首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Aims Grazing is associated with several plant traits that may confer resistance to herbivores. However, cross-species analyses do not allow for the differentiation between adaptive evolution and common ancestry. In this study, we evaluated the effect of grazing on 5 morphological traits in 41 native grasses growing in natural grasslands of Uruguay and investigated whether such effects are independent of phylogeny.Methods We used data of grass species from 17 paired, grazed and ungrazed plots located in different regions of natural grasslands of Uruguay. For each species, we calculated the Grazing Response Index (GRI) and estimated the culm length, blade length, blade width, blade length/width ratio and caryopsis length. Trait values were calculated as the mean of the maximum and minimum values reported in a public database. We assessed the relationship between the GRI and the morphological traits using cross-species correlations, and we re-examined the correlations using phylogenetically controlled comparative analysis.Important findings Culm length and blade length were significantly correlated with the GRI. Species with higher culms and longer blades diminished their cover under grazing. This association remained significant after statistical control of phylogenetic relatedness among species. By contrast, blade width, blade length/width ratio and caryopsis length did not show any significant relationship with the GRI. Many studies in temperate grasslands recognized that several plant traits respond to grazing but were rarely evaluated in a phylogenetic context. Our results are consistent with the idea that grazing is a selective force with a clear effect on the evolution of grass stature, selecting smaller plants with shorter blades.  相似文献   

2.
? Here, we examined whether fungal endophytes modulated host plant responses to light availability. First, we conducted a literature review to evaluate whether natural frequencies of endophyte symbiosis in grasses from shaded habitats were higher than frequencies in grasses occupying more diverse light environments. Then, in a glasshouse experiment, we assessed how four levels of light and the presence of endophyte symbioses affected the growth of six grass species. ? In our literature survey, endophytes were more commonly present in grasses restricted to shaded habitats than in grasses from diverse light environments. ? In the glasshouse, endophyte symbioses did not mediate plant growth in response to light availability. However, in the host grass, Agrostis perennans, symbiotic plants produced 53% more inflorescences than nonsymbiotic plants at the highest level of shade. In addition, under high shade, symbiotic Poa autumnalis invested more in specific leaf area than symbiont-free plants. Finally, shade increased the density of the endophyte in leaf tissues across all six grass species. ? Our results highlight the potential for symbiosis to alter the plasticity of host physiological traits, demonstrate a novel benefit of endophyte symbiosis under shade stress for one host species, and show a positive association between shade-restricted grass species and fungal endophytes.  相似文献   

3.
Several studies demonstrated that abandonment changes the functional composition of grasslands; nevertheless, little is known about the effects of grassland abandonment on the flowering-related functional pattern. We hypothesized that invasion by tall grasses affects this pattern. We counted the number of flowering shoots per species at five times during the growing season, in 80 plots placed in mown and in abandoned grasslands (central Apennines), and assessed the differences in the trait composition of flowering species between the two treatments. The selected traits were linked to resource acquisition and stress tolerance strategies. Our results indicated that abiotic environmental control is prevalent in determining the phenological pattern in both conditions and in accordance with the phenological “mid-domain hypothesis”. We demonstrated that when the dominant species is a tall grass with competitive behaviour, the magnitude of this phenomenon is amplified due to the abiotic changes yielded by the tall grass invasion. Indeed, in the central and late phases of the growing season (when invasive tall grasses are growing and blooming), abandoned grasslands were marked by a set of traits devoted to stress tolerance or underlying a long reproductive cycle or linked to competition for light.  相似文献   

4.
Grass leaf shape is a strong indicator of their habitat with linear leaves predominating in open areas and ovate leaves distinguishing forest‐associated grasses. This pattern among extant species suggests that ancestral shifts between forest and open habitats may have coincided with changes in leaf shape or size. We tested relationships between habitat, climate, photosynthetic pathway, and leaf shape and size in a phylogenetic framework to evaluate drivers of leaf shape and size variation over the evolutionary history of the family. We also estimated the ancestral habitat of Poaceae and tested whether forest margins served as transitional zones for shifts between forests and grasslands. We found that grass leaf shape is converging toward different shape optima in the forest understory, forest margins, and open habitats. Leaf size also varies with habitat. Grasses have smaller leaves in open and drier areas, and in areas with high solar irradiance. Direct transitions between linear and ovate leaves are rare as are direct shifts between forest and open habitats. The most likely ancestral habitat of the family was the forest understory and forest margins along with an intermediate leaf shape served as important transitional habitat and morphology, respectively, for subsequent shifts across forest–grassland biome boundaries.  相似文献   

5.
Dwarf bamboos are an important understory component of the lowland and montane forests in the subtropical regions of Asia and South America, yet little is known about their physiology and phenotypic plasticity in response to changing light environments. To understand how bamboo species adapt to different light intensities, we examined leaf morphological, anatomical, and physiological differentiation of Sinarundinaria nitida (Mitford) Nakai, a subtropical woody dwarf bamboo, growing in open and shaded natural habitats in the Ailao Mountains, SW China. Compared with leaves in open areas, leaves in shaded areas had higher values in leaf size, specific leaf area, leaf nitrogen, and chlorophyll concentrations per unit area but lower values in leaf thickness, vein density, stomatal density, leaf carbon concentration, and total soluble sugar concentration. However, stomatal size and leaf phosphorus concentration per unit mass remained relatively constant regardless of light regime. Leaves in the open habitat exhibited a higher light-saturated net photosynthetic rate, dark respiration rate, non-photochemical quenching, and electron transport rate than those in the shaded habitat. The results of this study revealed that the bamboo species exhibited a high plasticity of its leaf structural and functional traits in response to different irradiances. The combination of high plasticity in leaf morphological, anatomical, and physiological traits allows this bamboo species to grow in heterogeneous habitats.  相似文献   

6.
Background and Aims Ferns are abundant in sub-tropical forests in southern China, with some species being restricted to shaded understorey of natural forests, while others are widespread in disturbed, open habitats. To explain this distribution pattern, we hypothesize that ferns that occur in disturbed forests (FDF) have a different leaf cost–benefit strategy compared with ferns that occur in natural forests (FNF), with a quicker return on carbon investment in disturbed habitats compared with old-growth forests.Methods We chose 16 fern species from contrasting light habitats (eight FDF and eight FNF) and studied leaf functional traits, including leaf life span (LLS), specific leaf area (SLA), leaf nitrogen and phosphorus concentrations (N and P), maximum net photosynthetic rates (A), leaf construction cost (CC) and payback time (PBT), to conduct a leaf cost–benefit analysis for the two fern groups.Key Results The two groups, FDF and FNF, did not differ significantly in SLA, leaf N and P, and CC, but FDF had significantly higher A, greater photosynthetic nitrogen- and phosphorus-use efficiencies (PNUE and PPUE), and shorter PBT and LLS compared with FNF. Further, across the 16 fern species, LLS was significantly correlated with A, PNUE, PPUE and PBT, but not with SLA and CC.Conclusions Our results demonstrate that leaf cost–benefit analysis contributes to understanding the distribution pattern of ferns in contrasting light habitats of sub-tropical forests: FDF employing a quick-return strategy can pre-empt resources and rapidly grow in the high-resource environment of open habitats; while a slow-return strategy in FNF allows their persistence in the shaded understorey of old-growth forests.  相似文献   

7.
Aim Species capable of vigorous growth under a wide range of environmental conditions should have a higher chance of becoming invasive after introduction into new regions. High performance across environments can be achieved either by constitutively expressed traits that allow for high resource uptake under different environmental conditions or by adaptive plasticity of traits. Here we test whether invasive and non‐invasive species differ in presumably adaptive plasticity. Location Europe (for native species); the rest of the world and North America in particular (for alien species). Methods We selected 14 congeneric pairs of European herbaceous species that have all been introduced elsewhere. One species of each pair is highly invasive elsewhere in the world, particularly so in North America, whereas the other species has not become invasive or has spread only to a limited degree. We grew native plant material of the 28 species under shaded and non‐shaded conditions in a common garden experiment, and measured biomass production and morphological traits that are frequently related to shade tolerance and avoidance. Results Invasive species had higher shoot–root ratios, tended to have longer leaf‐blades, and produced more biomass than congeneric non‐invasive species both under shaded and non‐shaded conditions. Plants responded to shading by increasing shoot–root ratios and specific leaf area. Surprisingly, these shade‐induced responses, which are widely considered to be adaptive, did not differ between invasive and non‐invasive species. Main conclusions We conclude that high biomass production across different light environments pre‐adapts species to become invasive, and that this is not mediated by plasticities of the morphological traits that we measured.  相似文献   

8.
Question: Following the framework of Suding et al. (2003), we examined whether morphological traits (organismal response), tolerance and competitive effect (specific process response) were associated with grass dominance (abundance response) on burning, mowing, fertilization and soil depth gradients in KwaZulu‐Natal (KZN), South Africa. Location: University of KwaZulu‐Natal, Pietermaritzburg, South Africa. Methods: Using several pot experiments involving 29 grass species in total, we determined the vegetative traits, competitive effect and response, and tolerance to shading for grasses common in closed, tufted mesic grassland in KZN. Results: The primary axis of grass–trait variation was most strongly related to a negative correlation (trade‐off) between growth rate and specific leaf area (SLA), with broad‐leaved, rapidly‐growing grasses (high SLA) occupying one extreme and narrow‐leaved, slow‐growing grasses (low SLA) the other extreme of the first principal component. The low SLA, slow‐growth strategy was found to be a relatively general strategy among grasses dominant in undisturbed, high litter grassland, as well as those adapted to moisture‐stressed habitats. In contrast, grasses dominant in highly productive habitats with some form of disturbance, e.g. mowing, had a broad‐leaved, rapid‐growth strategy. Intermediate combinations of the SLA–growth rate trade‐off were common among grasses dominant under other combinations of disturbance and soil resource availability. Conclusions: Distinct patterns of organismal (SLA, growth rate) and specific process (competitive effect and response, as well as tolerance of shading) responses appeared to be associated with grasses dominant on gradients of burning, mowing, fertilization and soil depth. These organismal and specific process responses were similar to those for North American and European grasses dominant under the same environmental influences, suggesting that some general trait–environment patterns exist at an inter‐continental scale. This general trait–environment relationship appears to be driven by functional adaptive selection along the SLA–environment continuum and its unavoidable trade‐off with growth rate.  相似文献   

9.
Question: Are trait differences between grasses along a gradient related to climatic variables and/or photosynthetic pathway? Location: Temperate grassland areas of South and North America. Methods: In a common garden experiment, we cultivated C3 and C4 grasses from grasslands under different climatic conditions, and we measured a set of 12 plant traits related to size and resource capture and utilization. We described (1) interspecific plant trait differences along a climatic gradient defined by the precipitation and temperature at the location where each species is dominant and (2) the association between those plant trait differences and the photosynthetic pathway of the species. Results: Trait differences between grasses were related to the precipitation at the area where each species is dominant, and to the photosynthetic pathway of the species. Leaf length, leaf width, plant height, leaf area per tiller, specific leaf area, leaf δ13C ratio, and nitrogen resorption efficiency increased while leaf dry matter content and nitrogen concentration in senesced leaves decreased as precipitation increased. A proportion of these changes along the gradient was related to the photosynthetic pathway because dominant grass species in cold areas with low precipitation are mainly C3 and those from warm and wet areas are C4. Conclusions: A previous worldwide analysis showed that traits of graminoid species measured in situ changed slightly along climatic gradients (< 10% variance explained). In contrast, under a common environment we observed that (1) grass traits changed strongly along a climatic gradient (30‐85% variance explained) and, (2) a proportion of those changes were related to the association between photosynthetic pathway of the species and precipitation.  相似文献   

10.
Grasses (Poaceae) are the largest family of vascular plants in Burkina Faso with 254 species. In the savannahs they are the most important family in terms of abundance and species richness, in other habitats, such as gallery forests, there are only few species. On the country scale there is a change in growth form: while in the Sahelian north most grasses are small therophytes, the Sudanian south is characterized by tall, often perennial grasses. To analyse these patterns in detail, we compiled a database on grass occurrences and used it in an ecological niche modelling approach with the programme Maxent to obtain country‐wide distribution models. Secondly we used data on photosynthetic type, height, leaf width and growth form to aggregate the species distributions and quantified the relative importance of functional groups per grid cell. Pronounced latitudinal differences could be shown for life forms, photosynthesis and size: the drier north is characterized by smaller, mainly therophytic grasses with a high share of C4 NAD‐ME photosynthesis, while the more humid south is characterized by tall, often hemicryptophytic grasses with C4 NADP‐ME photosynthesis. For leaf width, no clear country‐wide patterns could be observed, but local differences with more broad‐leaved grasses in humid areas.  相似文献   

11.
Photosynthetic pathway is used widely to discriminate plant functional types in studies of global change. However, independent evolutionary lineages of C4 grasses with different variants of C4 photosynthesis show different biogeographical relationships with mean annual precipitation, suggesting phylogenetic niche conservatism (PNC). To investigate how phylogeny and photosynthetic type differentiate C4 grasses, we compiled a dataset of morphological and habitat information of 185 genera belonging to two monophyletic subfamilies, Chloridoideae and Panicoideae, which together account for 90 % of the world’s C4 grass species. We evaluated evolutionary variance and covariance of morphological and habitat traits. Strong phylogenetic signals were found in both morphological and habitat traits, arising mainly from the divergence of the two subfamilies. Genera in Chloridoideae had significantly smaller culm heights, leaf widths, 1,000-seed weights and stomata; they also appeared more in dry, open or saline habitats than those of Panicoideae. Controlling for phylogenetic structure showed significant covariation among morphological traits, supporting the hypothesis of phylogenetically independent scaling effects. However, associations between morphological and habitat traits showed limited phylogenetic covariance. Subfamily was a better explanation than photosynthetic type for the variance in most morphological traits. Morphology, habitat water availability, shading, and productivity are therefore all involved in the PNC of C4 grass lineages. This study emphasized the importance of phylogenetic history in the ecology and biogeography of C4 grasses, suggesting that divergent lineages need to be considered to fully understand the impacts of global change on plant distributions.  相似文献   

12.
The Miocene radiation of C4 grasses under high‐temperature and low ambient CO2 levels occurred alongside the transformation of a largely forested landscape into savanna. This inevitably changed the host plant regime of herbivores, and the simultaneous diversification of many consumer lineages, including Bicyclus butterflies in Africa, suggests that the radiations of grasses and grazers may be evolutionary linked. We examined mechanisms for this plant–herbivore interaction with the grass‐feeding Bicyclus safitza in South Africa. In a controlled environment, we tested oviposition preference and hatchling performance on local grasses with C3 or C4 photosynthetic pathways that grow either in open or shaded habitats. We predicted preference for C3 plants due to a hypothesized lower processing cost and higher palatability to herbivores. In contrast, we found that females preferred C4 shade grasses rather than either C4 grasses from open habitats or C3 grasses. The oviposition preference broadly followed hatchling performance, although hatchling survival was equally good on C4 or C3 shade grasses. This finding was explained by leaf toughness; shade grasses were softer than grasses from open habitats. Field monitoring revealed a preference of adults for shaded habitats, and stable isotope analysis of field‐sampled individuals confirmed their preference for C4 grasses as host plants. Our findings suggest that plant–herbivore interactions can influence the direction of selection in a grass‐feeding butterfly. Based on this work, we postulate future research to test whether these interactions more generally contribute to radiations in herbivorous insects via expansions into new, unexploited ecological niches.  相似文献   

13.
Plant shading is commonly recognised as a factor, which increases susceptibility of plants to attack by herbivorous insects. In this study we experimentally investigated the effect of host plant shading on two willow-feeding leaf beetles, Galerucella lineola feeding upon Salix phylicifolia and Phratora vitellinae feeding upon Salix myrsinifolia . Both beetle species were more abundant on potted willows growing in open habitats than on the same clones placed under the shade of trees. However, in the laboratory the food preference by adults and larval performance showed that the shaded willows are actually better food for both beetle species. On the contrary, when larvae were reared in the field under natural abiotic conditions, we found no difference in larval performance, or if any, even better performance in open habitats. Apparently, higher and more variable daily temperatures in open habitats accelerated the growth of the larvae. When adults were let to emigrate from or immigrate to potted willows, which had been grown in the same conditions but placed either in the open or shady habitats, adults preferred exposed willows. Invertebrate predators were more abundant in open habitats, but we found no differences in leaf beetle mortality by natural enemies between the habitats. Although the larval performance appeared to be approximately equal in the two habitats during the unusually warm study period, we suggest that under suboptimal temperatures the better abiotic conditions of open sites can easily override the better food provided by shaded habitats. The selection of abiotic habitat thus plays a significant role in the adaptive habitat and host plant selection of these beetles within the gradient of shadiness.  相似文献   

14.
Tropical montane forests comprise heterogeneous environments along natural gradients of topography and elevation. Human‐induced edge effects further increase the environmental heterogeneity in these forests. The simultaneous effects of natural and human‐induced gradients on the functional diversity of plant leaf traits are poorly understood. In a tropical montane forest in Bolivia, we studied environmental gradients associated with elevation (from 1900 m to 2500 m asl), topography (ridge and gorge), and edge effects (forest edge vs. forest interior), and their relationship with leaf traits and resource‐use strategies. First, we investigated associations of environmental conditions (soil properties and microclimate) with six leaf traits, measured on 119 woody plant species. Second, we evaluated changes in functional composition with community‐weighted means and functional structure with multidimensional functional diversity indices (FRic, FEve and FDiv). We found significant associations between leaf traits and soil properties in accordance with the trade‐off between acquisition and conservation of resources. Functional composition of leaf traits shifted from the dominance of acquisitive species in habitats at low altitudes, gorges, and forest interior to the dominance of conservative species in habitats at high altitudes, ridges, and forest edges. Functional structure was only weakly associated with the environmental gradients. Natural and human‐induced environmental gradients, especially soil properties, are important for driving leaf traits and resource‐use strategies of woody plants. Nevertheless, weak associations between functional structure and environmental gradients suggest a high redundancy of functional leaf traits in this tropical montane forest.  相似文献   

15.
物种共存机制一直以来是群落生态学的研究热点。为了探讨异质生境条件下鼎湖山常绿阔叶林群落功能多样性变化,找到其变化的主要环境驱动因子,该研究利用位于鼎湖山20 hm~2监测样地第2次群落调查数据并选择代表不同生境(海拔和地形)的27个样方(20 m×20 m),于2013年夏季在样地内所选样方中测定所有胸径≥1 cm树种的叶片功能性状。所测性状包括形态学性状(比叶面积、叶片干物质含量、叶面积以及叶片长宽比)和化学计量学性状(叶片碳、氮、磷的含量),结合地形和土壤数据并通过分析功能多样性随环境梯度的变化,探讨了环境过滤和竞争在鼎湖山群落物种共存中的相对重要性。结果表明:功能分歧度和群落权重平均值与环境因素关系密切,尤其是海拔、凹凸度和土壤养分。环境条件较好区域(微尺度高海拔、高凹凸度和土壤养分含量)的植物采取统一的养分有效保存(低SLA,高LDMC)的适应策略(功能分歧度低),环境过滤所起作用更强;植物在相反的环境条件下,采取快速生长策略(高SLA,低LDMC),能够更好地适应环境的变化,且性状变化是多样的(功能分歧度高),在该条件下竞争作用更为显著。叶面积和叶片氮含量的分歧度在环境条件较好的区域增大,这与其他功能性状不一致,说明不同生态位轴(环境因素)影响不同性状的分歧度变化,并且在局域尺度上植物为了更好地适应环境变化采取了多样的适应策略。  相似文献   

16.
Increasing evidence suggests that individuals of the same plant species occurring in different microhabitats often show a degree of phenotypic and phytochemical variation. Consequently, insect herbivores associated with such plant species must deal with environment‐mediated changes or variability in the traits of their host plants. In this study, we examined the effects of habitat condition (shaded vs. full‐sun habitats) on plant traits and leaf characteristics of the invasive alien plant, Chromolaena odorata (L.) King & Robinson (Asteraceae). In addition, the performance was evaluated in two generations of a specialist folivore, Pareuchaetes insulata (Walker) (Lepidoptera: Erebidae: Arctiinae), on leaves obtained from both shaded and full‐sun habitats. The study was done in an area where the insect was introduced as a biological control agent. Leaves growing in shade were less tough, had higher water and nitrogen content, and lower total non‐structural carbohydrate, compared with leaves growing in full sun. Plants growing in shade had longer leaves and were taller, but above‐ground biomass was significantly reduced compared with plants growing in full sun. In both generations (parents and offspring), P. insulata developed faster and had larger pupal mass, increased growth rate, and higher fecundity when reared on shaded foliage compared with full‐sun foliage. Although immature survival and adult longevity did not differ between habitats, Maw's host suitability index indicated that shaded leaves were more suitable for the growth and reproduction of P. insulata. We suggest that the benefits obtained by P. insulata feeding on shaded foliage are associated with reduced toughness and enhanced nitrogen and water content of leaves. These results demonstrate that light‐mediated changes in plant traits and leaf characteristics can affect insect folivore performance.  相似文献   

17.
The balance between facilitation and competition in plants changes with species characteristics and environmental conditions. Facilitative effects are common in natural ecosystems, particularly in stressful environments or years. Contrarily, in artificial associations of plants, such as agroforestry systems, some authors have suggested that even when facilitative effects may occur, net balance of tree effects on grasses is usually negative, particularly in dry environments. The aim of this study was to determine the net effect of the exotic ponderosa pine on the native grass Festuca pallescens (St. Ives) Parodi in agroforestry systems in Patagonia. Soil water content, plant water status, and relative growth were measured in the grass growing in different treatments (determined by tree cover level) during two growing seasons with contrasting climatic conditions. Facilitative effects of trees over grass water status were recorded only when water availability was high. A net negative effect was detected on dates when soil water content was very low and evaporative demand was high. The strength of these negative effects depended on tree density and climatic conditions, being higher in treatments with lower tree canopy cover. These results indicate that the positive effect of trees could only be expected under relatively low stress conditions. However, relative growth of grasses was always similar in plants growing in forested plots than in open grassland. Differences in biomass allocation for grasses growing in shade and open habitats may reconcile these contrary results. Our results highlight the importance of the physiology of a species (relative drought and shade tolerance) in determining the response of a plant to a particular interacting species.  相似文献   

18.
Grasslands account for a large proportion of global terrestrial productivity and play a critical role in carbon and water cycling. Within grasslands, photosynthetic pathway is an important functional trait yielding different rates of productivity along environmental gradients. Recently, C3-C4 sorting along spatial environmental gradients has been reassessed by controlling for confounding traits in phylogenetically structured comparisons. C3 and C4 grasses should sort along temporal environmental gradients as well, resulting in differing phenologies and growing season lengths. Here we use 10 years of satellite data (NDVI) to examine the phenology and greenness (as a proxy for productivity) of C3 and C4 grass habitats, which reflect differences in both environment and plant physiology. We perform phylogenetically structured comparisons based on 3,595 digitized herbarium collections of 152 grass species across the Hawaiian Islands. Our results show that the clade identity of grasses captures differences in their habitats better than photosynthetic pathway. Growing season length (GSL) and associated productivity (GSP) were not significantly different when considering photosynthetic type alone, but were indeed different when considering photosynthetic type nested within clade. The relationship between GSL and GSP differed most strongly between C3 clade habitats, and not between C3-C4 habitats. Our results suggest that accounting for the interaction between phylogeny and photosynthetic pathway can help improve predictions of productivity, as commonly used C3-C4 classifications are very broad and appear to mask important diversity in grassland ecosystem functions.  相似文献   

19.
Previous research has found that plant diversity declines more quickly in exotic than native grassland plots, which offers a model system for testing whether diversity decline is associated with specific plant traits. In a common garden experiment in the Southern Great Plains in central Texas, USA, we studied monocultures and 9-species mixtures of either all exotic or all native grassland species. A total of 36 native and exotic species were paired by phylogeny and functional group. We used community-level measures (relative abundance in mixture) and whole-plant (height, aboveground biomass, and light capture) and leaf-level traits (area, specific leaf area, and C:N ratio) to determine whether trait differences explained native-exotic differences in functional group diversity. Increases in species’ relative abundance in mixture were correlated with high biomass, height, and light capture in both native and exotic communities. However, increasing exotic species were all C4 grasses, whereas, increasing native species included forb, C3 grass and C4 grass species. Exotic C4 grasses had traits associated with relatively high resource capture: greater leaf area, specific leaf area, height, biomass, and light capture, but similar leaf C:N ratios compared to native C4 grasses. Leaf C:N was consistently higher for native than exotic C3 species, implying that resource use efficiency was greater in natives than exotics. Our results suggest that functional diversity will differ between grasslands restored to native assemblages and those dominated by novel collections of exotic species, and that simple plant traits can help to explain diversity decline.  相似文献   

20.
'C4 photosynthesis' refers to a suite of traits that increase photosynthesis in high light and high temperature environments. Most C4 plants are grasses, which dominate tropical and subtropical grasslands and savannas but are conspicuously absent from cold growing season climates. Physiological attributes of C4 photosynthesis have been invoked to explain C4 grass biogeography; however, the pathway evolved exclusively in grass lineages of tropical origin, suggesting that the prevalence of C4 grasses in warm climates could be due to other traits inherited from their non-C4 ancestors. Here we investigate the relative influences of phylogeny and photosynthetic pathway in determining the ecological distributions of C4 grasses in Hawaii. We find that the restriction of C4 grasses to warmer areas is due largely to their evolutionary history as members of a warm-climate grass clade, but that the pathway does appear to confer a competitive advantage to grasses in more arid environments.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号