrated elevations in mean arterial pressure and LV end-diastolic pressure, but reductions in cardiac output (CIH 141.3 +/- 33.1 vs. HC 184.4 +/- 21.2 ml x min(-1) x kg(-1), P < 0.01), maximal rate of LV pressure rise in systole (+dP/dt), and maximal rate of LV pressure fall in diastole (-dP/dt). CIH led to significant cell injury in the left myocardium, including elevated LV myocyte size, measured by cell surface area (CIH 3,564 +/- 354 vs. HC 2,628 +/- 242 microm(2), P < 0.05) and cell length (CIH 148 +/- 23 vs. HC 115 +/- 16 microm, P < 0.05), elevated terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling (TUNEL)-stained positive cell number (CIH 98 +/- 45 vs. HC 15 +/- 13, P < 0.01), elevated caspase-3 activity (906 +/- 249 vs. 2,275 +/- 1,169 pmol x min(-1) x mg(-1), P < 0.05), and elevated expression of several remodeling gene markers, including c-fos, atrial natriuretic peptide, beta-myosin heavy chain, and myosin light chain-2. However, there was no difference between groups in sarcomere contractility of isolated LV myocytes, or in LV collagen deposition on trichrome-stained slices. In conclusion, CIH-mediated LV global dysfunction is associated with myocyte hypertrophy and apoptosis at the cellular level.  相似文献   

6.
Important sex differences in cardiovascular disease outcomes exist, including conditions of hypertrophic cardiomyopathy and cardiac ischemia. Studies of sex differences in the extent to which load-independent (primary) hypertrophy modulates the response to ischemia-reperfusion (I/R) damage have not been characterized. We have previously described a model of primary genetic cardiac hypertrophy, the hypertrophic heart rat (HHR). In this study the sex differences in HHR cardiac function and responses to I/R [compared to control normal heart rat (NHR)] were investigated ex vivo. The ventricular weight index was markedly increased in HHR female (7.82 +/- 0.49 vs. 4.80 +/- 0.10 mg/g; P < 0.05) and male (5.76 +/- 0.22 vs. 4.62 +/- 0.07 mg/g; P < 0.05) hearts. Female hearts of both strains exhibited a reduced basal contractility compared with strain-matched males [maximum first derivative of pressure (dP/dt(max)): NHR, 4,036 +/- 171 vs. 4,258 +/- 152 mmHg/s; and HHR, 3,974 +/- 160 vs. 4,540 +/- 259 mmHg/s; P < 0.05]. HHR hearts were more susceptible to I/R (I = 25 min, and R = 30 min) injury than NHR hearts (decreased functional recovery, and increased lactate dehydrogenase efflux). Female NHR hearts exhibited a significantly greater recovery (dP/dt(max)) post-I/R relative to male NHR (95.0 +/- 12.2% vs. 60.5 +/- 9.4%), a resistance to postischemic dysfunction not evident in female HHR (29.0 +/- 5.6% vs. 25.9 +/- 6.3%). Ventricular fibrillation was suppressed, and expression levels of Akt and ERK1/2 were selectively elevated in female NHR hearts. Thus the occurrence of load-independent primary cardiac hypertrophy undermines the intrinsic resistance of female hearts to I/R insult, with the observed abrogation of endogenous cardioprotective signaling pathways consistent with a potential mechanistic role in this loss of protection.  相似文献   

7.
Whereas controversial, several studies have suggested that nitric oxide (NO) alters cardiac contractility via cGMP, peroxynitrite, or poly(ADP ribose) synthetase (PARS) activation. This study determined whether burn-related upregulation of myocardial inducible NO synthase (iNOS) and NO generation contributes to burn-mediated cardiac contractile dysfunction. Mice homozygous null for the iNOS gene (iNOS knockouts) were obtained from Jackson Laboratory. iNOS knockouts (KO) as well as wild-type mice were given a cutaneous burn over 40% of the total body surface area by the application of brass probes (1 x 2 x 0.3 cm) heated to 100 degrees C to the animals' sides and back for 5 s (iNOS/KO burn and wild-type burn). Additional groups of iNOS KO and wild-type mice served as appropriate sham burn groups (iNOS/KO sham and wild-type sham). Cardiac function was assessed 24 h postburn by perfusing hearts (n = 7-10 mice/group). Burn trauma in wild-type mice impaired cardiac function as indicated by the lower left ventricular pressure (LVP, 67 +/- 2 mmHg) compared with that measured in wild-type shams (94 +/- 2 mmHg, P < 0.001), a lower rate of LVP rise (+dP/dtmax, 1,620 +/- 94 vs. 2,240 +/- 58 mmHg/s, P < 0.001), and a lower rate of LVP fall (-dP/dtmax, 1,200 +/- 84 vs. 1,800 +/- 42 mmHg/s, P < 0.001). Ventricular function curves confirmed significant contractile dysfunction after burn trauma in wild-type mice. Burn trauma in iNOS KO mice produced fewer cardiac derangements compared with those observed in wild-type burns (LVP: 78 +/- 5 mmHg; +dP/dt: 1,889 +/- 160 mmHg/s; -dP/dt: 1,480 +/- 154 mmHg/s). The use of a pharmacological approach to inhibit iNOS (aminoguanidine, given ip) in additional wild-type shams and burns confirmed the iNOS KO data. Whereas the absence of iNOS attenuated burn-mediated cardiac contractile dysfunction, these experiments did not determine the contribution of cardiac-derived NO versus NO generated by immune cells. However, our data indicate a role for NO in cardiac dysfunction after major trauma.  相似文献   

8.
We hypothesized that nitric oxide generated by inducible nitric oxide synthase (iNOS) may contribute to the homeostatic role of this agent in hyperthyroidism and may, therefore, participate in long-term control of blood pressure (BP). The effects of chronic iNOS inhibition by oral aminoguanidine (AG) administration on BP and morphological and renal variables in hyperthyroid rats were analyzed. The following four groups (n = 8 each) of male Wistar rats were used: control group and groups treated with AG (50 mg.kg(-1).day(-1), via drinking water), thyroxine (T4, 50 microg.rat(-1).day(-1)), or AG + T4. All treatments were maintained for 3 wk. Tail systolic BP and heart rate (HR) were recorded weekly. Finally, we measured BP (mmHg) and HR in conscious rats and morphological, plasma, and renal variables. T(4) administration produced a small BP (125 +/- 2, P < 0.05) increase vs. control (115 +/- 2) rats. AG administration to normal rats did not modify BP (109 +/- 3) or any other hemodynamic variable. However, coadministration of T4 and AG produced a marked increase in BP (140 +/- 3, P < 0.01 vs. T4). Pulse pressure and HR were increased in both T4- and T4 + AG -treated groups without differences between them. Plasma NOx (micromol/l) were increased in the T4 group (10.02 +/- 0.15, P < 0.05 vs. controls 6.1 +/- 0.10), and AG reduced this variable in T4-treated rats (6.81 +/- 0.14, P < 0.05 vs. T4) but not in normal rats (5.78 +/- 0.20). Renal and ventricular hypertrophy and proteinuria of hyperthyroid rats were unaffected by AG treatment. In conclusion, the results of the present paper indicate that iNOS activity may counterbalance the prohypertensive effects of T4.  相似文献   

9.
In the current study, the cardioprotective efficacy of 0.35 mmol/l acetaminophen administered 10 min after the onset of a 20-min period of global, low-flow myocardial ischemia was investigated. Matched control hearts were administered an equal volume of Krebs-Henseleit physiological buffer solution (vehicle). In separate groups of hearts, the concentration-dependent, negative inotropic properties of hydrogen peroxide and the ability of acetaminophen to attenuate these actions, as well as the effects of acetaminophen on ischemia-reperfusion-mediated protein oxidation, were studied. Acetaminophen-treated hearts regained a significantly greater fraction of baseline, preischemia control function during reperfusion than vehicle-treated hearts. For example, contractility [rate of maximal developed pressure in the left ventricle (+/-dP/dt(max))] after 10 min of reperfusion was 109 +/- 24 and 42 +/- 9 mmHg/s (P < 0.05), respectively, in the two groups. The corresponding pressure-rate products were 1,840 +/- 434 vs. 588 +/- 169 mmHg*beats*min(-1) (P < 0.05). Acetaminophen attenuated peroxynitrite-mediated chemiluminescence in the early minutes of reperfusion (e.g., at 6 min, corresponding values for peak light production were approximately 8 x 10(6) counts/min for vehicle vs. <4 x 10(6) counts/min for acetaminophen, P < 0.05) and the negative inotropic effects of exogenously administered hydrogen peroxide (e.g., at 0.4 mmol/l hydrogen peroxide, pressure-rate products were approximately 1.0 x 10(4) and 3.8 x 10(3) mmHg*beats*min(-1) in acetaminophen- and vehicle-treated hearts, respectively, P < 0.05). Ischemia-mediated protein oxidation was reduced by acetaminophen. The ability of acetaminophen to attenuate the damaging effects of peroxynitrite and hydrogen peroxide and to limit protein oxidation suggest antioxidant mechanisms are responsible for its cardioprotective properties during postischemia-reperfusion.  相似文献   

10.
Anesthetic regimens commonly administered during studies that assess cardiac structure and function in mice are xylazine-ketamine (XK) and avertin (AV). While it is known that XK anesthesia produces more bradycardia in the mouse, the effects of XK and AV on cardiac function have not been compared. We anesthetized normal adult male Swiss Webster mice with XK or AV. Transthoracic echocardiography and closed-chest cardiac catheterization were performed to assess heart rate (HR), left ventricular (LV) dimensions at end diastole and end systole (LVDd and LVDs, respectively), fractional shortening (FS), LV end-diastolic pressure (LVEDP), the time constant of isovolumic relaxation (tau), and the first derivatives of LV pressure rise and fall (dP/dt(max) and dP/dt(min), respectively). During echocardiography, HR was lower in XK than AV mice (250 +/- 14 beats/min in XK vs. 453 +/- 24 beats/min in AV, P < 0.05). Preload was increased in XK mice (LVDd: 4.1 +/- 0.08 mm in XK vs. 3.8 +/- 0.09 mm in AV, P < 0.05). FS, a load-dependent index of systolic function, was increased in XK mice (45 +/- 1.2% in XK vs. 40 +/- 0.8% in AV, P < 0.05). At LV catheterization, the difference in HR with AV (453 +/- 24 beats/min) and XK (342 +/- 30 beats/min, P < 0.05) anesthesia was more variable, and no significant differences in systolic or diastolic function were seen in the group as a whole. However, in XK mice with HR <300 beats/min, LVEDP was increased (28 +/- 5 vs. 6.2 +/- 2 mmHg in mice with HR >300 beats/min, P < 0.05), whereas systolic (LV dP/dt(max): 4,402 +/- 798 vs. 8,250 +/- 415 mmHg/s in mice with HR >300 beats/min, P < 0.05) and diastolic (tau: 23 +/- 2 vs. 14 +/- 1 ms in mice with HR >300 beats/min, P < 0.05) function were impaired. Compared with AV, XK produces profound bradycardia with effects on loading conditions and ventricular function. The disparate findings at echocardiography and LV catheterization underscore the importance of comprehensive assessment of LV function in the mouse.  相似文献   

11.
The role of other STAT subtypes in conferring ischemic tolerance is unclear. We hypothesized that in STAT-3 deletion alternative STAT subtypes would protect myocardial function against ischemia-reperfusion injury. Wild-type (WT) male C57BL/6 mice or mice with cardiomyocyte STAT-3 knockout (KO) underwent baseline echocardiography. Langendorff-perfused hearts underwent ischemic preconditioning (IPC) or no IPC before ischemia-reperfusion. Following ex vivo perfusion, hearts were analyzed for STAT-5 and -6 phosphorylation by Western blot analysis of nuclear fractions. Echocardiography and postequilibration cardiac performance revealed no differences in cardiac function between WT and KO hearts. Phosphorylated STAT-5 and -6 expression was similar in WT and KO hearts before perfusion. Contractile function in WT and KO hearts was significantly impaired following ischemia-reperfusion in the absence of IPC. In WT hearts, IPC significantly improved the recovery of the maximum first derivative of developed pressure (+dP/dtmax) compared with that in hearts without IPC. IPC more effectively improved end-reperfusion dP/dtmax in WT hearts compared with KO hearts. Preconditioned and nonpreconditioned KO hearts exhibited increased phosphorylated STAT-5 and -6 expression compared with WT hearts. The increased subtype activation did not improve the efficacy of IPC in KO hearts. In conclusion, baseline cardiac performance is preserved in hearts with cardiac-restricted STAT-3 deletion. STAT-3 deletion attenuates preconditioning and is not associated with a compensatory upregulation of STAT-5 and -6 subtypes. The activation of STAT-5 and -6 in KO hearts following ischemic challenge does not provide functional compensation for the loss of STAT-3. JAK-STAT signaling via STAT-3 is essential for effective IPC.  相似文献   

12.
Effects of cardiac specific overexpression of beta(2)-adrenergic receptors (beta(2)-AR) on the development of heart failure (HF) were studied in wild-type (WT) and transgenic (TG) mice following myocardial infarction (MI) by coronary artery occlusion. Animals were studied by echocardiography at weeks 7 to 8 and by catheterization at week 9 after surgery. Post-infarct mortality, due to HF or cardiac rupture, was not different among WT mice, and there was no difference in infarct size (IS). Compared with the sham-operated group (all P < 0.01), WT mice with moderate (<36%) and large (>36%) IS developed lung congestion, cardiac hypertrophy, left ventricular (LV) dilatation, elevated LV end-diastolic pressure (LVEDP), and suppressed maximal rate of increase of LV pressure (LV dP/dt(max)) and fractional shortening (FS). Whereas changes in organ weights and echo parameters were similar to those in infarcted WT groups, TG mice had significantly higher levels of LV contractility in both moderate (dP/dt(max) 4,862 +/- 133 vs. 3,694 +/- 191 mmHg/s) and large IS groups (dP/dt(max) 4,556 +/- 252 vs. 3,145 +/- 312 mmHg/s, both P < 0.01). Incidence of pleural effusion (36% vs. 85%, P < 0.05) and LVEDP levels (6 +/- 0.3 vs. 9 +/- 0.8 mmHg, P < 0.05) were also lower in TG than in WT mice with large IS. Thus beta(2)-AR overexpression preserved LV contractility following MI without adverse consequence.  相似文献   

13.
Potential protective effects of aerobic exercise training on the myocardium, before an ischemic event, are not completely understood. The purpose of the study was to investigate the effects of exercise training on contractile function after ischemia-reperfusion (Langendorff preparation with 15-min global ischemia/30-min reperfusion). Trabeculae were isolated from the left ventricles of both sedentary control and 10- to 12-wk treadmill exercise-trained rats. The maximal normalized isometric force (force/cross-sectional area; Po/CSA) and shortening velocity (Vo) in isolated, skinned ventricular trabeculae were measured using the slack test. Ischemia-reperfusion induced significant contractile dysfunction in hearts from both sedentary and trained animals; left ventricular developed pressure (LVDP) and maximal rates of pressure development and relaxation (+/-dP/dtmax) decreased, whereas end-diastolic pressure (EDP) increased. However, this dysfunction (as expressed as percent change from the last 5 min before ischemia) was attenuated in trained myocardium [LVDP: sedentary -60.8 +/- 6.4% (32.0 +/- 5.5 mmHg) vs. trained -15.6 +/- 8.6% (64.9 +/- 6.6 mmHg); +dP/dtmax: sedentary -54.1 +/- 4.7% (1,058.7 +/- 124.2 mmHg/s) vs. trained -16.7 +/- 8.4% (1,931.9 +/- 188.3 mmHg/s); -dP/dtmax: sedentary -44.4 +/- 2.5% (-829.3 +/- 52.0 mmHg/s) vs. trained -17.9 +/- 7.2% (-1,341.3 +/- 142.8 mmHg/s); EDP: sedentary 539.5 +/- 147.6%; (41.3 +/- 6.0 mmHg) vs. trained 71.6 +/- 30.6%; 11.4 +/- 1.2 mmHg]. There was an average 26% increase in Po/CSA in trained trabeculae compared with sedentary controls, and this increase was not affected by ischemia-reperfusion. Ischemia-reperfusion reduced Vo by 39% in both control and trained trabeculae. The relative amount of the beta-isoform of myosin heavy chain (MHC-beta) was twofold greater in trained trabeculae as well as in the ventricular free walls. Despite a possible increase in the economy in the trained heart, presumed from a greater amount of MHC-beta, ischemia-reperfusion reduced Vo, to a similar extent in both control and trained animals. Nevertheless, the trained myocardium appears to have a greater maximum force-generating ability that may, at least partially, compensate for reduced contractile function induced by a brief period of ischemia.  相似文献   

14.
The objective of this study was to test the hypothesis that the mechanism mediating left ventricular (LV) dysfunction in the aging rat heart involves, in part, changes in cardiac cytoskeletal components. Our results show that there were no significant differences in heart rate, LV pressure, or LV diameter between conscious, instrumented young [5.9 +/- 0.3 mo (n = 9)] and old rats [30.6 +/- 0.1 mo (n = 10)]. However, the first derivative of LV pressure (LV dP/dt) was reduced (8,309 +/- 790 vs. 11,106 +/- 555 mmHg/s, P < 0.05) and isovolumic relaxation time (tau) was increased (8.7 +/- 0.7 vs. 6.3 +/- 0.6 ms, P < 0.05) in old vs. young rats, respectively. The differences in baseline LV function in young and old rats, which were modest, were accentuated after beta-adrenergic receptor stimulation with dobutamine (20 mug/kg), which increased LV dP/dt by 170 +/- 9% in young rats, significantly more (P < 0.05) than observed in old rats (115 +/- 5%). Volume loading in anesthetized rats demonstrated significantly impaired LV compliance in old rats, as measured by the LV end-diastolic pressure and dimension relationship. In old rat hearts, there was a significant (P < 0.05) increase in the percentage of LV collagen (2.4 +/- 0.2 vs. 1.3 +/- 0.2%), alpha-tubulin (92%), and beta-tubulin (2.3-fold), whereas intact desmin decreased by 51%. Thus the cardiomyopathy of aging in old, conscious rats may be due not only to increases in collagen but also to alterations in cytoskeletal proteins.  相似文献   

15.
We hypothesized that gene transfer of neuronal nitric oxide synthase (nNOS) into the rostral ventrolateral medulla (RVLM) improves baroreflex function in rats with chronic heart failure (CHF). Six to eight weeks after coronary artery ligation, rats showed hemodynamic signs of CHF. A recombinant adenovirus, either Ad.nNOS or Ad.beta-Gal, was transfected into the RVLM. nNOS expression in the RVLM was confirmed by Western blot analysis, NADPH-diaphorase, and immunohistochemical staining. We studied baroreflex control of the heart rate (HR) and renal sympathetic nerve activity (RSNA) in the anesthetized state 3 days after gene transfer by intravenous injections of phenylephrine and nitroprusside. Baroreflex sensitivity was depressed for HR and RSNA regulation in CHF rats (2.0 +/- 0.3 vs. 0.8 +/- 0.2 beats.min-1.mmHg-1, P < 0.01 and 3.8 +/- 0.3 vs. 1.2 +/- 0.1% max/mmHg, P < 0.01, respectively). Ad.nNOS transfer into RVLM significantly increased the HR and RSNA ranges (152 +/- 19 vs. 94 +/- 12 beats/min, P < 0.05 and 130 +/- 16 vs. 106 +/- 5% max/mmHg, P < 0.05) compared with the Ad.beta-Gal in CHF rats. Ad.nNOS also improved the baroreflex gain for the control of HR and RSNA (1.8 +/- 0.2 vs. 0.8 +/- 0.2 beats.min-1.mmHg-1, P < 0.01 and 2.6 +/- 0.2 vs. 1.2 +/- 0.1% max/mmHg, P < 0.01). In sham-operated rats, we found that Ad.nNOS transfer enhanced the HR range compared with Ad.beta-Gal gene transfer (188 +/- 15 vs. 127 +/- 14 beats/min, P < 0.05) but did not alter any other parameter. This study represents the first demonstration of altered baroreflex function following increases in central nNOS in the CHF state. We conclude that delivery of Ad.nNOS into the RVLM improves baroreflex function in rats with CHF.  相似文献   

16.
Previously, we demonstrated that intact female rats fed a standard rodent diet containing soybean products exhibit essentially no adverse left ventricular (LV) remodeling in response to aortocaval fistula-induced chronic volume overload. We hypothesized that phytoestrogenic compounds in the diet contributed to the female cardioprotection. To test this hypothesis, four groups of female rats were studied: sham-operated (Sham) and fistula (Fist) rats fed a diet with [P(+)] or without [P(-)] phytoestrogens. Eight weeks postfistula, systolic and diastolic cardiac function was assessed by using a blood-perfused, isolated heart preparation. High-phytoestrogen diet had no effect on body, heart, and lung weights, or cardiac function in Sham rats. Fistula groups developed LV hypertrophy, which was not reduced by dietary phytoestrogens [1,184 +/- 229 mg Fist-P(-) and 1,079 +/- 199 mg Fist-P(+) vs. 620 +/- 47 mg for combined Sham groups, P < 0.05]. Unstressed LV volume increased in Fist-P(-) rats (428 +/- 16 vs. 300 +/- 14 microl Sham, P < 0.0001), but it was not different from Sham for Fist-P(+) animals (286 +/- 17 microl). Fist-P(-) rats developed increased ventricular compliance (5.3 +/- 0.8 vs. 2.3 +/- 0.3 microl/mmHg Sham, P < 0.01), whereas Fist-P(+) rats had no change in compliance (2.8 +/- 0.4 mul/mmHg). Intrinsic ventricular contractility was maintained in the Fist-P(+) rats, but it was reduced (P < 0.001) in the Fist-P(-) rats [systolic pressure-volume slope: 1.04 +/- 0.03, 0.60 +/- 0.06, and 0.99 +/- 0.08 mmHg/microl, for Fist-P(+), Fist-P(-), and Sham, respectively]. These data indicate that dietary phytoestrogens contribute significantly to female cardioprotection against volume overload-induced adverse ventricular remodeling and that studies evaluating gender differences in cardiovascular remodeling must consider the influence of dietary phytoestrogens.  相似文献   

17.
The present study was undertaken to investigate the protective effect of H2S against myocardial ischemia-reperfusion (I/R) injury and its possible mechanism by using isolated heart perfusion and patch clamp recordings. Rat isolated hearts were Langendorff-perfused and subjected to a 30-minute ischemia insult followed by a 30-minute reperfusion. The heart function was assessed by measuring the LVDP, +/-dP/dt max, and the arrhythmia score. The results showed that the treatment of hearts with a H2S donor (40 micromol/L NaHS) during reperfusion resulted in significant improvement in heart function compared with the I/R group (LVDP recovered to 85.0% +/- 6.4% vs. 35.0% +/- 6.1%, +dP/dt max recovered to 80.9% +/- 4.2% vs. 43.0% +/- 6.4%, and -dP/dt max recovered to 87.4% +/- 7.3% vs. 53.8% +/- 4.9%; p < 0.01). The arrhythmia scores also improved in the NaHS group compared with the I/R group (1.5 +/- 0.2 vs. 4.0 +/- 0.4, respectively; p < 0.001). The cardioprotective effect of NaHS during reperfusion could be blocked by an ATP-sensitive potassium channel (K ATP) blocker (10 micromol/L glibenclamide). In single cardiac myocytes, NaHS increased the open probability of K ATP channels from 0.07 +/- 0.03 to 0.15 +/- 0.08 after application of 40 mumol/L NaHS and from 0.07 +/- 0.03 to 0.36 +/- 0.15 after application of 100 mumol/L NaHS. These findings provide the first evidence that H2S increases the open probability of K ATP in cardiac myocytes, which may be responsible for cardioprotection against I/R injury during reperfusion.  相似文献   

18.
The effects of long-acting calcium channel blockers on pressure overload-induced cardiac hypertrophy have been little studied in experimental animals and the underlying mechanisms are not fully understood. We previously reported that cardiomyocyte hypertrophy could be induced via phosphorylation of the epidermal growth factor receptor (EGFR). In this study, we investigated whether amlodipine attenuates cardiac hypertrophy by inhibiting EGFR phosphorylation. We found that amlodipine dose-dependently inhibited epinephrine-induced protein synthesis and EGFR phosphorylation in cultured neonatal rat cardiomyocytes. Our in vivo study revealed that amlodipine could ameliorate myocardial hypertrophy induced by transverse aortic constriction (TAC) in C57/B6 mice. One week after TAC, amlodipine treatment (3 mg/kg/day) significantly reduced the heart-to-body weight ratio (6.04 +/- 0.16 mg/g vs. 6.90 +/- 0.45 mg/g in untreated TAC mice, P < 0.01). These results indicate that amlodipine ameliorates cardiomyocyte hypertrophy via inhibition of EGFR phosphorylation.  相似文献   

19.
20.
Based on the role of tumor necrosis factor-alpha (TNF-alpha) in ischemic preconditioning (IPC) and the age-associated loss of both TNF-alpha-induced platelet-derived growth factor-AB (PDGF-AB)-mediated cardioprotection and IPC-mediated cardioprotection, we hypothesized that targeting of PDGF-AB-based pathways would restore cardioprotection by IPC in the aging heart. To study this, IPC was induced in 4- and 24-mo-old F344 rats. Sections of young hearts isolated 1 day post-IPC revealed increased TNF-alpha compared with controls. In old rats, TNF-alpha was higher at baseline than IPC young rats and was not significantly altered after IPC. Treatment of old rats with PDGF-AB with vascular endothelial growth factor and angiopoietin-2 (a combination termed PVA), but not PDGF-AB alone, at the time of IPC decreased TNF-alpha. In addition, when compared with young hearts, IPC induced greater apoptosis in the old hearts, which was decreased with PVA treatment but was markedly increased with PDGF-AB. To test the significance of these findings, additional rats underwent permanent coronary ligation 1 day post-IPC. IPC was cardioprotective in young rats [14 days postmyocardial infarction (MI), fractional shortening 29 +/- 6% vs. control MI 17 +/- 4%, P < 0.05; Masson's trichrome stain MI size: 13 +/- 2% vs. control MI 17 +/- 4% left ventricular area (LVA); P < 0.05]. In old rats, however, IPC reduced the post-MI 14-day survival (33% vs. controls 67%; P < 0.05). Treatment of IPC-aging rats with PVA, but not PDGF-AB-alone, reversed IPC-induced mortality (PVA-IPC-MI survival, 88%; PDGF-AB-IPC-MI, 14%) and reduced myocardial injury (fractional shortening: PVA-IPC, 31 +/- 1% vs. control MI, 21 +/- 6%, P < 0.05; MI size: PVA-IPC, 12 +/- 2% vs. control MI, 18 +/- 3% LVA, P < 0.05) and thus demonstrated that PDGF-AB-based pathways can reverse the senescent impairment in IPC-mediated cardioprotection.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号