首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The purpose of this study was to examine the effects of short-term high-intensity interval training (HIIT) on cardiovascular function, cardiorespiratory fitness, and muscular force. Active, young (age and body fat = 25.3 ± 4.5 years and 14.3 ± 6.4%) men and women (N = 20) of a similar age, physical activity, and maximal oxygen uptake (VO2max) completed 6 sessions of HIIT consisting of repeated Wingate tests over a 2- to 3-week period. Subjects completed 4 Wingate tests on days 1 and 2, 5 on days 3 and 4, and 6 on days 5 and 6. A control group of 9 men and women (age and body fat = 22.8 ± 2.8 years and 15.2 ± 6.9%) completed all testing but did not perform HIIT. Changes in resting blood pressure (BP) and heart rate (HR), VO2max, body composition, oxygen (O2) pulse, peak, mean, and minimum power output, fatigue index, and voluntary force production of the knee flexors and extensors were examined pretraining and posttraining. Results showed significant (p < 0.05) improvements in VO2max, O2 pulse, and Wingate-derived power output with HIIT. The magnitude of improvement in VO2max was related to baseline VO2max (r = -0.44, p = 0.05) and fatigue index (r = 0.50, p < 0.05). No change (p > 0.05) in resting BP, HR, or force production was revealed. Data show that HIIT significantly enhanced VO2max and O2 pulse and power output in active men and women.  相似文献   

2.
Controversy exists regarding the relative importance of adiposity, physical fitness, and physical activity in the regulation of insulin-stimulated glucose disposal. To address this issue, we measured insulin-stimulated glucose disposal [mg. kg fat-free mass (FFM)(-1). min(-1); oxidative and nonoxidative components] in 45 nondiabetic, nonobese, premenopausal women (mean +/- SD; 47 +/- 3 yr) by use of hyperinsulinemic euglycemic clamp (40 mU. m(-2). min(-1)) and [6,6-2H2]glucose dilution techniques. We also measured body composition, abdominal fat distribution, thigh muscle fat content, maximal oxygen consumption (VO2 max), and physical activity energy expenditure ((2)H(2)(18)O kinetics) as possible correlates of glucose disposal. VO2 max was the strongest correlate of glucose disposal (r = 0.63, P < 0.01), whereas whole body and abdominal adiposity showed modest associations (range of r values from -0.32 to -0.46, P < 0.05 to P < 0.01). A similar pattern of correlations was observed for nonoxidative glucose disposal. None of the variables measured correlated with oxidative glucose disposal. The relationship of VO2 max to glucose disposal persisted after statistical control for FFM, percent body fat, and intra-abdominal fat (r = 0.40, P < 0.01). In contrast, correlations of total and regional adiposity measures to insulin sensitivity were no longer significant after statistical adjustment for VO2 max. VO2 max was the only variable to enter stepwise regression models as a significant predictor of total and nonoxidative glucose disposal. Our results highlight the importance of VO2 max as a determinant of glucose disposal and suggest that it may be a stronger determinant of variation in glucose disposal than total and regional adiposity in nonobese, nondiabetic, premenopausal women.  相似文献   

3.
4.
The purpose of the current investigation was to identify relationships between physiological off-ice tests and on-ice performance in female and male ice hockey players on a comparable competitive level. Eleven women, 24 ± 3.0 years, and 10 male ice hockey players, 23 ± 2.4 years, were tested for background variables: height, body weight (BW), ice hockey history, and lean body mass (LBM) and peak torque (PT) of the thigh muscles, VO2peak and aerobic performance (Onset of Blood Lactate Accumulation [OBLA], respiratory exchange ratio [RER1]) during an incremental bicycle ergometer test. Four different on-ice tests were used to measure ice skating performance. For women, skating time was positively correlated (p < 0.05) to BW and negatively correlated to LBM%, PT/BW, OBLA, RER 1, and VO2peak (ml O2·kg(-1) BW(-1)·min(-1)) in the Speed test. Acceleration test was positively correlated to BW and negatively correlated to OBLA and RER 1. For men, correlation analysis revealed only 1 significant correlation where skating time was positively correlated to VO2peak (L O2·min(-1)) in the Acceleration test. The male group had significantly higher physiological test values in all variables (absolute and relative to BW) but not in relation to LBM. Selected off-ice tests predict skating performance for women but not for men. The group of women was significantly smaller and had a lower physiological performance than the group of men and were slower in the on-ice performance tests. However, gender differences in off-ice variables were reduced or disappeared when values were related to LBM, indicating a similar capacity of producing strength and aerobic power in female and male hockey players. Skating performance in female hockey players may be improved by increasing thigh muscle strength, oxygen uptake, and relative muscle mass.  相似文献   

5.
Aerobic fitness and percent body fat were measured in a sample of 438 male Army recruits between the ages of 17 and 30 prior to the commencement of training. The sample came from all areas of England and Wales. Aerobic fitness, as represented by maximal oxygen uptake (VO2 max), was predicted from the Astrand submaximal bicycle heart rate test. Body fat was predicted from four skinfold measurements. Total group means +/- SD were: age, 19.5 +/- 2.5 years; VO2 max 41.7 +/- 8.3 ml/kg . min; and body fat, 14.5 +/- 4.8% of body weight. VO2 max varied with age, athletic participation and aptitude score. No relationship was found with occupation of parent, prior civilian occupation or smoking severity. When adjusted for methodological differences, VO2 max was slightly below similar Army entrants in Norway and the United States.  相似文献   

6.
The purpose of this study was to identify off-ice variables that would correlate to on-ice skating sprint performance and cornering ability. Previous literature has not reported any off-ice testing variables that strongly correlate to on-ice cornering ability in ice hockey players. Thirty-six male hockey players aged 15-22 years (mean +/- SD: 16.3 +/- 1.7 years; weight = 70.8 +/- 10.4 kg; height = 175.6 +/- 4.1 cm) with an average of 10.3 +/- 3.0 years hockey playing experience (most at AA and AAA levels) participated in the study. The on-ice tests included a 35-m sprint and the cornering S test. The off-ice tests included the following: 30-m sprint, vertical jump, broad jump, 3 hop jump, Edgren side shuffle, Hexagon agility, side support, push-ups, and 15-second modified Wingate. The on-ice sprint test and cornering S test were strongly correlated (r = 0.70; p < 0.001). While many off-ice tests correlated with on-ice skating, measures of horizontal leg power (off-ice sprint and 3 hop jump) were the best predictors of on-ice skating performance, once weight and playing level were accounted for. These 4 variables accounted for a total of 78% (p < 0.0001) of the variance in on-ice sprint performance. No off-ice test accounted for unique variance in S-cornering performance beyond weight, playing level, and skating sprint performance. These data indicate that coaches should include horizontal power tests of off-ice sprint and 3 hop jump to adequately assess skating ability. To improve on-ice skating performance and cornering ability, coaches should also focus on the development of horizontal power through specific off-ice training, although future research will determine whether off-ice improvements in horizontal power directly transfer to improvements in on-ice skating.  相似文献   

7.
Maximal oxygen uptake (VO2max.), glucose tolerance (K-value), and insulin response (IRI-area) were studied in seventeen young, non-obese, non-diabetic males. The ratio between K-value and IRI-area correlated significantly with VO2 max. (r = 0.70, p less than 0.01) also when differences in body fat mass were eliminated by partial correlation analysis (r = 0.56, p less than 0.05). Subjects with a high VO2 max. thus maintained a given glucose tolerance with a lower insulin response than did subjects in whom VO2 max. was low.  相似文献   

8.
We have previously shown that cardiorespiratory fitness predicts increasing fat mass during growth in white and African-American youth, but limited data are available examining this issue in Hispanic youth. Study participants were 160 (53% boys) overweight (BMI>or=85th percentile for age and gender) Hispanic children (mean+/-s.d. age at baseline=11.2+/-1.7 years). Cardiorespiratory fitness, assessed by VO2max, was measured through a maximal effort treadmill test at baseline. Body composition through dual-energy X-ray absorptiometry and Tanner stage through clinical exam were measured at baseline and annually thereafter for up to 4 years. Linear mixed models were used to examine the gender-specific relationship between VO2max and increases in adiposity (change in fat mass independent of change in lean tissue mass) over 4 years. The analysis was adjusted for changes in Tanner stage, age, and lean tissue mass. In boys, higher VO2max at baseline was inversely associated with the rate of increase in adiposity (beta=-0.001, P=0.03); this effect translates to a 15% higher VO2max at baseline resulting in a 1.38 kg lower fat mass gain over 4 years. However, VO2max was not significantly associated with changes in fat mass in girls (beta=0.0002, P=0.31). In overweight Hispanic boys, greater cardiorespiratory fitness at baseline was protective against increasing adiposity. In girls however initial cardiorespiratory fitness was not significantly associated with longitudinal changes in adiposity. These results suggest that cardiorespiratory fitness may be an important determinant of changes in adiposity in overweight Hispanic boys but not in girls.  相似文献   

9.
An understanding of the physiological and behavioral determinants of resting energy requirements is important to nutritional considerations in females. We examined the influence of endurance training and self-reported dietary restraint on resting metabolic rate and fasting plasma hormones in 44 nonobese females characterized for body composition, maximal aerobic power (VO2 max), and daily energy intake. To examine the association of metabolic rate and dietary restraint with hormonal status, fasting plasma levels of insulin, glucose, and thyroid hormones (total and free fractions of thyroxine and triiodothyronine) were determined. In univariate analysis, resting metabolic rate (kcal.min-1) was positively related to VO2 max (L.min-1) (r = 0.54; p less than 0.01). This relationship, however, was partially dependent on body size, since fat-free mass was also related to resting metabolic rate (r = 0.42; p less than 0.01) and VO2 max (L.min-1) (r = 0.75; p less than 0.01). After controlling for fat-free weight using partial correlation analysis, the relation between RMR and VO2 max was weaker but controlling for fat-free weight using partial correlation analysis, the relation between RMR and VO2 max was weaker but still significant (partial r = 0.38; p less than 0.05). On the other hand, high levels of dietary restraint were associated with higher levels of body fat (r = 0.31; p less than 0.05) and a lower resting metabolic rate (r = -0.29; p = 0.07). These associations persisted after control for differences in fat-free mass. Total energy intake as well as total and free levels of triiodothyronine were not related to resting metabolic rate or level of dietary restraint.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

10.
The purpose of the experiment was to investigate the genotype dependency of body composition and adipose tissue metabolism following short-term exercise-training. Six pairs of male, sedentary monozygotic twins took part in a 22 day ergocycle training program at 58% VO2max, with a mean exercise duration of 116 min x day-1. Body weight, fat mass, percent body fat and VO2max, were evaluated before and after the training program. From a suprailiac region fat biopsy, the following adipose tissue metabolic variables were evaluated: fat cell diameter, basal and epinephrine stimulated lipolysis, basal and insulin stimulated lipogenesis from glucose and heparin releasable lipoprotein lipase activity. The exercise-training program increased (p less than 0.01) VO2max and decreased (p less than 0.01) body weight, fat mass and percent body fat. Variation in response within twin pairs was not significantly different than response between pairs in the aforementioned variables. However, a significant within pair resemblance (p less than 0.01) for changes in fat free mass was observed. Adipose tissue metabolic indicators exhibited a large interindividual variation in response to exercise-training. Significant within twin pair resemblance was observed only for basal lipogenesis. Moreover, the non significant within twin pair resemblance for changes in body fat and adipose tissue metabolic indicators suggests that heredity is not a major factor influencing changes in body fat and adipose tissue indicators to short-term training resulting in negative energy balance. Changes in fat free mass were, however, closely coupled to the genotype.  相似文献   

11.
Competitive field hockey requires a substantial amount of muscular strength, speed, and cardiovascular endurance. It is unknown how these parameters of physical fitness change between preseason conditioning to postseason recovery. Therefore, Division III female field hockey athletes (n = 13) completed tests of muscular strength, body composition, and maximal oxygen uptake (Vo(2)max) during each phase of their season. Muscular strength was assessed using 1 repetition maximum (RM) leg and bench press tests. Body composition was assessed by anthropometry (skinfolds [SKF]), circumferences ([CC]), and bioelectrical impedance analysis (BIA). Incremental treadmill testing was administered to assess Vo(2)max. Vo(2)max was unchanged during the season, although a trend (p > 0.05) was shown for a higher Vo(2)max during and after the season vs. before the season. Upper- (10%) and lower-body strength (14%) decreased (p > 0.05) during the season. Percent body fat (%BF) from BIA, fat mass (FM) from CC, and body mass index (BMI) were significantly lower (p < 0.05) in-season and postseason vs. preseason. In conclusion, preseason training was effective in decreasing %BF and increasing Vo(2)max, yet muscular strength was lost. Coaches should incorporate more rigorous in-season resistance training to prevent strength decrements. Moreover, these data support the superior levels of muscular strength and leanness in these athletes compared with age-matched peers.  相似文献   

12.
Fifty-five male runners aged between 30 to 80 years were examined to determine the relative roles of various cardiovascular parameters which may account for the decrease in maximal oxygen uptake (VO2max) with aging. All subjects had similar body fat composition and trained for a similar mileage each week. The parameters tested were VO2max, maximal heart rate (HRmax), cardiac output (Q), and arteriovenous difference in oxygen concentration (Ca-Cv)O2 during graded, maximal treadmill running. Average body fat and training mileage were roughly 12% and 50 km.week-1, respectively. The average 10-km run-time slowed significantly by 6.0%.decade-1 [( 10-km run-time (min) = 0.323 x age (years) + 24.4] (n = 49, r = 0.692, p less than 0.001]. A strong correlation was found between age and VO2max [( VO2max (ml.kg-1.min-1) = -0.439 x age + 76.5] (n = 55, r = -0.768, p less than 0.001]. Thus, VO2max decreased by 6.9%.decade-1 along with reductions of HRmax (3.2%.decade-1, p less than 0.001) and Q (5.8%.decade-1, p less than 0.001), while no significant change with age was observed in estimated (Ca-Cv)O2. It was concluded that the decline of VO2max with aging in runners was mainly explained by the central factors (represented by the decline of HR and Q in this study), rather than by the peripheral factor (represented by (Ca-Cv)O2).  相似文献   

13.
The purpose of this study was to determine the impact of body weight on fitness tests among the personnel of the Croatian navy. Forty two naval personnel (age 27 +/- 4.1 years; body mass 86.2 +/- 4.9 kg; height 184.6 +/- 7.4 cm; body fat percentage 17.3 +/- 5.2) participated in this study. In order to evaluate the fitness of the naval servicemen, we applied a testing procedure that included measurements of 7 fitness tests and 15 body anthropometric tests. A negative correlation was found between the body fat percentage and all the analyzed sprint tests and three anaerobic power tests (r), SP5 (r = -0.42), SP10 (r = -0.51), SP20 (r = -0.53), SJ (r = -0.45), CM (r = -0.57), SLJ (r = -0.67). Also a negative correlation was found between the body fat percentage and VO2(max) (r = -0.44). A positive correlation was found between the sprint test and the power performance test and thigh and calf girth. Spiriting ability is influenced by the strength of a person. This is one of the reasons why we found a positive correlation between the sprint test (SP5, SP10 and SP20) and thigh and calf girth. In this study we found a negative correlation between body fat percentages and all the sprint tests and three anaerobic power tests and VO2(max). The ectomorph somatotypes have positive correlations with all variables. The mesomorph somatotypes have the greatest positive correlations with all variables. The endomorph somatotypes have negative correlations with all variables. According to the body composition of Croatian naval servicemen we can conclude that they need a sufficient level of strength and endurance for everyday tasks. The effectiveness of a weight-management program is determined by the success of the participants in losing the necessary amount of weight and being able to maintain that weight loss. This requires long-term tracking of these individuals in a naval environment.  相似文献   

14.
A multiple regression model was constructed to investigate the premise that blood volume (BV) could be predicted using several anthropometric variables, age, and maximal oxygen uptake (VO(2 max)). To test this hypothesis, age, calculated body surface area (height/weight composite), percent body fat (hydrostatic weight), and VO(2 max) were regressed on to BV using data obtained from 66 normal healthy men. Results from the evaluation of the full model indicated that the most parsimonious result was obtained when age and VO(2 max) were regressed on BV expressed per kilogram body weight. The full model accounted for 52% of the total variance in BV per kilogram body weight. Both age and VO(2 max) were related to BV in the positive direction. Percent body fat contributed <1% to the explained variance in BV when expressed in absolute BV (ml) or as BV per kilogram body weight. When the model was cross validated on 41 new subjects and BV per kilogram body weight was reexpressed as raw BV, the results indicated that the statistical model would be stable under cross validation (e.g., predictive applications) with an accuracy of +/- 1,200 ml at 95% confidence. Our results support the hypothesis that BV is an increasing function of aerobic fitness and to a lesser extent the age of the subject. The results may have implication as to a mechanism by which aerobic fitness and activity may be protective against reduced BV associated with aging.  相似文献   

15.
The emergence of obesity, insulin resistance (IR), and type-2 diabetes (T2DM) in children requires a rational, effective public health response. Physical activity remains an important component of prevention and treatment for obesity, T2DM, and IR. Studies in adults show cardiovascular fitness (CVF) to be more important than obesity in predicting IR. We recently demonstrated that a school-based fitness intervention in children who were overweight can improve cardiovascular fitness, body composition, and insulin sensitivity, but it remains unclear whether accurate assessment of fitness could be performed at the school or outside of an exercise laboratory. The purpose of the study was to determine if a new methodology using measurement of cycling power could estimate cardiovascular aerobic fitness (as defined by maximum oxygen consumption; VO(2)max) in middle school children who were overweight. Thirty-five middle school children who were overweight (mean age 12 +/- 0.4 years) underwent testing on a power sensor- equipped Cycle Ops Indoor Cycle (IC), as well as body composition by dual x-ray absorptiometry (DXA), and VO(2)max by treadmill determination. Insulin sensitivity was also estimated by fasting glucose and insulin. Maximal heart rate (MHR) was determined during VO(2)max testing, and power produced at 80% of MHR was recorded. Spearman's rank correlation was performed to evaluate associations. Mean power determined on the IC at 80% of MHR was 129 +/- 77 watts, and average power at 80% MHR divided by total body weight (TBW) was 1.5 +/- 0.5. A significant correlation between watts/TBW was seen for VO(2)max (ml/kg/min) (p = 0.03), and significant negative correlation was seen between watts/TBW and fasting insulin (p < 0.05). In middle-school children who were overweight, there was a significant relationship between the power component of fitness and cardiovascular aerobic fitness (measured by VO(2)max). This more accessible and less intimidating field-based measure of power may prove useful in predicting changes in cardiovascular fitness. Thus, accurate assessment of childhood aerobic fitness may be achievable by measurement of power, possibly within the school environment at substantially less cost and effort than laboratory-based measurements.  相似文献   

16.
An experiment was set up to quantify the relative influence of fitness, acclimatization, gender and anthropometric measures on physiological responses to heat stress. For this purpose, 12 male and 12 female subjects were exposed to a neutral [ambient temperature (Ta) 21 degrees C, relative humidity (r.h. 50%)], a warm, humid (Ta 34 degrees C, r.h. 80%) and a hot, dry (Ta 45 degrees C, r.h. 20%) climate at rest and at two exercise intensities [25%, and 45% maximal O2 intake (VO2max)], seated seminude in a net chair behind a cycle ergometer. Their physiological responses were recorded and the data submitted to a multiple regression analysis. It was shown that for the variance in heat storage, the percentage of body fat and the surface to mass ratio had relatively the largest influence of all the individual parameters, followed by VO2max and the sweat rate versus increase in core temperature (total r2 = 92%). For the skin temperature variation, the relative influence of individual parameters (sweat gain, VO2max) was small. For body core temperatures, individual parameters had a large influence. The largest effect was due to the percentage of fat and the surface to mass ratio, followed by the sweating setpoint and, finally, VO2max (total r2 = 54%-70%). For the variance in heart rate the VO2max was the most relevant parameter, followed by the setpoint of the sweat rate:rectal temperature relationship (total r2 = 88%). Blood pressure and skin blood flow predictions were also shown to improve by the addition of individual characteristics to the model.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

17.
The present study had as objectives (1) to compare the morphological and functional characteristics of the male judo players of the Brazilian Team A (n=7) with the judo players of Teams B and C (reserves; n=15), and (2) to verify the association between the variables measured. Thus, 22 athletes from the seven Olympic weight categories were submitted to: a body composition evaluation (body mass, height, ten skinfolds, eight circumferences, three bone diameters and percent body fat estimation); the Special Judo Fitness Test (SJFT); maximal strength tests (one repetition-maximum, 1 RM, in bench press, row, and squat); and the Cooper test. One-way analysis of covariance was used to compare the groups. The relationships between variables were determined by the Pearson coefficient correlation. The significance level was fixed at 5%. No significant difference was found in any variable between them. The main significant correlations observed were between the following variables: VO2max and number of throws in the SJFT (r=0.79); percent body fat and estimated VO2max (r=-0.83) and number of throws in the SJFT (r=-0.70); chest circumference and bench press 1 RM (r=0.90) and in the row (r=0.80); and thigh circumference and squat 1 RM (r=0.86). However, there was no significant correlation between circumferences and 1 RM/kg of body mass. According to these results the main conclusions are: (1) the physical variables measured do not discriminate performance when analysis is directed to the best athletes; (2) a higher percent body fat is negatively correlated with performance in activities with body mass locomotion (Cooper test and the SJFT); (3) judo players with higher aerobic power performed better in high-intensity intermittent exercise; (4) judo players with bigger circumferences present bigger absolute maximal strength.  相似文献   

18.
19.
In sedentary elderly people, a reduced muscle fatty acid oxidative capacity (MFOC) may explain a decrease in whole body fat oxidation. Eleven sedentary and seven regularly exercising subjects (65.6 +/- 4. 5 yr) were characterized for their aerobic fitness [maximal O(2) uptake (VO(2 max))/kg fat free mass (FFM)] and their habitual daily physical activity level [free-living daily energy expenditure divided by sleeping metabolic rate (DEE(FLC)/SMR)]. MFOC was determined by incubating homogenates of vastus lateralis muscle with [1-(14)C]palmitate. Whole body fat oxidation was measured by indirect calorimetry over 24 h. MFOC was 40.4 +/- 14.7 and 44.3 +/- 16.3 nmol palmitate. g wet tissue(-1). min(-1) in the sedentary and regularly exercising individuals, respectively (P = nonsignificant). MFOC was positively correlated with DEE(FLC)/SMR (r = 0.58, P < 0. 05) but not with VO(2 max)/kg FFM (r = 0.35, P = nonsignificant). MFOC was the main determinant of fat oxidation during all time periods including physical activity. Indeed, MFOC explained 19.7 and 30.5% of the variance in fat oxidation during walking and during the alert period, respectively (P < 0.05). Furthermore, MFOC explained 23.0% of the variance in fat oxidation over 24 h (P < 0.05). It was concluded that, in elderly people, MFOC may be influenced more by overall daily physical activity than by regular exercising. MFOC is a major determinant of whole body fat oxidation during physical activities and, consequently, over 24 h.  相似文献   

20.
The purpose of this study was to develop an equation to predict VO2max from a submaximal elliptical cross-trainer test. Fifty-four apparently healthy subjects (25 men and 29 women, mean +/- SD age: 29.5 +/- 7.1 years, height: 173.3 +/- 12.6 cm, weight: 72.3 +/- 7.9 kg, percent body fat: 17.3 +/- 5.0%, and elliptical cross-trainer VO2max: 43.9 +/- 7.2 ml x kg(-1) x min(-1)) participated in the study and were randomly assigned to an original sample group (n = 40) and a cross-validation group (n = 14). Each subject completed an elliptical cross-trainer submaximal (3 5-minute submaximal stages) and a VO2max test on the same day, with a 15-minute rest period in between. Stepwise multiple regression analyses were used to develop an equation for estimating elliptical cross-trainer VO2max from the data of the original sample group. The accuracy of the equation was tested by using data from the cross-validation group. Because there was no shrinkage in R2 between the original sample group and the cross-validation group, data were combined in the final prediction equation (R2 = 0.732, standard error of the estimate = 3.91 ml x kg(-1) x min(-1), p < 0.05): VO2max = 73.676 + 7.383(gender) - 0.317(weight) + 0.003957(age x cadence) - 0.006452(age x heart rate at stage 2). The correlation coefficient between the predicted and measured VO2max values was r = 0.86. Dependent t-tests resulted in no significant differences (p > 0.05) between predicted (43.8 ml x kg(-1) x min(-1)) and measured (43.9 ml x kg(-1) x min(-1)) VO2max measurements. Results indicate that the protocol and equation developed in the current study can be used by exercise professionals to provide acceptably accurate estimates of VO2max in non-laboratory-based settings.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号