首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Our previous ex vivo and in vivo studies reported that expression of the recombinant endothelial nitric oxide (NO) synthase (eNOS) gene in adventitial fibroblasts recovers NO production in arteries without endothelium in response to bradykinin. The present study was designed to characterize subtypes of bradykinin receptors on adventitial fibroblasts coupled to the activation of recombinant eNOS. Endothelium-denuded segments of canine basilar arteries were transduced with beta-galactosidase (beta-Gal) gene or eNOS gene ex vivo, using a replication-defective adenoviral vector (10(10) plaque-forming units/ml) for 30 min at 37 degrees C. Twenty-four hours later, isometric force recording or cGMP measurement was carried out. B(1) bradykinin receptor agonist (des-Arg(9)-bradykinin, 10(-10)-10(-8) mol/l) did not significantly affect vascular tone in control or beta-Gal gene-transduced canine basilar arteries without endothelium. In contrast, this agonist caused concentration-dependent relaxations in recombinant eNOS gene-transduced arteries without endothelium. Relaxations to B(1) receptor agonist in the eNOS arteries were abolished by B(1) receptor antagonist (des-Arg(9)-[Leu(8)]bradykinin, 6 x 10(-9) mol/l) but not by B(2) receptor antagonist (Hoe-140, 5 x 10(-8) mol/l). Bradykinin did not significantly alter vascular tone in control or beta-gal arteries without endothelium, whereas this peptide (10(-11)-10(-8) mol/l) induced concentration-dependent relaxations, as well as an increase in cGMP formation in endothelium-denuded eNOS-transduced arteries. Stimulatory effects of bradykinin were prevented in the presence of a B(2) receptor antagonist but not in the presence of a B(1) receptor antagonist. B(1) and B(2) receptor antagonists had no effect on relaxations to substance P, confirming the selectivity of the compounds. Our results suggest that B(1) and B(2) bradykinin receptors are coupled to activation of recombinant eNOS expressed in adventitial fibroblasts.  相似文献   

2.
The present study was designed to determine the effect of recombinant inducible nitric oxide (NO) synthase (iNOS) gene expression on vasomotor function in cerebral arteries. Isolated canine basilar arteries were exposed ex vivo (30 min at 37 degrees C) to an adenoviral vector [10(7), 10(8), or 10(9) plaque-forming units (pfu)/ml] encoding either the iNOS gene or the beta-galactosidase reporter gene. Twenty-four hours after transduction, Western blot analysis demonstrated expression of iNOS protein only in iNOS (10(9) pfu/ml)-transduced arteries. Immunohistochemical analysis localized iNOS expression predominantly in adventitia. Vascular reactivity of isolated basilar arteries was studied by isometric force recording. Concentration-response curves to UTP (10(-9)-10(-3) M) and diethylaminodiazen-1-ium-1,2-dioate (10(-10)-10(-5) M) were significantly shifted to the right in iNOS gene (10(9) pfu/ml)-transduced rings compared with control and beta-galactosidase-transduced rings (P < 0.05, n = 5-6). Endothelium-dependent relaxation to bradykinin was significantly attenuated in iNOS-transduced rings (P < 0.001, n = 8). The basal level of cGMP and superoxide anion (O(2)(-).) production were elevated in iNOS-transduced rings (P < 0.05, n = 7 for cGMP; P < 0.01, n = 6-9 for O(2)(-). production). Our results suggest that expression of recombinant iNOS in cerebral arteries reduces vasomotor reactivity to both vasoconstrictor and vasodilator agonists. Attenuation of contractions is most likely due to functional antagonism between UTP and cGMP. Reduction of endothelium-dependent relaxation to bradykinin appears to be mediated in part by reduced reactivity of smooth muscle cells to NO.  相似文献   

3.
Tetrahydrobiopterin (BH4) is an essential co-factor for endothelial nitric oxide synthase enzymatic activity. GTP cyclohydrolase I (GTPCH I) is the rate-limiting enzyme in BH4 synthesis. This study set out to test the hypothesis that in vivo gene transfer of GTPCH I to endothelial cells could increase bioavailability of BH4, enhance biosynthesis of nitric oxide and thereby enhance endothelium-dependent relaxations mediated by nitric oxide. In vivo gene transfer was carried out by adenovirus (Ad)-mediated delivery into rabbit carotid arteries. Each artery was transduced by 20-min intraluminal incubation of 10(9) plaque-forming units of Ad-encoding GTPCH I (AdGTPCH) or beta-galactosidase as a control. The rabbits were euthanized 72 h later, and vasomotor function of isolated arteries was assessed by isometric force recording. GTPCH I enzymatic activity, BH4, and oxidized biopterin levels were detected with the use of HPLC, and cGMP was measured with the use of radioimmunoassay. Expression of recombinant proteins was detected predominantly in endothelial cells. Both GTPCH I activity and BH4 levels were increased in arteries transduced with AdGTPCH. However, contraction to phenylephrine (10(-5) to 10(-9) M), endothelium-dependent relaxation to acetylcholine (10(-5) to 10(-9) M) and cGMP levels were not significantly affected by increased expression of GTPCH I. Our results suggest that expression of GTPCH I in vascular endothelium in vivo increases intracellular concentration of BH4. However, under physiological conditions, it appears that this increase does not affect nitric oxide production in endothelial cells of the carotid artery.  相似文献   

4.
Resistance arteries are an important target for vascular gene therapy because they play a key role in the regulation of tissue blood flow. The present study was designed to determine the effects of recombinant endothelial (e) nitric oxide synthase (NOS) gene expression on vasomotor reactivity of small brain stem arteries (internal diameter, 253 +/- 2.5 microm). Arterial rings were exposed ex vivo to an adenoviral vector (10(9) and 10(10) plaque-forming units/ml) encoding eNOS gene or beta-galactosidase gene. Twenty-four hours after transduction, vascular function was examined by isometric force studies. Transgene expression was evident mainly in adventitia. In arteries with endothelium transduced with eNOS gene but not with control beta-galactosidase gene, relaxations to bradykinin and substance P were significantly augmented. Removal of endothelium abolished relaxations to bradykinin and substance P in control and beta-galactosidase arteries. However, in endothelium-denuded arteries transduced with recombinant eNOS, bradykinin and substance P caused relaxations that were abolished in the presence of the NOS inhibitor N(G)-nitro-L-arginine methyl ester. In control arteries, endothelium removal augmented relaxations to the nitric oxide donors sodium nitroprusside and diethylamine NONOate. This augmentation was absent in eNOS gene-transduced arteries without endothelium. Our results suggest that, in small brain stem arteries, expression of recombinant eNOS increases biosynthesis of nitric oxide. Adventitia of small arteries is a good target for expression of recombinant eNOS. Genetically engineered adventitial cells may serve as a substitute source of nitric oxide in cerebral arteries with dysfunctional endothelium.  相似文献   

5.
Chronic use of human recombinant erythropoietin (r-HuEPO) is accompanied by serious vascular side effects related to the rise in blood viscosity and shear stress. We investigated the direct effects of r-HuEPO on endothelium and nitric oxide (NO)-dependent vasodilatation induced by shear stress of cannulated and pressurized rat mesenteric resistance arteries. Intravascular flow was increased in the presence or absence of the NO synthase inhibitor N(G)-nitro-l-arginine methyl ester (L-NAME; 10(-4) mol/L). In the presence of r-HuEPO, the flow-dependent vasodilatation was attenuated, while L-NAME completely inhibited it. The association of r-HuEPO and L-NAME caused a vasoconstriction in response to the rise in intravascular flow. Bosentan (10(-5) mol/L), an inhibitor of endothelin-1 (ET-1) receptors, corrected the attenuated vasodilatation observed with r-HuEPO and inhibited the vasoconstriction induced by flow in the presence of r-HuEPO and L-NAME. r-HuEPO and L-NAME exacerbated ET-1 vasoconstriction. At shear stress values of 2 and 14 dyn/cm(2) (1 dyn = 10(-5) N), cultured EA.hy926 endothelial cells incubated with r-HuEPO, L-NAME, or both released greater ET-1 than untreated cells. In conclusion, r-HuEPO diminishes flow-induced vasodilatation. This inhibitory effect seems to implicate ET-1 release. NO withdrawal exacerbates the vascular effects of ET-1 in the presence of r-HuEPO. These findings support the importance of a balanced endothelial ET-1:NO ratio to avoid the vasopressor effects of r-HuEPO.  相似文献   

6.
Because cerebrovascular cGMP levels vary significantly during maturation, we examined the hypothesis that the ability of cGMP to relax cerebral arteries also changes during maturation. In concentration-response experiments, potassium-induced tone in basilar arteries was significantly more sensitive to a nonmetabolizable cell-permeant cGMP analogue 8-(p-chlorophenylthio)-cGMP (8-pCPT-cGMP) in term fetal [-log one-half maximal concentration (EC(50)) = 4.4 +/- 0.1 M] than in adult (-log EC(50) = 4.0 +/- 0.1 M) ovine basilar arteries. Serotonin-induced tone also revealed significantly greater sensitivity to the cGMP analogue in fetal (-log EC(50) = 4.9 +/- 0.1 M) than in adult (-log EC(50) = 4.7 +/- 0.1 M) basilars. In fura 2-loaded preparations, 8-pCPT-cGMP had no significant effect on cytosolic calcium concentrations in potassium-contracted arteries but at 6 microM significantly reduced calcium only in fetal basilars (Delta = 33 +/- 8%). Higher 8-pCPT-cGMP concentrations reduced cytosolic calcium in both fetal and adult basilars. Similarly, in both potassium- and 5-hydroxytryptamine (5-HT)-contracted preparations, low concentrations of 8-pCPT-cGMP reduced myofilament calcium sensitivity only in fetal basilars (Delta = 29 +/- 6 and Delta = 42 +/- 10%, respectively), whereas higher concentrations reduced calcium sensitivity in both fetal and adult arteries. In beta-escin-permeabilized arteries, equivalent reductions in basal and agonist-enhanced myofilament calcium sensitivity were produced by much lower 8-pCPT-cGMP concentrations in fetal (172 and 61 microM, respectively) than in adult (410 and 231 microM, respectively) basilars. The mechanisms mediating cGMP-induced vasorelaxation appear similar in fetal and adult arteries, with the exception that they are much more sensitive to cGMP in fetal than adult arteries. These age-related differences in the sensitivity of cytosolic calcium concentration, basal, and agonist-enhanced myofilament calcium sensitivity to cGMP can easily explain why both potassium- and 5-HT-induced tone are more sensitive to cGMP in fetal than adult cerebral arteries.  相似文献   

7.
To analyze the effects of diabetes mellitus on the vascular responsiveness to nitric oxide and thromboxane receptor stimulation, 2 mm long segments of basilar, coronary, renal and tail arteries from male and female, control (normoglycemic) and streptozotocin-induced diabetic rats, were prepared for isometric tension recording. In the segments at basal resting tension, the thromboxane analog U46619 (10(-9)-10(-5) M) produced concentration-dependent contraction, which was similar in arteries from male and female rats, and was reduced by diabetes in coronary arteries from male and in tail arteries from female rats. In the vascular segments precontracted with endothelin-1 (10(-9) M), acetylcholine (10(-9)-3 x 10(-5) M) produced concentration-dependent relaxation which was similar in all arteries from normoglycemic male and female rats, and was increased by diabetes in tail arteries from female, but not in those from male rats. In precontracted segments the nitric oxide donor sodium nitroprusside (10(-10)-10(-5) M) also produced concentration-dependent relaxation, which was higher in basilar arteries from normoglycemic females compared with males, and was increased by diabetes in tail arteries from female but not from male rats. These results suggest that diabetes may increase the relaxation to nitric oxide in tail arteries, and may reduce the contraction to thromboxane receptor activation in coronary and tail arteries in a gender-dependent way. These changes in vascular reactivity may be adaptative to the vascular alterations produced by diabetes.  相似文献   

8.
This study examined the response to nitric oxide (NO) in rat middle cerebral arteries (MCA). NO donors increased the activity of a 205-pS K(+) channel recorded from vascular smooth muscle (VSM) cells isolated from MCA 10-fold. Blockade of guanylyl cyclase activity with 1H-[1,2,4]oxadiazole[4,3-a]quinoxalin-1-one (ODQ, 10(-5) M) did not alter the effect of NO on this channel. In contrast, adding 20-hydroxyeicosatetraenoic acid (20-HETE) to the bath (10(-7) M) abolished the response to NO. NO donors also increased the diameter of serotonin-preconstricted MCA to 85% of control. Blockade of K(+) channels with iberiotoxin or a high-K(+) medium reduced this response by 50%. ODQ (10(-5) M) reduced this response by 47 +/- 3%, whereas preventing the fall of 20-HETE levels reduced the response by 59 +/- 2% (n = 5). Blockade of both pathways eliminated the response to NO donors. These results indicate that activation of K(+) channels contributes 50% to vasodilator response to NO in rat MCA. This is mediated by a fall in 20-HETE levels rather than a rise in cGMP levels or a direct effect of NO.  相似文献   

9.
Adrenal steroidogenesis is closely correlated with increases in adrenal blood flow. Many reports have studied the regulation of adrenal blood flow in vivo and in perfused glands, but until recently few studies have been conducted on isolated adrenal arteries. The present study examined vasomotor responses of isolated bovine small adrenal cortical arteries to histamine, an endogenous vasoactive compound, and its mechanism of action. In U-46619-precontracted arteries, histamine (10(-9)-5 x 10(-6) M) elicited concentration-dependent relaxations. The relaxations were blocked by the H(1) receptor antagonists diphenhydramine (10 microM) or mepyramine (1 microM) (maximal relaxations of 18 +/- 6 and 22 +/- 6%, respectively, vs. 55 +/- 5% of control) but only partially inhibited by the H(2) receptor antagonist cimetidine (10 microM) and the H(3) receptor antagonist thioperamide (1 microM). Histamine-induced relaxations were also blocked by the nitric oxide synthase inhibitor N-nitro-L-arginine (L-NA, 30 microM; maximal relaxation of 13 +/- 7%) and eliminated by endothelial removal or L-NA combined with the cyclooxgenase inhibitor indomethacin (10 microM). In the presence of adrenal zona glomerulosa (ZG) cells, histamine did not induce further relaxations compared with histamine alone. Histamine (10(-7)-10(-5) M) concentration-dependently increased aldosterone production by adrenal ZG cells. Compound 48/80 (10 microg/ml), a mast cell degranulator, induced significant relaxations (93 +/- 0.6%), which were blocked by L-NA plus indomethacin or endothelium removal, partially inhibited by the combination of the H(1), H(2), and H(3) receptor antagonists, but not affected by the mast cell stabilizer sodium cromoglycate (1 mM). These results demonstrate that histamine causes direct relaxation of small adrenal cortical arteries, which is largely mediated by endothelial NO and prostaglandins via H(1) receptors. The potential role of histamine in linking adrenal vascular events and steroid secretion requires further investigation.  相似文献   

10.
The effect of prostaglandin (PG) E2, F2 alpha, the thromboxane-A2 mimetic U46619 (9,11-dideoxy-9 alpha,11 alpha-methanoepoxy-prostaglandin F2 alpha) and the prostacyclin mimetic iloprost was investigated in cat middle cerebral and basilar arteries in vitro precontracted with 5-hydroxytryptamine (5-HT) (50nM) in the absence and presence of the cyclooxygenase inhibitor indomethacin or the thromboxane receptor blocker AH23848B [1 alpha (z),2 beta,5 alpha]-(+)-7-[5-[1,1'-(biphenyl)-4-yl] methoxy]-2-(4-morpholinyl)-3-oxocyclopentyl]-4-heptenoic acid). PGF2 alpha and U46619 both produced further concentration-related contractions of basilar and middle cerebral artery, U46619 being approximately 1,000 times more potent than PGF2 alpha. Iloprost produced concentration-related relaxations of precontracted basilar and middle cerebral artery, the mean maximum relaxations produced at a concentration of 1.3 microM being 57.3% and 80.6%, respectively of the contraction produced by 50nM 5-HT. PGE2, 100nM relaxed the basilar and middle cerebral artery, 46.7% and 38.5% respectively. However, at 1 microM, PGE2 caused contraction. Indomethacin, 2.8 microM had no effect on contractile or relaxant responses to any of the prostanoids. Oxyhaemoglobin inhibited the relaxation of both arterial preparations but had no effect on responses to PGE2 or iloprost. The thromboxane-receptor blocker AH23848B antagonised the contractile responses to U46619, PGF2 alpha and PGE2 and had no effect against relaxant responses to PGE2 or iloprost. It is concluded that both contraction- and relaxation-inducing prostanoid receptors are present in the in vitro preparation of feline basilar and middle cerebral artery. Under sustained tension conditions, endothelial factors do not appear to be involved in the responses to dilating prostanoids.  相似文献   

11.
Congenital heart disease associated with increased pulmonary blood flow produces pulmonary hypertension. To characterize vascular alterations in the nitric oxide (NO)-cGMP cascade induced by increased pulmonary blood flow and pulmonary hypertension, 10 fetal lambs underwent in utero placement of an aortopulmonary vascular graft (shunt). When the lambs were 4-6 wk of age, we assessed responses of pulmonary arteries (PAs) and pulmonary veins (PVs) isolated from lungs of control and shunted lambs. PVs from control and shunted lambs relaxed similarly to exogenous NO (S-nitrosyl-acetyl-penicillamine), to NO produced endogenously (zaprinast and A-23187), and to cGMP (atrial natriuretic peptide). In contrast, relaxations to A-23187 and zaprinast were blunted in PAs isolated from shunted lambs relative to controls. Inhibitors of NO synthase (NOS) and soluble guanylate cyclase constricted control but not shunt PAs, indicating reduced basal NOS activity in shunt PAs. Pretreatment of shunt PAs with the substrates L-arginine and sepiapterin, a precursor for tetrahydrobiopterin synthesis, did not augment A-23187 relaxations. However, pretreatment with superoxide dismutase and catalase significantly enhanced A-23187 relaxations in shunt PAs. We conclude that increased pulmonary blood flow induces an impairment of endothelium-dependent relaxation that is selective to PAs. The impaired relaxation may be mediated in part by excess superoxide production.  相似文献   

12.
The labeling of cystine residues with [1-14C]iodoacetic acid showed that urinary preparations from patients with aplastic anemia contained 3.06 X 10(-9) mol of sulfhydryl groups and 2.90 X 10(-7) mol of half-cystine as disulfide bonds in the native state, and 6.36 X 10(-7) mol in the denatured state per absorbance unit of protein, respectively. Sulfhydryl reagent-treated proteins retained full activity of megakaryocyte colony-stimulating factor (Meg-CSF) and erythropoietin (Epo), except with DTNB-treated protein. Reduction-carboxymethylation and reduction-mercuration resulted in complete loss of Meg-CSF and Epo activities, suggesting that one of the essential chemical groups of Meg-CSF and Epo is a disulfide bond. Reduction of disulfide bonds at neutral pH revealed that Meg-CSF is less susceptible to reduction than Epo. Reactivation occurred by spontaneous reoxidation in most of the reduced Meg-CSF (92.6%) and part of the reduced Epo (22.1%). These molecular behaviors may reflect differences in the spatial configurations of Meg-CSF and Epo.  相似文献   

13.
This study examined the mechanism by which cGMP contributes to the vasodilator response to nitric oxide (NO) in rat middle cerebral arteries (MCA). Administration of a NO donor, diethylaminodiazen-1-ium-1,2-dioate (DEA-NONOate), or 8-bromo-cGMP (8-BrcGMP) increased the diameter of serotonin-preconstricted MCA by 79 +/- 3%. The response to DEA-NONOate, but not 8-BrcGMP, was attenuated by iberiotoxin (10(-7) M) or a 80 mM high-K(+) media, suggesting that activation of K(+) channels contributes to the vasodilator response to NO but not 8-BrcGMP. The effects of NO and cGMP on the vasoconstrictor response to Ca(2+) were also studied in MCA that were permeabilized with alpha-toxin and ionomycin. Elevations in bath Ca(2+) from 10(-8) to 10(-5) M decreased the diameter of permeabilized MCA by 76 +/- 5%. DEA-NONOate (10(-6) M) and 8-BrcGMP (10(-4) M) blunted this response by 60%. Inhibition of guanylyl cyclase with 1H-[1,2,4]oxadiazole[4,3-a] quinoxalin-1-one (10(-5) M) blocked the inhibitory effect of the NO donor, but not 8-BrcGMP, on Ca(2+)-induced vasoconstriction. 8-BrcGMP (10(-4) M) had no effect on intracellular Ca(2+) concentration ([Ca(2+)](i)) in control, serotonin-stimulated, or alpha-toxin- and ionomycin-permeabilized vascular smooth muscle cells isolated from the MCA. These results indicate that the vasodilator response to NO in rat MCA is mediated by activation of Ca(2+)-activated K(+) channels via a cGMP-independent pathway and that cGMP also contributes to the vasodilator response to NO by decreasing the contractile response to elevations in [Ca(2+)](i).  相似文献   

14.
The modulation of serotonin (5-HT(1B/1D)) receptor-induced vascular contractility by histamine and U-46619 was compared in the rabbit basilar artery and saphenous vein. In the saphenous vein, histamine (5 x 10(-7) M) significantly increased the potency (from pEC(50) of 6.0 to 6.8) and efficacy (from 52.3% to 88.2%) of sumatriptan. Likewise, U-46619 (5 x 10(-9) M) also increased the potency (from pEC(50) of 5.9 to 6.6) and efficacy (from 51.8% to 92.1%) of sumatriptan in the saphenous vein. In contrast, equieffective concentrations of histamine (10(-7) M) and U-46619 (3 x 10(-9) M) failed to amplify contraction to sumatriptan in the basilar artery. Contraction to sumatriptan was inhibited by nitrendipine (10(-7) M) in the basilar artery but not in the saphenous vein, suggesting that different contractile signaling mechanisms are operating in these tissues. Furthermore, U-46619- and thrombin-induced contractility in the basilar artery were also not amplified by histamine, suggesting that lack of amplification of contraction in the basilar artery was not restricted to sumatriptan but was rather a characteristic of this cerebral vessel. These data suggest that in the in vivo plasma milieu sumatriptan will more markedly contract the peripheral saphenous vein than the basilar artery, a cerebral blood vessel.  相似文献   

15.
Cardiovascular diseases, such as hypertension, could be programmed in fetal life. Prenatal lipopolysaccharide (LPS) exposure in utero results in increased blood pressure in offspring, but the vascular mechanisms involved are unclear. Pregnant Sprague–Dawley rats were intraperitoneally injected with LPS (0.79 mg/kg) or saline (0.5 ml) on gestation days 8, 10, and 12. The offspring of LPS-treated dams had higher blood pressure and decreased acetylcholine (ACh)-induced relaxation and increased phenylephrine (PE)-induced contraction in endothelium-intact mesenteric arteries. Endothelium removal significantly enhanced the PE-induced contraction in offspring of control but not LPS-treated dams. The arteries pretreated with l-NAME to inhibit nitric oxide synthase (eNOS) in the endothelium or ODQ to inhibit cGMP production in the vascular smooth muscle had attenuated ACh-induced relaxation but augmented PE-induced contraction to a larger extent in arteries from offspring of control than those from LPS-treated dams. In addition, the endothelium-independent relaxation caused by sodium nitroprusside was also decreased in arteries from offspring of LPS-treated dams. The functional results were accompanied by a reduction in the expressions of eNOS and soluble guanylate cyclase (sGC) and production of NO and cGMP in arteries from offspring of LPS-treated dams. Furthermore, LPS-treated dam’s offspring arteries had increased oxidative stress and decreased antioxidant capacity. Three-week treatment with TEMPOL, a reactive oxygen species (ROS) scavenger, normalized the alterations in the levels of ROS, eNOS, and sGC, as well as in the production of NO and cGMP and vascular function in the arteries of the offspring of LPS-treated dams. In conclusion, prenatal LPS exposure programs vascular dysfunction of mesenteric arteries through increased oxidative stress and impaired NO–cGMP signaling pathway.  相似文献   

16.
Insulin resistance (IR) and associated hyperinsulinemia are major risk factors for coronary artery disease. Mechanisms linking hyperinsulinemia to coronary vascular dysfunction in IR are unclear. We evaluated insulin-induced vasodilation in isolated small coronary arteries (SCA; approximately 225 microm) of Zucker obese (ZO) and control Zucker lean (ZL) rats. Vascular responses to insulin (0.1-100 ng/ml), ACh (10(-9)-10(-5) mol/l), and sodium nitroprusside (10(-8)-10(-4) mol/l) were assessed in SCA by measurement of intraluminal diameter using videomicroscopy. Insulin-induced dilation was decreased in ZO compared with ZL rats, whereas ACh and sodium nitroprusside elicited similar vasodilations. Pretreatment of arteries with SOD (200 U/ml), a scavenger of reactive oxygen species (ROS), restored the vasorelaxation response to insulin in ZO arteries, whereas ZL arteries were unaffected. Pretreatment of SCA with N-nitro-L-arginine methyl ester (100 micromol/l), an inhibitor of endothelial nitric oxide (NO) synthase (eNOS), elicited a vasoconstrictor response to insulin that was greater in ZO than in ZL rats. This vasoconstrictor response was reversed to vasodilation in ZO and ZL rats by cotreatment of the SCA with SOD or apocynin (10 micromol/l), a specific inhibitor of vascular NADPH oxidase. Lucigenin-enhanced chemiluminescence showed increased basal ROS levels as well as insulin (330 ng/ml)-stimulated production of ROS in ZO arteries that was sensitive to inhibition by apocynin. Western blot analysis revealed increased eNOS expression in ZO rats, whereas Mn SOD and Cu,Zn SOD expression were similar to ZL rats. Thus IR in ZO rats leads to decreased insulin-induced vasodilation, probably as a result of increased production of ROS by vascular NADPH oxidase, leading to decreased NO bioavailability, despite a compensatory increase in eNOS expression.  相似文献   

17.
18.
No studies have specifically addressed whether cAMP can influence nitric oxide (NO)/cGMP-induced cerebral vasodilation. In this study, we examined whether cAMP can enhance or reduce NO-induced cerebral vasodilation in vivo via interfering with cGMP efflux or through potentiating phosphodiesterase 5 (PDE5)-mediated cGMP breakdown, respectively, in cerebral vascular smooth muscle cells (CVSMCs). To that end, we evaluated, in male rats, the effects of knockdown [via antisense oligodeoxynucleotide (ODN) applications] of the cGMP efflux protein multidrug resistance protein 5 (MRP5) and PDE5 inhibition on pial arteriolar NO donor [S-nitroso-N-acetyl penicillamine (SNAP)]-induced dilations in the absence and presence of cAMP elevations via forskolin. Pial arteriolar diameter changes were measured using well-established protocols in anesthetized rats. In control (missense ODN treated) rats, forskolin elicited a leftward shift in the SNAP dose-response curves (approximately 50% reduction in SNAP EC50). However, in MRP5 knockdown rats, cAMP increases were associated with a substantial reduction in SNAP-induced vasodilations (reflected as a significant 35-50% lower maximal response). In the presence of the PDE5 inhibitor MY-5445, the repression of the NO donor response accompanying forskolin was prevented. These findings suggest that cAMP has opposing effects on NO-stimulated cGMP increases. On the one hand, cAMP limits CVSMC cGMP loss by restricting cGMP efflux. On the other, cAMP appears to enhance PDE5-mediated cGMP breakdown. However, because increased endogenous cAMP seems to potentiate NO/cGMP-induced arteriolar relaxation when MRP5 expression is normal, the effect of cAMP to reduce cGMP efflux appears to predominate over cAMP stimulation of cGMP hydrolysis.  相似文献   

19.
The radial artery (RA) is used as a spastic coronary bypass graft. This study was designed to investigate the mechanism of vasorelaxant effects of YC-1 (3-(5'-hydroxymethyl-2'-furyl)-1-benzyl indazole), a nitric oxide (NO)-independent soluble guanylate cyclase (sGC) activator, and DEA/NO (diethylamine/nitric oxide), a NO-nucleophile adduct, on the human RA. RA segments (n = 25) were obtained from coronary artery bypass grafting patients and were divided into 3-4 mm vascular rings.Using the isolated tissue bath technique, the endothelium-independent vasodilatation function was tested in vitro by the addition of cumulative concentrations of YC-1 (10-10 to 3 x 10-7 mol/L) and DEA/NO (10-8 to 3 x 10-5 mol/L) following vasocontraction by phenylephrine in the presence or absence of 10-5 mol/L ODQ (1H-(1,2,4)oxadiazole(4,3-a)quinoxalin-1-one), the selective sGC inhibitor, 10-7 mol/L iberiotoxin, a blocker of Ca2+-activated K+ channels, or 10-5 mol/L ODQ plus 10-7 mol/L iberiotoxin. We also evaluated the effect of YC-1 and DEA/NO on the cGMP levels in vascular rings obtained from human radial artery (n = 6 for each drug). YC-1 (10-10 to 3 x 10-7 mol/L) and DEA/NO (10-8 to 3 x 10-5 mol/L) caused the concentration-dependent vasorelaxation in RA rings precontracted with phenylephrine (10-5 mol/L) (n = 20 for each drug). Pre-incubation of RA rings with ODQ, iberiotoxin, or ODQ plus iberiotoxin significantly inhibited the vasorelaxant effect of YC-1, but the inhibitor effect of ODQ plus iberiotoxin was significantly more than that of ODQ and iberiotoxin alone (p < 0.05). The vasorelaxant effect of DEA/NO almost completely abolished in the presence of ODQ and iberiotoxin plus ODQ, but did not significantly change in the presence of iberiotoxin alone (p > 0.05). The pEC50 value of DEA/NO was significantly lower than those for YC-1 (p < 0.01), with no change Emax values in RA rings. In addition, YC-1-stimulated RA rings showed more elevation in cGMP than that of DEA/NO (p < 0.05). These findings indicate that YC-1 is a more potent relaxant than DEA/NO in the human RA. The relaxant effects of YC-1 could be due to the stimulation of the sGC and Ca2+-sensitive K+channels, whereas the relaxant effects of DEA/NO could be completely due to the stimulation of the sGC. YC-1 and DEA/NO may be effective as vasodilator for the short-term treatment of perioperative spasm of coronary bypass grafts.  相似文献   

20.
Nox2 oxidase activity underlies the oxidative stress and vascular dysfunction associated with several vascular-related diseases. We have reported that nitric oxide (NO) decreases reactive oxygen species production by endothelial Nox2. This study tested the hypothesis that nitroxyl (HNO), the redox sibling of NO, also suppresses vascular Nox2 oxidase activity. Specifically, we examined the influence of two well-characterized HNO donors, Angeli’s salt and isopropylamine NONOate (IPA/NO), on Nox2-dependent responses to angiotensin II (reactive oxygen species production and vasoconstriction) in mouse cerebral arteries. Angiotensin II (0.1 μmol/L)-stimulated superoxide (measured by lucigenin-enhanced chemiluminescence) and hydrogen peroxide (Amplex red fluorescence) levels in cerebral arteries (pooled basilar and middle cerebral (MCA)) from wild-type (WT) mice were ~60% lower (P<0.05) in the presence of either Angeli’s salt (1 μmol/L) or IPA/NO (1 μmol/L). Similarly, phorbyl 12,13-dibutyrate (10 μmol/L; Nox2 activator)-stimulated hydrogen peroxide levels were ~40% lower in the presence of IPA/NO (1 μmol/L; P<0.05). The ability of IPA/NO to decrease superoxide levels was reversible and abolished by the HNO scavenger l-cysteine (3 mmol/L; P<0.05), but was unaffected by hydroxocobalamin (100 μmol/L; NO scavenger), ODQ (10 μmol/L; soluble guanylyl cyclase (sGC) inhibitor), or Rp-8-pCPT-cGMPS (10 μmol/L; cyclic guanosine monophosphate (cGMP)-dependent protein kinase inhibitor). Angiotensin II-stimulated superoxide was substantially less in arteries from Nox2-deficient (Nox2−/y) versus WT mice (P<0.05). In contrast to WT, IPA/NO (1 μmol/L) had no effect on superoxide levels in arteries from Nox2−/y mice. Finally, angiotensin II (1–1000 μmol/L)-induced constriction of WT MCA was virtually abolished by IPA/NO (1 μmol/L), whereas constrictor responses to either the thromboxane A2 mimetic U46619 (1–100 nmol/L) or high potassium (122.7 mmol/L) were unaffected. In conclusion, HNO suppresses vascular Nox2 oxidase activity via a sGC–cGMP-independent pathway. Thus, HNO donors might be useful therapeutic agents to limit and/or prevent Nox2-dependent vascular dysfunction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号