首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Myxospore coat synthesis in Myxococcus xanthus was studied by incorporation of [(14)C]acetate into intermediates in the biosynthesis of coat polysaccharide and into acid-insoluble material during vegetative growth and after glycerol induction of myxospores. During short labeling periods at 27 degrees C, the radioactivity was shown to be located primarily in N-acetyl groups rather than sugar moieties. Two hours after glycerol induction, the pools of N-acetylglucosamine 6-phosphate and uridine 5'-diphosphate-N-acetylgalactosamine (UDPGalNAc) plus uridine 5'-diphosphate-N-glucosamine increased about twofold and were labeled at twice the rate measured for vegetative cells. The increased rate of synthesis of UDPGalNAc and its precursors could be correlated with increased enzyme activities measured in vitro. Controlled acid hydrolysis revealed that the galactosamine portion of the myxospore coat was N-acetylated. After glycerol induction, the incorporation of acetate into acid-insoluble material increased threefold. This enhanced incorporation was sensitive to neither penicillin nor d-cycloserine. In contrast, bacitracin inhibited the incorporation of [(14)C]acetate into acid-insoluble material more effectively 2 h after myxospore induction than during vegetative growth. Chloramphenicol added to cells 90 min after induction blocked further increase in the rate of [(14)C]acetate incorporation. Since the myxospore coat contains glycine, polymer synthesis was also measured by chloramphenicol-insensitive [(14)C]glycine incorporation into acid-insoluble material. Although protein synthesis decreased after glycerol induction, glycine incorporation increased. Two hours after induction, glycine incorporation was only 75% inhibited by chloramphenicol and rifampin. The chloramphenicol-insensitive rate of incorporation of [(14)C]glycine increased during the first hour after myxospore induction and reached a peak rate after 2 to 3 h. The chloramphenicol-resistant incorporation of [(14)C]glycine was resistant to penicillin but sensitive to bacitracin.  相似文献   

2.
Enterotoxin B formation by Staphylococcus aureus S6 was inhibited by Tween 80, oleic acid, sodium deoxycholate, penicillin, d-cycloserine, or bacitracin. Toxin formation by strain 243 was sensitive to oleic acid, sodium deoxycholate, sodium lauryl sulfate, d-cycloserine, or bacitracin. The effect of d-cycloserine was reversed by d-alanine with strain 243 but not with strain S6. Neither penicillin nor bacitracin inhibited alpha-hemolysin or coagulase activity of strain S6; however, 0.118 mumoles of d-cycloserine per ml increased the alpha-hemolysin titer more than eightfold. Pigmentation of strain 243 was reduced by oleic acid, sodium deoxycholate, or methicillin, and was completely inhibited by d-cycloserine or bacitracin. Glucose was required for the inhibition by spermine of (14)C-valine incorporation into cellular protein of strain S6. These data indicate that the cell surface may contain sites important to the synthesis of enterotoxin B.  相似文献   

3.
Proteinase Produced by Chlamydia psittaci in L Cells   总被引:2,自引:0,他引:2       下载免费PDF全文
L cells (mouse fibroblasts) infected with Chlamydia psittaci (strain meningopneumonitis) produced a proteinase differing in solubility in ammonium sulfate from the proteinase of uninfected L cells. Synthesis of the enzyme was inhibited by chloramphenicol but not by cycloheximide, indicating that the new proteinase in infected L cells was synthesized by Chlamydia psittaci. The chlamydial proteinase had no demonstrable ion requirements and was not inhibited by a variety of inhibitors of proteinase activity. Gel filtration experiments suggested a molecular weight of approximately 250,000. The proteinase appeared in infected L cells at the time host cells began to die and the large chlamydial cells began to reorganize into small ones. Some possible functions for the chlamydial proteinase were proposed.  相似文献   

4.
The disulfide bond cross-linked major outer membrane protein (MOMP) of the extracellular elementary bodies (EBs) of Chlamydia psittaci was reduced to its monomeric form within 1 h of entry of EBs into host cells by a process which was inhibited by chloramphenicol, while monomeric forms of three cross-linked cysteine-rich proteins could not be detected in Sarkosyl outer membrane complexes at any time in either extracellular or intracellular forms of C. psittaci. Synthesis and incorporation of the MOMP into outer membrane complexes were detected early in the infection cycle (12 h postinfection), while synthesis and incorporation of the cysteine-rich proteins were not observed until reticulate bodies had begun to reorganize into EBs at 20 to 22 h postinfection. By 46 h postinfection, the intracellular population of C. psittaci consisted mainly of EBs, the outer membrane complexes of which were replete with monomeric MOMP and cross-linked cysteine-rich proteins. Upon lysis of infected cells at 46 h, the MOMP was rapidly cross-linked, and infectious EBs were released. The status of the MOMP of intracellular Chlamydia trachomatis was similar to the status of the MOMP of C. psittaci in that the MOMP was largely uncross-linked at 24 and 48 h postinfection, but formed interpeptide disulfide bonds when it was exposed to an extracellular environment late in the developmental cycle. In contrast to C. psittaci, only a fraction of the cross-linked MOMP of infecting EBs of C. trachomatis was reduced by 4 h postinfection, and reduction of the MOMP was not inhibited by chloramphenicol. Exposure of extracellular EBs of C. trachomatis and C. psittaci to dithiothreitol reduced the MOMP but failed to stimulate metabolic activities normally associated with reticulate bodies.  相似文献   

5.
Experiments were carried out to test for the presence of "channeling" in L1210 cells. L1210 cells were incubated in culture in the presence of labeled cytidine and "cold" deoxycytidine and conversely, in the presence of labeled deoxycytidine and "cold" cytidine. Cytidine did not inhibit the incorporation of [14C]deoxycytidine into DNA while deoxycytidine decreased the incorporation of [14C]cytidine into DNA. Further, in L1210 cells there was not a coordinate inhibition of thymidylate synthetase when either DNA polymerase was inhibited (aphidicolin) or ribonucleotide reductase was inhibited (hydroxyurea). These data indicate that leukemia L1210 cells do not selectively channel ribonucleotides to DNA through a tightly coupled enzyme complex.  相似文献   

6.
The incorporation of [3H]thymidine into the deoxyribonucleic acid (DNA) of Chlamydia psittaci (strain 6BC) growing in thymidine kinase (adenosine 5'-triphosphate-thymidine 5'-phosphotransferase, EC 1.7.1.21)-containing L cells, L(TK+), and thymidine kinase-deficient L cells, LM(TK-), was examined by autoradiography. Label was detected over C. psittaci inclusions in L(TK+) but not LM(TK-) cells. No evidence for a chlamydia-specific thymidine kinase activity in either L(TK+) or LM(TK-) cells was obtained. Entry of [3H]thymidine into the DNA of C. psittaci growing in L(TK+) cells was quantitated by measuring label in purified C. psittaci. It was 265 times less efficient than entry into infected host cell DNA. It is concluded that low levels of exogenous thymidine are incorporated into the DNA of C. psittaci and that this incorporation is dependent on a fully competent host thymidine kinase activity. Evidence also is presented that L cells possess at least two thymidine kinase activities, both of which are capable of supplying thymidylate precursors for nuclear DNA synthesis.  相似文献   

7.
Cell wall turnover was studied in cultures of Bacillus subtilis in which growth was inhibited by nutrient starvation or by the addition of antibiotics. Concomitantly, the synthesis of wall, as measured by the incorporation of radioactively labeled N-acetylglucosamine, was followed in some of these cultures. In potassium- or phosphate-starved cultures, growth stopped, but wall turnover continued at a rate slightly lower than that in the control cultures. Lysis of cells did not occur. In glucose-starved cultures, continued wall turnover caused lysis of cells, since wall synthesis apparently was inhibited. The same phenomenon was observed after growth arrest by the addition of wall synthesis inhibitors such as fosfomycin, cycloserine, penicillin G, and vancomycin. Growth arrest by the addition of chloramphenicol allowed the continuation of wall synthesis; therefore, the observed turnover generally did not cause cell lysis.  相似文献   

8.
Miniature Cell Formation in Chlamydia psittaci   总被引:6,自引:2,他引:4  
In an electron microscope study on the developmental cycle of the goat pneumonitis strain of Chlamydia psittaci in L cells, it was observed that miniature reticulate bodies, measuring approximately 0.2 mum in diameter and surrounded by double unit membranes, were produced infrequently from normal-sized reticulate bodies through a "budding"-like process. As little as 0.1 mug of penicillin per ml greatly increased the frequency of the miniature reticulate body formation.  相似文献   

9.
The effect of the beta-lactam antibiotics penicillin G and mecillinam on the incorporation of peptidoglycan into pre-formed cell wall peptidoglycan was studied with wall membrane enzyme preparations from Gaffkya homari. Using UDP-N-acetylglucosamine (UDP-GlcNAc) and UDP-N-acetylmuramyl-pentapeptide (UDP-MurNAc-pentapeptide) as precursors the incorporation of peptidoglycan into the pre-existing cell wall of G. homari was inhibited to an extent of 50% (ID50 value) at a concentration of 0.25 mug of penicillin G/ml. With UDP-GlcNAc and UDP-MurNAc-tetrapeptide as precursors the ID50 value was about 2500-fold greater (630 mug/ml). The inhibition by penicillin G of the incorporation of peptidoglycan from UDP-MurNAc-[14C]Lys-pentapeptide could be overcome by addition of non-radioactive UDP-MurNAc-tetrapeptide to the incubation mixture. In the presence of 5 mug of penicillin G/ml the incorporation of peptidoglycan formed from the mixture of UDP-MurNAc-Ala-DGlu-Lys-D-[14C]Ala-D[14C]Ala and non-radioactive UDP-MurNAc-tetrapeptide proceeded virtually without release of D-[14C]alanine by transpeptidase activity. The enzyme preparation also exhibited DD-carboxypeptidase activity which was only slightly more sensitive to penicillin G and mecillinam than was the incorporation of peptidoglycan into the cell wall. Since the ID50 values for the beta-lactam antibiotics are similar to the concentrations required to inhibit the growth of G. homari to an extent of 50%, the DD-carboxypeptidase must be the killing site of both penicillin G and mecillinam.  相似文献   

10.
The entry and development of Chlamydia psittaci in the L cell was studied by using purified, infectious parasites at high multiplicity. Entry of the parasite was accomplished by an act of phagocytosis by the host which was independent of an adsorption stage but was temperature-dependent. Kinetic studies of phagocytosis performed with (14)C-amino acid-labeled, purified parasites indicated that the rate of phagocytosis was directly proportional to the multiplicity of inoculation. Electron microscopy of cells infected at high multiplicity with purified infectious C. psittaci showed that phagocytosed chlamydiae were segregated in a host phagocytic vacuole throughout their developmental cycle which consisted of the transition of infecting elementary bodies to reticulate bodies dividing by binary fission, followed by the reemergence of a population of elementary bodies. The process of the transition was examined and a proposed sequence of intermediate bodies is presented. In isopycnic gradients of fractionated, infected L cells, chlamydial phagocytic vacuoles were apparent as a dense band distinct from lysosome and mitochondrion peaks, as indicated by acid phosphatase and cytochrome oxidase activities. Chlamydiae inactivated by heat or neutralized by antiserum were phagocytosed and appeared in lysosomes within 12 hr after infection according to electron microscopy; however, chlamydiae which were continuously inhibited in their development by chloramphenicol were retained intact in the cell for 24 hr without lysosomal response. The possibility of a lysosomal inhibitor on the native parasite is discussed.  相似文献   

11.
Long-term, 32-P-labeled L cells were infected with the obligately intracellular parasite Chlamydia psittaci (strain 6 BC). At 20 h postinfection, [3-H]uridine was added, and the infected cells were sampled at intervals for incorporation of the labels into the uridine triphosphate (UTP) and cytidine triphosphate (CTP) pools of the host L cell and the uridine monophosphate (UMP) and cytidine monophosphate (CMP) in 16S ribosomal ribonucleic acid (RNA) of the parasite. The specific activity of the nucleotides was calculated from the ratio of 3-H to 32-P counts in the nucleotides. The rate of approach to equilibrium labeling of UTP and CTP in L-cell pools and UMP and CMP in 16S RNA from the exogenous uridine label was determined from the increase in the ratios of the specific activities of CTP to UTP and CMP to UMP with time. The rate of approach to equilibrium CMP:UMP labeling of the 16S RNA of C. psittaci was consistent with the rate predicted from the kinetics of labeling of the CTP and UTP pools of the host L cell. In analogous experiments, the rate of approach to equilibrium guanosine monophosphate:adenosine monophosphate labeling of 16S RNA from an exogenous [14-C]adenine label was consistent with the rate predicted from the kinetics of labeling of the purine nucleoside triphosphate pool of the host cell. These results support the concept that members of the genus Chlamydia owe their obligate intracellular mode of reproduction to a requirement for energy intermediates which is fulfilled by the host cell. In addition, evidence was obtained that the total acid-soluble purine nucleoside triphosphate pool of L cells accurately represents the precursors of L-cell 18S ribosomal RNA.  相似文献   

12.
Cycloheximide, which had already been shown to inhibit protein synthesis in Earle's L cells (mouse fibroblasts) without having any effect on the multiplication or protein synthesis in Chlamydia psittaci (strain meningopneumonitis) infecting these host cells, also caused greater than 90% inhibition of deoxyribonucleic acid (DNA) synthesis in L cells after a 3-hr exposure to the drug. L cells infected with the meningopneumonitis agent and treated with cycloheximide were used to follow meningopneumonitis-specific DNA synthesis during intracellular growth of the parasite. The rate at which labeled precursors were incorporated into parasite DNA doubled every 2 hr. The effect of meningopneumonitis infection on L-cell DNA and protein synthesis was investigated in logarithmically growing and in stationary-phase (nondividing) populations of L cells. Host-specific DNA and protein synthesis appeared to be inhibited in infected L cells when compared with logarithmically growing control cells, whereas no inhibition was apparent when the comparison was made with stationary-phase control cells. The maximal amount of protein and DNA synthesis that occurred in meningopneumonitis-infected L cells was equal to the amount of DNA and protein synthesized in logarithmically growing, uninfected L cells. A possible explanation of these results is given.  相似文献   

13.
The synthesis of peptidoglycan by an autolysin-deficient beta-lactamase-negative mutant of Bacillus licheniformis was studied in vivo in the absence of protein synthesis. Benzylpenicillin and cephaloridine inhibited the formation of cross-bridges between newly synthesized peptidoglycan and the pre-existing cell wall. This inhibition, detected by measurement of the incorporation of N-acetyl[14C]glucosamine into the glycan fraction of the cell wall, was reversed by treatment with beta-lactamase and washing. Inhibition of D-alanine carboxypeptidase by benzylpenicillin was not reversed under similar conditions. Cells in which the initial penicillin inhibition of transpeptidation had been reversed showed an increased sensitivity to a subsequent addition of the antibiotic. Chemical analysis of peptidoglycan synthesized after reversal of penicillin inhibition revealed the presence of excess of alanine resulting from the continued inhibition of D-alanine carboxypeptidase. When the cell walls were digested to yield muropeptides so that the degree of cross-linking could be measured, the product after reversal of penicillin inhibition contained fewer cross-links than did the control preparation. Cultures treated with benzylpenicillin and cephaloridine continued to synthesize uncross-linked soluble peptidoglycan, which accumulated in the medium. This soluble material was all newly synthesized peptidoglycan and did not result from autolysis of the bacteria. The average chain lengths of the glycan synthesized in vivo and released as soluble peptidoglycan in the presence of both benzylpenicillin and cephaloridine were similar to those found previously in this organism.  相似文献   

14.
Biotin or a serum lipid extract stimulated proliferation of G1 arrested Rous sarcoma virus-transformed BHK cells in modified Eagle's MEM (BM). The cells could be maintained continuously in BM plus biotin (BMB), but not in BM plus serum lipid extract (BM X L). Avidin inhibited growth stimulation when added to BMB, but did not inhibit growth when added to BM X L. 14C-acetate incorporation into total cellular lipids was stimulated in BMB, but not in BM. Thin-layer chromatography of the labeled cellular lipid extract indicated that relatively large amounts of 14C-acetate were incorporated into phosphatidylserine and little into the other major phospholipids. In the neutral lipids, the largest amount of incorporation was in cholesterol. G1 arrested cells multiplied rapidly in BM supplemented with dialyzed serum (BM X DS), but they did not multiply in BM with delipidized serum (BM X DLS). The addition of biotin or serum lipid extract to BM X DLS stimulated growth. Growth stimulation in BM X DLS by biotin was inhibited by avidin, but avidin had no effect on growth stimulation by serum lipid extract. Biotin stimulated additional multiplication in BM X DS and avidin inhibited this additional growth stimulation. These results suggest that growth stimulation requires lipids supplied by serum lipids or by de novo synthesis stimulated by biotin. In the absence of serum, the stimulation of the synthesis of growth factor(s) by biotin are also required for continuous multiplication.  相似文献   

15.
1-beta-D-Arabinofuranosylcytosine (ara-C) inhibits nuclear DNA replication in Chinese hamster ovary cells by an efficient chain termination mechanism without affecting the rate at which cells traverse G1 and enter S [Heintz, N. H., & Hamlin, J. L. (1983) Biochemistry 22, 3557-3562]. Here we have employed ara-C to enrich for replication intermediates formed during initiation of DNA synthesis in synchronized CHOC 400 cells, a methotrexate-resistant derivative of Chinese hamster ovary cells that contains approximately 1000 copies of an early replicating 150-kb chromosomal domain. This highly amplified domain includes the gene for dihydrofolate reductase (DHFR). CHOC 400 cells were collected at the G1/S boundary of the cell cycle with aphidicolin prior to release into S in the presence of both [methyl-3H] thymidine and various concentrations of ara-C. Chromatographic fractionation of restriction endonuclease digests over benzoylated naphthoylated DEAE-cellulose (BND-cellulose) showed that high concentrations of ara-C inhibited the maturation of chromosomal replication intermediates containing ssDNA (replication forks) into dsDNA for up to 60 min. The effect of ara-C on the sequence complexity of replication intermediates formed during early S phase was determined by hybridizing purified intermediates labeled with 32P in vitro to Southern blots of genomic DNA derived from both methotrexate-sensitive and methotrexate-resistant Chinese hamster ovary cells. In the absence of ara-C, 32P-labeled ssDNA BND-cellulose fractions from cultures released into S for 30-60 min hybridized to a spectrum of restriction fragments encompassing 40-50 kb of the amplified DHFR domain.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

16.
Simian Virus 40 (SV40) infected cells were pulse labeled with (3H) thymidine and chased either in the absence or in the presence of the cytotoxic drug VM26 (teniposide). We investigated the structure of labeled SV40 DNA and found that VM26 had no significant effect on replicative chain elongation but strongly inhibited the conversion of late replication intermediates to mature DNA daughter molecules. The late replicative SV40 DNA intermediates which accumulate in VM26 treated cells contained essentially full length labeled DNA strands. These newly synthesized strands were not part of two catenated interlocked SV40 monomers suggesting that the block occurred prior to the final ligation reaction. Since VM26 is known to be a specific inhibitor of DNA topoisomerase II we conclude that this enzyme is dispensable for the chain elongation of replicating SV40 DNA, but that it is essential for the termination of SV40 DNA replication cycles.  相似文献   

17.
Seeni S  Gnanam A 《Plant physiology》1982,70(3):823-826
The relative transport of photosynthetic and dark carboxylation products in photoheterotrophic cells of Arachis hypogaea L. var. TMV-3 at varied phases of growth were determined. Despite the presence of an equally competent photosynthetic apparatus as determined from 14CO2 incorporation rates in the dark and light, pulse-chase experiments revealed little or no change in the radioactivity of the C3 intermediates but rapid disappearance of label from the dark carbon assimilates (malate and other tricarboxylic acid cycle intermediates) with a simultaneous increase in the aminoacid pool in early log-phase (10 days old) cells. However, significant flow of carbon through the photosynthetic intermediates resulting in the accumulation of sugars occurred in the late log-phase (34 days old) cells. Limitation of exogenous sugar in the nutrient milieu and depletion of reserve carbohydrates stored in starch of the chloroplasts of the cells were considered as the decisive factors in promoting transport of C3 cycle intermediates through the reductive pentose phosphate pathway in photoheterotrophic cells. The observed drain of radioactivity even from the small amounts of tricarboxylic acid cycle intermediates synthesized during photosynthesis into glutamate indicated that the transport of carbon through the nonautotrophic pathway is not controlled by these factors.  相似文献   

18.
Chemical inhibition of the glycolate pathway in soybean leaf cells   总被引:19,自引:15,他引:4       下载免费PDF全文
Isolated soybean (Glycine max [L.] Merr.) leaf cells were treated with three inhibitors of the glycolate pathway in order to evaluate the potential of such inhibitors for increasing photosynthetic efficiency. Preincubation of cells under acid conditions in α-hydroxypyridinemethanesulfonic acid increased 14CO2 incorporation into glycolate, but severely inhibited photosynthesis. Isonicotinic acid hydrazide (INH) increased the incorporation of 14CO2 into glycine and reduced label in serine, glycerate, and starch. Butyl 2-hydroxy-3-butynoate (BHB) completely and irreversibly inhibited glycolate oxidase and increased the accumulation of 14C into glycolate. Concomitant with glycolate accumulation was the reduction of label in serine, glycerate, and starch, and the elimination of label in glycine. The inhibitors INH and BHB did not eliminate serine synthesis, suggesting that some serine is synthesized by an alternate pathway. The per cent incorporation of 14CO2 into glycolate by BHB-treated cells or glycine by INH-treated cells was determined by the O2/CO2 ratio present during assay. Photosynthesis rate was not affected by INH or BHB in the absence of O2, but these compounds increased the O2 inhibition of photosynthesis. This finding suggests that the function of the photorespiratory pathway is to recycle glycolate carbon back into the Calvin cycle, so if glycolate metabolism is inhibited, Calvin cycle intermediates become depleted and photosynthesis is decreased. Thus, chemicals which inhibit glycolate metabolism do not reduce photorespiration and increase photosynthetic efficiency, but rather exacerbate the problem of photorespiration.  相似文献   

19.
To analyze if chemical cell wall alterations contribute to penicillin-induced bacteriolysis, changes in the amount, stability, and chemical composition of staphylococcal cell walls were investigated. All analyses were performed before onset of bacteriolysis i.e. during the first 60 min following addition of different penicillin G doses. Only a slight reduction of the amount of cell wall material incorporated after penicillin addition at the optimal lytic concentration was observed as compared to control cells. However, the presence of higher penicillin G concentrations reduced the incorporation of wall material progressively without bacteriolysis. Losses of wall material during isolation of dodecylsulfate insoluble cell walls were monitored to assess the stability of the wall material following penicillin addition. Wall material grown at the lytic penicillin concentration was least stable but about 30% of the newly incorporated wall material withstood even the harsh conditions of mechanical breakage and dodecylsulfate treatment. Dodecylsulfate insoluble cell walls were used for chemical analyses. While peptidoglycan chain length was unaffected in the presence of penicillin, other wall parameters were considerably altered: peptide cross-linking was reduced in the wall material synthesized after addition of penicillin; reductions from approx. 85% in controls to about 60% were similar for lytic and also for very high penicillin concentrations leading to nonlytic death. O-acetylation was also reduced after treatment with penicillin; this effect paralleled the occurence of subsequent bacteriolysis at different drug concentrations. The results are not consistent with hypotheses explaining penicillin-induced lysis as a result of an overall weakened cell wall structure or an overall activation of autolytic wall enzymes but not conflicting with the model that ascribes penicillin-induced bacteriolysis as the result of a very restricted, local perforation of the peripheral cell wall (murosome-induced bacteriolysis).Abbreviations CL Cross-linking - DNFB 2,4-dinitro-1-fluorobenzole - MIC Minimal inhibitory concentration - OD Optical density at 578 nm - PEN Penicillin G  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号