首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Induction of lactose transport and of beta-galactosidase synthesis was examined in two Escherichia coli strains that require exogenous glycerol for phospholipid synthesis and growth. No preferential inhibition of lactose transport induction was observed when phospholipid synthesis was restricted to 5 to 10% of the normal rate. We conclude that the lactose transport system does not require concurrent phospholipid synthesis for its functional assembly.  相似文献   

2.
We examined the kinetics of beta-galactosidase (EC 3.2.1.23) induction in the yeast Kluyveromyces lactis. Enzyme activity began to increase 10 to 15 min, about 1/10 of a cell generation, after the addition of inducer and continued to increase linearly for from 7 to 9 cell generations before reaching a maximum, some 125- to 150-fold above the basal level of uninduced cells. Thereafter, as long as logarithmic growth was maintained, enzyme levels remained high, but enzyme levels dropped to a value only 5- to 10-fold above the basal level if cells entered stationary phase. Enzyme induction required the constant presence of inducer, since removal of inducer caused a reduction in enzyme level. Three nongratuitous inducers of beta-galactosidase activity, lactose, galactose, and lactobionic acid, were identified. Several inducers of the lac operon of Escherichia coli, including methyl-, isopropyl- and phenyl-1-thio-beta-d-galactoside, and thioallolactose did not induce beta-galactosidase in K. lactis even though they entered the cell. The maximum rate of enzyme induction was only achieved with lactose concentrations of greater than 1 to 2 mM. The initial differential rate of beta-galactosidase appearance after induction was reduced in medium containing glucose, indicating transient carbon catabolite repression. However, glucose did not exclude lactose from K. lactis, it did not cause permanent carbon catabolite repression of beta-galactosidase synthesis, and it did not prevent lactose utilization. These three results are in direct contrast to those observed for lactose utilization in E. coli. Furthermore, these results, along with our observation that K. lactis grew slightly faster on lactose than on glucose, indicate that this organism has evolved an efficient system for utilizing lactose.  相似文献   

3.
4.
Strains of Saccharomyces cerevisiae transformed with a multicopy expression vector bearing both the Escherichia coli beta-galactosidase gene under the control of the upstream activating sequence of the GAL1-10 genes and the GAL4 activator gene release part of beta-galactosidase in the growth medium. This release is due to cell lysis of the older mother cells; the enzyme maintains its activity in buffered growth media. Fermentation studies with transformed yeast strains showed that the release of beta-galactosidase allowed an efficient growth on buffered media containing lactose as carbon source as well as on whey-based media. The transformed strains utilized up to 95% of the lactose and a high growth yield was obtained in rich media. High productions of ethanol were also observed in stationary phase after growth in lactose minimal media.  相似文献   

5.
Lac- strains of Vibrio parahaemolyticus were converted to Lac+ on receiving a hybrid plasmid containing the lactose utilization genes of Escherichia coli K-12. A V. parahaemolyticus strain containing this hybrid plasmid exhibited optimal growth rates on glucose and other carbon sources in the presence of 0.2 to 0.4 M NaCl. Growth of the same strain on lactose was inhibited at similar concentrations of NaCl. The altered growth rate responses in lactose medium appeared to be attributable to effects of NaCl on the activity of lactose permease, and possibly on that of beta-galactosidase, rather than on the levels of these enzymes in V. parahaemolyticus cells.  相似文献   

6.
Lac- strains of Vibrio parahaemolyticus were converted to Lac+ on receiving a hybrid plasmid containing the lactose utilization genes of Escherichia coli K-12. A V. parahaemolyticus strain containing this hybrid plasmid exhibited optimal growth rates on glucose and other carbon sources in the presence of 0.2 to 0.4 M NaCl. Growth of the same strain on lactose was inhibited at similar concentrations of NaCl. The altered growth rate responses in lactose medium appeared to be attributable to effects of NaCl on the activity of lactose permease, and possibly on that of beta-galactosidase, rather than on the levels of these enzymes in V. parahaemolyticus cells.  相似文献   

7.
The genes coding for the lactose permease and beta-galactosidase, two proteins involved in the metabolism of lactose by Lactobacillus bulgaricus, have been cloned, expressed, and found functional in Escherichia coli. The nucleotide sequences of these genes and their flanking regions have been determined, showing the presence of two contiguous open reading frames (ORFs). One of these ORFs codes for the lactose permease gene, and the other codes for the beta-galactosidase gene. The lactose permease gene is located in front of the beta-galactosidase gene, with 3 bp in the intergenic region. The two genes are probably transcribed as one operon. Primer extension studies have mapped a promoter upstream from the lactose permease gene but not the beta-galactosidase gene. This promoter is similar to those found in E. coli with general characteristics of GC-rich organisms. In addition, the sequences around the promoter contain a significantly higher number of AT base pairs (80%) than does the overall L. bulgaricus genome, which is rich in GC (GC content of 54%). The amino acid sequences obtained from translation of the ORFs are found to be highly homologous (similarity of 75%) to those from Streptococcus thermophilus. The first 460 amino acids of the lactose permease shows homology to the melibiose transport protein of E. coli. Little homology was found between the lactose permease of L. bulgaricus and E. coli, but the residues which are involved in the binding and the transport of lactose are conserved. The carboxy terminus is similar to that of the enzyme III of several phosphoenolpyruvate-dependent phosphotransferase systems.  相似文献   

8.
Cells of Lactobacillus bulgaricus, Escherichia coli, and Kluyveromyces (Saccharomyces) lactis immobilized in polyacrylamide gel beads retained 27 to 61% of the beta-galactosidase activity of intact cells. Optimum temperature and pH and thermostability of these microbial beta-galactosidases were negligibly affected by the immobilization. Km values of beta-galactosidase in immobilized cells of L. bulgaricus, E. coli, and K. lactis toward lactose were 4.2, 5.4, and 30 mM, respectively. Neither inhibition nor activation of beta-galactosidase in immobilized L. bulgaricus and E. coli appeared in the presence of galactose, but remarkable inhibition by galactose was detected in the case of the enzyme of immobilized K. lactis. Glucose inhibited noncompetitively the activity of three species of immobilized microbial cells. These kinetic properties were almost the same as those of free beta-galactosidase extracted from individual microorganisms. The activity of immobilized K. lactis was fairly stable during repeated runs, but those of E. coli and L. bulgaricus decreased gradually. These immobilized microbial cells, when introduced into skim milk, demonstrated high activity for converting lactose to monosaccharides. The flavor of skim milk was hardly affected by treatment with these immobilized cells, although the degree of sweetness was raised considerably.  相似文献   

9.
Hydrolysis of lactose by immobilized microorganisms.   总被引:1,自引:0,他引:1  
Cells of Lactobacillus bulgaricus, Escherichia coli, and Kluyveromyces (Saccharomyces) lactis immobilized in polyacrylamide gel beads retained 27 to 61% of the beta-galactosidase activity of intact cells. Optimum temperature and pH and thermostability of these microbial beta-galactosidases were negligibly affected by the immobilization. Km values of beta-galactosidase in immobilized cells of L. bulgaricus, E. coli, and K. lactis toward lactose were 4.2, 5.4, and 30 mM, respectively. Neither inhibition nor activation of beta-galactosidase in immobilized L. bulgaricus and E. coli appeared in the presence of galactose, but remarkable inhibition by galactose was detected in the case of the enzyme of immobilized K. lactis. Glucose inhibited noncompetitively the activity of three species of immobilized microbial cells. These kinetic properties were almost the same as those of free beta-galactosidase extracted from individual microorganisms. The activity of immobilized K. lactis was fairly stable during repeated runs, but those of E. coli and L. bulgaricus decreased gradually. These immobilized microbial cells, when introduced into skim milk, demonstrated high activity for converting lactose to monosaccharides. The flavor of skim milk was hardly affected by treatment with these immobilized cells, although the degree of sweetness was raised considerably.  相似文献   

10.
1. Acute transient catabolite repression of beta-galactosidase synthesis, observed when glucose is added to glycerol-grown cells of Escherichia coli (Moses & Prevost, 1966), requires the presence of a functional operator gene (o) in the lactose operon. Total deletion of the operator gene abolished acute transient repression, even in the presence of a functional regulator gene (i). 2. Regulator constitutives (i(-)) also show transient repression provided that the operator gene is functional. Regulator deletion mutants (i(del)), with which to test specifically the role of the i gene, have not so far been available. 3. The above mutants, showing various changes in the lactose operon, show no alteration in the effect of glucose on induced tryptophanase synthesis. Glucose metabolism, as measured in terms of the release of (14)CO(2) from [1-(14)C]glucose and [6-(14)C]glucose, also showed no differences between strains exhibiting or not exhibiting transient repression. This suggests no change in the operation of the pentose phosphate cycle, a metabolic activity known to be of paramount importance for glucose repression of beta-galactosidase synthesis (Prevost & Moses, 1967). 4. Chronic permanent repression by glucose of beta-galactosidase synthesis (less severe in degree than acute transient repression) persists in strains in which transient repression has been genetically abolished. Constitutive alkaline-phosphatase synthesis, which shows no transient repression, also demonstrates chronic permanent repression by glucose. 5. Chloramphenicol repression also persists in mutants with no transient repression, and also affects alkaline phosphatase. It is suggested that chronic permanent repression and chloramphenicol repression are non-specific, and that they do not influence beta-galactosidase synthesis via the regulatory system of the lactose operon.  相似文献   

11.
Although very little, if any, beta-galactosidase activity is detected in Yersinia pestis by a standard Miller assay, we found that Y. pestis KIM6+ cells formed blue colonies on plates containing 5-bromo-4-chloro-3-indolyl-beta-D-galactoside (X-gal). Searches of the Y. pestis genome databases revealed the presence of noncontiguous sequences highly homologous to Escherichia coli lacZ, lacY, and lacI. Yersinia pestis lacZ is predicted to encode a 1060 amino-acid protein with 62% identity and 72% similarity to beta-galactosidase from E. coli. A deletion in the Y. pestis lacZ gene caused the formation of white colonies on X-gal-containing plates and beta-galactosidase activity was at background levels in the KIM6+lacZ mutant, while the complemented strain expressed about 190 Miller units. The Y. pestis lacZ promoter was not regulated by isopropylthiogalactoside or glucose. Finally, uptake of lactose by Y. pestis may be impaired.  相似文献   

12.
Lactose metabolism in Erwinia chrysanthemi.   总被引:18,自引:11,他引:7       下载免费PDF全文
Wild-type strains of the phytopathogenic enterobacterium Erwinia chrysanthemi are unable to use lactose as a carbon source for growth although they possess a beta-galactosidase activity. Lactose-fermenting derivatives from some wild types, however, can be obtained spontaneously at a frequency of about 5 X 10(-7). All Lac+ derivatives isolated had acquired a constitutive lactose transport system and most contained an inducible beta-galactosidase. The transport system, product of the lmrT gene, mediates uptake of lactose in the Lac+ derivatives and also appears to be able to mediate uptake of melibiose, raffinose, and galactose. Two genes encoding beta-galactosidase enzymes were detected in E. chrysanthemi strains. That mainly expressed in the wild-type strains was the lacZ product. The other, the lacB product, is very weakly expressed in these strains. These enzymes showed different affinities for the substrates o-nitrophenyl-beta-D-galactopyranoside and lactose and for the inhibitors isopropyl-beta-D-thiogalactopyranoside and galactose. The lmrT and lacZ genes of E. chrysanthemi, together with the lacI gene coding for the regulatory protein controlling lacZ expression, were cloned by using an RP4::miniMu vector. When these plasmids were transferred into Lac- Escherichia coli strains, their expression was similar to that in E. chrysanthemi. The cloning of the lmrT gene alone suggested that the lacZ or lacB gene is not linked to the lmrT gene on the E. chrysanthemi chromosome. One Lac+ E. chrysanthemi derivative showed a constitutive synthesis of the beta-galactosidase encoded by the lacB gene. This mutation was dominant toward the lacI lacZ cloned genes. Besides these mutations affecting the regulation of the lmrT or lacB gene, the isolation of structural mutants unable to grow on lactose was achieved by mutagenic treatment. These mutants showed no expression of the lactose transport system, the lmrT mutants, or the mainly expressed beta-galactosidase, lacZ mutants. The lacZ mutants retained a very low beta-galactosidase level, due to the lacB product, but this level was low enough to permit use of the lacZ mutants for the construction of gene fusions with the Escherichia coli lac genes.  相似文献   

13.
14.
15.
A Southern hybridization analysis revealed that the region homologous to Escherichia coli lacZ was present on the chromosomal DNAs of beta-galactosidase-positive Shigella strains, such as Shigella dysenteriae serovar 1 and Shigella sonnei strains, whereas this region was absent from chromosomal DNAs of beta-galactosidase-negative strains of Shigella flexneri and Shigella boydii. We found that the lacY-A region was deficient in S. dysenteriae serovar 1 and believe that this is the reason for the slow fermentation of lactose by this strain. S. sonnei strains possessed the region which hybridized with E. coli lacY-A despite their slow hydrolysis of lactose. The whole lactose-fermenting region was cloned from S. sonnei and compared with the cloned lac operon of E. coli K-12. Both clones directed the synthesis of beta-galactosidase in an E. coli K-12 strain lacking indigenous beta-galactosidase activity (strain JM109-1), and we observed no difference in the expression of beta-galactosidase activity in S. sonnei and E. coli. However, E. coli JM109-1 harboring the lactose-fermenting genes of S. sonnei exhibited the slow lactose fermentation phenotype like the parental strain. S. sonnei strains had no detectable lactose permease activities. E. coli JM109-1 harboring the lactose-fermenting genes of S. sonnei had a detectable permease activity, possibly because of the multicopy nature of the cloned genes, but this permease activity was much lower than that of strain JM109-1 harboring the lac operon of E. coli K-12. From these results we concluded that slow lactose fermentation by S. sonnei is due to weak lactose permease activity.  相似文献   

16.
A general method has been developed for determining the rate of entry of lactose into cells of Escherichia coli that contain beta-galactosidase. Lactose entry is measured by either the glucose or galactose released after lactose hydrolysis. Since lactose is hydrolyzed by beta-galactosidase as soon as it enters the cell, this assay measures the activity of the lactose transport system with respect to the translocation step. Using assays of glucose release, lactose entry was studied in strain GN2, which does not phosphorylate glucose. Lactose entry was stimulated 3-fold when cells were also presented with readily metabolizable substrates. Entry of omicron-nitrophenyl-beta-D-galactopyranoside (ONPG) was only slightly elevated (1.5-fold) under the same conditions. The effects of arsenate treatment and anaerobiosis suggest that lactose entry may be limited by the need for reextrusion of protons which enter during H+/sugar cotransport. Entry of omicron-nitrophenyl-beta-D-galactopyranoside is less dependent on the need for proton reextrusion, probably because the stoichiometry of H+/substrate cotransport is greater for lactose than for ONPG.  相似文献   

17.
The transposon Tn951 (lac) was introduced into the photosynthetic bacterium Rhodopseudomonas sphaeroides 2.4.1, which is normally Lac-, via the P-group plasmid RP1. beta-Galactosidase was produced constitutively in both chemotrophically and phototrophically grown cells, and the levels were found to be the same but low. Mutants were isolated, however, that were able to grow on lactose minimal medium and which expressed different levels of beta-galactosidase when grown chemotrophically or phototrophically. The beta-galactosidase levels found in all R. sphaeroides strains were much less than those found in Escherichia coli.  相似文献   

18.
H Ito  N Kido  Y Arakawa  M Ohta  T Sugiyama    N Kato 《Applied microbiology》1991,57(10):2912-2917
A Southern hybridization analysis revealed that the region homologous to Escherichia coli lacZ was present on the chromosomal DNAs of beta-galactosidase-positive Shigella strains, such as Shigella dysenteriae serovar 1 and Shigella sonnei strains, whereas this region was absent from chromosomal DNAs of beta-galactosidase-negative strains of Shigella flexneri and Shigella boydii. We found that the lacY-A region was deficient in S. dysenteriae serovar 1 and believe that this is the reason for the slow fermentation of lactose by this strain. S. sonnei strains possessed the region which hybridized with E. coli lacY-A despite their slow hydrolysis of lactose. The whole lactose-fermenting region was cloned from S. sonnei and compared with the cloned lac operon of E. coli K-12. Both clones directed the synthesis of beta-galactosidase in an E. coli K-12 strain lacking indigenous beta-galactosidase activity (strain JM109-1), and we observed no difference in the expression of beta-galactosidase activity in S. sonnei and E. coli. However, E. coli JM109-1 harboring the lactose-fermenting genes of S. sonnei exhibited the slow lactose fermentation phenotype like the parental strain. S. sonnei strains had no detectable lactose permease activities. E. coli JM109-1 harboring the lactose-fermenting genes of S. sonnei had a detectable permease activity, possibly because of the multicopy nature of the cloned genes, but this permease activity was much lower than that of strain JM109-1 harboring the lac operon of E. coli K-12. From these results we concluded that slow lactose fermentation by S. sonnei is due to weak lactose permease activity.  相似文献   

19.
The results presented in this paper confirm and extend previous observations which indicate that fluorescent dansylgalactsodes bind to the beta-galactoside carrier protein but do not penetrate the cytoplasmic membrane. The conclusion is supported by the following observations. (a) Although 2'-(N-dansyl)aminoethyl-beta-D-thiogalactopyranoside and 2'-(N-dansyl)aminoethyl-beta-D-galactopyranoside are competitive inhibitors of lactose transport in intact cells of Escherichia coli and induce the in vitro synthesis of beta-galactosidase, they do not induce beta-galactosidase in vivo. (b) p-Chloromercuribenzenesulfonate does not cause efflux of lactose from the intravesicular pool, but causes rapid reversal of D-lactate-induced dansylgalactoside fluorescence. (c) Dansylgalactosides inhibit dilution-induced, carrier-mediated lactose efflux.  相似文献   

20.
The uptake of 4-deoxy-4-fluoro-D-glucose (4FG), without subsequent catabolism, by resting cells of Escherichia coli (ATCC 11775) is 0.06 mg/mg dry weight. In frozen-thawed cells of this organism, 4FG is a substrate for the phosphoenolpyruvate phosphotransferase system with a rate of phosphorylation twice that found for the isomeric 3-deoxy-3-fluoro-D-glucose. 4FG is not a carbon source for growth of this organism and it inhibits the extent of growth of cells in the presence of glucose. The inhibition of growth of E. coli K12 on lactose by 4FG is also observed and this is considered to be consistent with the fact that 4FG is an uncompetitive inhibitor of beta-galactosidase (EC 3.2.1.23) activity and that 4FG or 4-deoxy-4-fluoro-D-glucose-6 phosphate repress beta-galactosidase synthesis. These results support the view that catabolite repression may be produced by compounds which are not necessarily metabolised further than hexose-6-phosphates.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号