首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Studies were conducted to investigate potentialinteractions between brassicaceous plants, theisothiocyanates they produce and insectpathogenic fungi. Studies in vitro showedthat 100 ppm of 2-phenylethyl isothiocyanatecompletely inhibited growth of Metarhiziumanisopliae and Tolypocladiumcylindrosporum. T. cylindrosporum wassignificantly inhibited by 10 ppm 2-phenylethylisothiocyanate, but not by 1 ppm. M.anisopliae was not inhibited by 10 or 1 ppm2-phenylethyl isothiocyanate. The effect offreshly grated rutabaga on virulence of M.anisopliae to Galleria mellonella larvaewas also tested, resulting in reduced infectionby M. anisopliae. To study the effect ofplants in the Brassicaceae under morefield-like conditions fungi were added to soilwithout plants or at the bases of two differentplant species, Barbarea vulgaris and Eruca vesicaria sativa. Soil was sampled at 5,10 and 15 days to determine the concentrationof colony forming units (CFUs). Treatments withplants did not have fewer CFUs than thecontrol. Instead significantly fewer CFUsresulted when M. anisopliae was added topots with soil only than to pots with plants.There were no significant differences betweenthe two plant species in the number of CFUs atday 5. For days 10 and 15, however,significantly more M. anisopliae CFUswere found in pots containing E. vesicariasativa than B. vulgaris. T.cylindrosporum was less affected by thedifferent treatments than M. anisopliae.Our studies demonstrated that whileisothiocyanates can inhibit insect pathogenicfungi in Petri dishes, when using a morerealistic fungus/plant/soil microcosm no fungalinhibition was found.  相似文献   

2.
The white grub, Hoplia philanthus Füessly (Coleoptera: Scarabaeidae), is a major pest of turf and ornamental plants in Belgium. Previously, the combination of lethal concentration of the entomopathogenic nematodes Heterorhabditis megidis or Steinernema glaseri with the entomopathogenic fungus Metarhizium anisopliae (strain CLO 53) caused additive or synergistic mortality to third-instar H. philanthus in the laboratory and greenhouse. In this present study, we examined this interaction under field conditions and compared a combination of a commercial formulation of Heterorhabditis bacteriophora (Nema-green®) and M. anisopliae. Controls were M. anisopliae, chlorpyrifos (Dursban 5 Granules) and H. bacteriophora. Field applications (surface or subsurface) were made against a mixed population of second/third-instar H. philanthus at a sport field and lawn infested in the province of West-Flanders. In both trials, the combination of M. anisopliae with H. bacteriophora at 5 × 1012 conidia/ha +2.5 × 109 infective juveniles/ha resulted in additive or synergistic effects, causing more than 95% grub mortality when the nematodes was applied 4 weeks after the application of fungus. However, application of nematode, chlorpyrifos or fungus alone provided 39–66%, 42–60% (surface) and 33–76%, 82–100% or 37–65%, (subsurface) control of H. philanthus. We concluded that the pathogen combinations we tested are compatible elements of integrated pest management and are likely to improve control of H. philanthus larvae and perhaps other insect pests beyond what is expected from single application of the pathogen.  相似文献   

3.
The pupae of Spodoptera litura (Fab.), (Lepidoptera: Noctuidae), a polyphagous pest affecting common crops in Indian subcontinent, were treated with different concentrations of conidia of four isolates of entomopathogenic fungi belonging to three species, Metarhizium anisopliae var. anisopliae (Metschnikov) Sorokin (ARSEF 7487), Lecanicillium muscarium (Petch) Zare & W Gams (two isolates ARSEF 7037 and ARSEF 6118) and Cordyceps cardinalis Sung & Spatafora (ARSEF 7193) under laboratory conditions. Suspensions (108/ml) of conidia harvested from Sabouraud dextrose agar yeast extract (SDAY) plates resulted in the highest mortality (85.8%) with M. anisopliae and the lowest mortality (57.3%) with C. cardinalis. The values of LC50 and LC90 suggested that M. anisopliae was the most virulent fungal strain followed by L. muscarium (ARSEF 7037). However, C. cardinalis was the least virulent species among the fungi used in the bioassay. In soil bioassays, drenching the soil with conidial suspensions of ARSEF 7487 and ARSEF 7037 (10conidia/g of soil) reduced the adult emergence from pupa by 81.3% and 72.5%, respectively, while premixing the sterile soil with conidia killed lesser number of pupae (62.9% by ARSEF 7487 and 54.6% by ARSEF 7037). Our findings suggest that M. anisopliae (ARSEF 7487) and L. muscarium (ARSEF 7037) are potent entomopathogens and could be developed into biocontrol agents against rice cutworm in IPM programs. Handling editor: Helen Roy  相似文献   

4.
A pot-culture experiment was carried out to investigate the effect of arbuscular mycorrhizal (AM) fungus (Glomus macrocarpum Tul. and Tul.) on plant growth and Cd2+uptake by Apium graveolens L. in soil with different levels of Cd2+. Mycorrhizal (M) and non-mycorrhizal (NM) plants were grown in soil with 0, 5, 10, 40 and 80 Cd2+ mg kg−1soil. The infectivity of the fungus was not affected by the presence of Cd2+ in the soil. M plants showed better growth and less Cd2+ toxicity symptoms. Cd2+ root : shoot ratio was higher in M plants than in NM plants. These differences were more evident at highest Cd2+ level (80 mg kg−1 soil). Chlorophyll a and chlorophyll b concentrations were significantly higher in AM-inoculated celery leaves. The dilution effect due to increased biomass, immobilization of Cd2+ in root and enhanced P-uptake in M plants may be related to attenuation of Cd2+toxicity in celery.  相似文献   

5.
Effectiveness of the entomopathogenic fungus Metarhizium anisopliae, for controlling nymphal Ixodes scapularis, was tested in laboratory and field trials. In the laboratory, M. anisopliae (Metschnikoff) Sorokin strain ESC1 was moderately pathogenic, with an LC50 of 107 spores/ml and induced 70% mortality at 109 spores/ml. In a field study, however, 109 spores/ml M. anisopliae did not effectively control questing I. scapularis nymphs, and significant differences were not detected in pre- and post-treatment densities. For nymphs collected and returned to the laboratory for observation, mortality was low in treatment groups, ranging from 20 to 36%. To assess whether a chemical acaricide would synergistically enhance pathogenicity of the fungus, we challenged unfed nymphal I. scapularis with combinations of M. anisopliae and permethrin, a relatively safe pyrethroid acaricide, in two separate bioassays. Significant interactions between M. anisopliae and permethrin were not observed, supporting neither synergism nor antagonism.  相似文献   

6.
Microsclerotia (MS), overwintering structures produced by many plant pathogenic fungi, have not been described for Metarhizium anisopliae. Three strains of M. anisopliae – F52, TM109, and MA1200 – formed MS in shake flask cultures using media with varying carbon concentrations and carbon-to-nitrogen (C:N) ratios. Under the conditions of this study, all strains produced MS, compact hyphal aggregates that become pigmented with culture age, in addition to more typical blastospores and mycelia. While all strains formed desiccation tolerant MS, highest concentrations (2.7–2.9 × 108 L−1 liquid medium) were produced in rich media with C:N ratios of 30:1 and 50:1 by strain F52. All three strains of M. anisopliae produced similar biomass concentrations when media and growth time were compared. Strain MA1200 produced higher concentrations of blastospores than the other two strains of M. anisopliae with highest blastospore concentrations (1.6 and 4.2 × 108 blastospores ml−1 on days 4 and 8, respectively) in media with the highest carbon and nitrogen concentrations. Microsclerotial preparations of M. anisopliae containing diatomaceous earth survived air-drying (to <5 % moisture) with no significant loss in viability. Rehydration and incubation of air-dried MS granules on water agar plates resulted in hyphal germination and sporogenic germination to produce high concentrations of conidia. Bioassays using soil-incorporated, air-dried MS preparations resulted in significant infection and mortality in larvae of the sugar beet root maggot, Tetanops myopaeformis. This is the first report of the production of sclerotial bodies by M. anisopliae and provides a novel approach for the control of soil-dwelling insects with this entomopathogenic fungus.  相似文献   

7.
Mortality of German cockroaches, Blattella germanica (L.), caused by Metarhizium anisopliae (Metschnikoff) Sorokin strain AC-1 alone and in combination with different formulations of boric acid, was evaluated in laboratory bioassays. Topical application of M. anisopliae alone (8.96 × 109 conidia/m2) required 28 days to cause >92% cockroach mortality (LT50 = 10 days). In contrast, in combination with boric acid (topically applied as a dust or in drinking water), M. anisopliae killed cockroaches significantly faster than without boric acid. M. anisopliae conidial dust (8.96 × 108 conidia/m2) with either 12.5% (w/w) boric acid dust or 0.1% (w/v) boric acid in drinking water killed 100% of the cockroaches in only 8 days (LT50 = 5 days) and 10 days (LT50 = 6 days), respectively, without compromising the fungus emergence from cadavers. Replacement of M. anisopliae with flour dust or heat-killed M. anisopliae conidia eliminated this effect, demonstrating that it was not the consequence of greater boric acid ingestion due to more extensive cockroach grooming upon exposure to M. anisopliae conidia. Moreover, injections of a low dose of M. anisopliae, which caused only 30% mortality, together with sublethal concentrations of boric acid into the cockroach hemocoel resulted in a doubling of mortality. Statistical analysis demonstrated a synergistic interaction between these two insecticides.  相似文献   

8.
Three sugarcane fields in Bundaberg and four fields in each of the Burdekin, Tully and Innisfail (Queensland, Australia) were sampled for spores of Metarhizium anisopliae (Metchnikoff) (Deuteromycotina: Hyphomycetes). This entomopathogenic fungus is the active ingredient in the biocide “BioCaneTM”, which was developed for the management of the greyback canegrub Dermolepida albohirtum (Waterhosue) (Coleoptera: Scarabaeidae) and other scarabs in cane fields. Fields sampled were of different crop ages and all had a history of BioCaneTM treatment in Plant Cane in past years. Soil samples were taken in each field from four depths (0–10, 10–20, 20–30 and 30–40 cm below soil level) with the use of an auger. Spore levels were highest at the depths of 10–20 and 20–30 cm. Spore levels differed between locations with Innisfail and Tully recording the highest spore counts. Spores were also found in the inter-row space in plots sampled in Tully. Sampling statistics were determined for M. anisopliae spores at the four soil depths with 0.1 and 0.25 precision levels. Three sampling methods were compared (use of marker beads; use of 100 mm auger and 150 mm auger). Samples that relied on marker beads resulted in higher spore counts, however, an auger can still be used since BioCaneTM does not normally contain coloured markers. Results obtained demonstrate the ability of the pathogen to translocate in soil profile and across rows, most likely due to grub movements and other soil fauna. Sampling for M. anisopliae spores provides good monitoring of their levels in soil. The implications of this on grub management decisions are discussed.  相似文献   

9.
【目的】测定金龟子绿僵菌(Metarhizium anisopliae)对斜纹夜蛾(Spodoptera litura) 2龄幼虫的毒力,研究金龟子绿僵菌侵染后寄主体内抗氧化酶活性和肠道内细菌群落的变化,探讨斜纹夜蛾对金龟子绿僵菌侵染的防御机制。【方法】采用浸渍法测定不同浓度金龟子绿僵菌对斜纹夜蛾2龄幼虫的毒力;应用IlluminaMiSeq高通量测序技术测定肠道细菌群落。【结果】不同浓度的孢悬液对斜纹夜蛾2龄幼虫均有一定的毒力,处理7 d时半致死浓度(LC_(50))为3.944 107个孢子/mL;浓度为1.0×10~9个孢子/mL时,半致死时间最短(LT_(50))为4.6 d,校正后的死亡率为81.03%。处理后未致死的斜纹夜蛾幼虫体内抗氧化酶活性显著高于对照组。处理后致死的斜纹夜蛾幼虫肠道细菌群落多样性显著高于对照组;且处理后致死的斜纹夜蛾幼虫肠道细菌群落组成与对照组差异显著。【结论】金龟子绿僵菌对斜纹夜蛾幼虫的致死率和致死效率与金龟子绿僵菌的浓度呈正相关;斜纹夜蛾幼虫体内的抗氧化酶可能在抵抗金龟子绿僵菌侵染的过程中起重要作用。金龟子绿僵菌的侵染会导致斜纹夜蛾幼虫肠道细菌群落多样性升高和组成发生变化,Enterococcus、Escherichia和Pseudomonas等属可能是影响斜纹夜蛾幼虫抵抗金龟子绿僵菌侵染致死的重要因素。  相似文献   

10.
The effectiveness of seven strains of entomopathogenic fungi against Ceratitis capitata adults was evaluated in the laboratory. Adults were susceptible to five of seven aqueous suspensions of conidia. Metarhizium anisopliae and strain CG-260 of Paecilomyces fumosoroseus were the most pathogenic fungi, with 10-day LD50 values of 5.1 and 6.1 × 103 conidia/fly, respectively, when applied topically. Sublethal effects on fecundity and fertility of the fungal-exposed females were also studied. The most effective fungus in reducing fecundity was P. fumosoroseus CECT 2705, with reductions on the order of 65% at 1 × 106 conidia/fly. M. anisopliae and Aspergillus ochraceus also showed significant reductions of fecundity (40–50% for most of the assayed concentrations). Fertility was moderately affected by the fungi. M. anisopliae at 1 × 106 conidia/fly was the most effective fungus, showing egg eclosion reduction of over 50% compared with the control. In addition, culture broth dichloromethane extracts from the entomopathogenic fungi were tested for insecticide activity against C. capitata, including effects on fecundity and fertility. The extract from M. anisopliae was the most toxic, resulting in about 90% mortality at a concentration of 25 mg/g of diet; under these conditions, fecundity and fertility of treated females were reduced by 94 and 53%, respectively, compared with untreated controls.  相似文献   

11.
This study determined the pathogenicity and virulence of Beauveria bassiana and Metarhizium anisopliae to eggs of the chinch bug Blissus antillus (Hemiptera: Lygaeidae). Eggs were inoculated under laboratory conditions by immersion in concentrations of 1 × 104 and 5 × 106 conidia/ml. Inoculated eggs were kept under controlled conditions. Evaluations were carried out daily for 20 days. M. anisopliae isolates were highly virulent to eggs, even at 1 × 104 conidia/ml. All B. bassiana isolates tested were considered to be of low virulence or avirulent. The most virulent isolate tested was ESALQ 818 (M. anisopliae), which caused 96.7% infection, when eggs were immersed in suspensions of 1 × 104 conidia/ml. Conidial production on infected eggs was observed to be highest for M. anisopliae isolate CG144, with a mean value of 11.6 × 105 conidia/ml/egg. Infection of Blissus eggs oviposited on plant stems was greater when M. anisopliae isolate CG144 was formulated in mineral oil (63.5% mortality) than when formulated in Tween 80 (27.1% mortality).  相似文献   

12.
Seventeen isolates of Metarhizium anisopliae (Metschnikoff) Sorokin and two isolates of Beauveria bassiana (Balsamo) Vuillemin were evaluated for their pathogenicity against the tobacco spider mite, Tetranychus evansi Baker & Pritchard. In the laboratory all the fungal isolates were pathogenic to the adult female mites, causing mortality between 22.1 and 82.6%. Isolates causing more than 70% mortality were subjected to dose–response mortality bioassays. The lethal concentration causing 50% mortality (LC50) values ranged between 0.7×107 and 2.5×107 conidia ml−1. The lethal time to 50% mortality (LT50) values of the most active isolates of B. bassiana and M. anisopliae strains varied between 4.6 and 5.8 days. Potted tomato plants were artificially infested with T. evansi and treated with B. bassiana isolate GPK and M. anisopliae isolate ICIPE78. Both fungal isolates reduced the population density of mites as compared to untreated controls. However, conidia formulated in oil outperformed the ones formulated in water. This study demonstrates the prospects of pathogenic fungi for the management of T. evansi.  相似文献   

13.
Factors affecting the occurrence and distribution of entomopathogenic fungi in 244 soil samples collected from natural and cultivated areas in Spain were studied using an integrated approach based on univariate and multivariate analyses. Entomopathogenic fungi were isolated from 175 of the 244 (71.7 %) soil samples, with only two species found, Beauveria bassiana and Metarhizium anisopliae. Of the 244 soil samples, 104 yielded B. bassiana (42.6 %), 18 yielded M. anisopliae (7.3 %), and 53 soil samples (21.7 %) harboured both fungi. Log-linear models indicated no significant effect of habitat on the occurrence of B. bassiana, but a strong association between M. anisopliae and soils from cultivated habitats, particularly field crops. Also, irrespective of habitat type, B. bassiana predominated over M. anisopliae in soils with a higher clay content, higher pH, and lower organic matter content. Logistic regression analyses showed that pH and clay content were predictive variables for the occurrence of B. bassiana, whereas organic matter content was the predictive variable for M. anisopliae. Also, latitude and longitude predicted the occurrence of these same species, but in opposite directions. Altitude was found to be predictive for the occurrence of B. bassiana. Using principal component analysis, four factors (1 to 4) accounted for 86 % of the total variance; 32.8, 22.9, 19.6 and 10.4 % of the cumulative variance explained, respectively. Factor 1 was associated with high positive weights for soil clay and silt content and high negative weights for soil sand content. Factor 2 was associated with high positive weights for soil organic matter content and high negative weights for soil pH. Factor 3 was associated with high positive weights for latitude and longitude of the sampled localities and factor 4, had high positive weights only for the altitude. Bi-plot displays representing soil samples were developed for different factor combinations and indicated that, irrespective of geographical location, absence of both fungal species was determined by alkaline sandy soils with low organic matter content, whereas heaviness of soil texture, acidity and increasing organic matter content led to progressively higher percentages of samples harbouring entomopathogenic fungi. These results could aid decision-making as to whether or not a particular cultivated or natural soil is suitable for using entomopathogenic fungi as a pest control measure and for selecting the fungal species best suited to a particular soil.  相似文献   

14.
Zhao Ke-Fu 《Plant and Soil》1991,137(2):303-305
The halophyte, Suaeda salsa, was grown in saline soil in pots and watered with a NaCl solution containing 0.2 g L-1 Na-ions. S. salsa accumulated Na during a 120-day growing period and caused a net reduction in the Na content of the soil. S. salsa also decreased the Na content of saline soil in a field experiment. The Na content of the soil at depth 20–30 cm was reduced by 4.5% with S. salsa at a density of 15 plants m-2 and by 6.7% with a density of 30 plants m-2. In contrast, the Na content was decreased by only 1% with Medicago sativa at 15 plant m-2 and increased by 3.8% with bare soil. The results confirm that S. salsa is an effective salt absorber in saline soils.  相似文献   

15.
AdultGlossina morsitans morsitans exposed to wet conidia ofBeauveria bassiana andMetarhizium anisopliae suffered high mortalities ranging from 90 to 100% by 2 weeks post-exposure. Infected ♂ ♂ maintained in the same cages with non-infected ♀♀ throughout the experimental period transmitted the fungal infection to the ♀♀ resulting in mortalities of 65% withB. bassiana and 55% withM. anisopliae. Likewise, infected ♀♀ maintained together with non-infected ♂♂ transmitted the infection to the ♂♂ resulting in mortalities of 75% withB. bassiana and 45% withM. anisopliae. Female tsetse flies infected withB. bassiana andM. anisopliae and maintained in the same cages with non-infected ♀♀ also transmitted infection to the non-infected tsetse resulting in mortalities of 62% and 48% withB. bassiana andM. anisopliae respectively. Infected tsetse exposed to non-infected tsetse of the opposite sex for only 30 min were also able to transmit the fungal infection. Pupae produced by female tsetse infected withB. bassiana andM. anisopliae exhibited higher pupal mortality than those produced by non-infected ♀♀. However, pupae exposed directly to dry spores ofB. bassiana andM. anisopliae had no increase in pupal mortality but adults emerging from theB. bassiana-exposed pupae had markedly reduced longevity.   相似文献   

16.
Field-based experiments were conducted to evaluate the fate and infectivity of the entomopathogenic fungus Metarhizium anisopliae var. acridum (Deuteromycotina: Hyphomycetes) in grasshopper cadavers in the Sahel. Unlike uninfected cadavers, which were rapidly scavenged, those infected with the fungus persisted in the environment for a number of weeks. The environmental factor most associated with cadaver disappearance was rainfall. The high environmental humidity associated with rainfall was also required for sporulation of the fungus on host cadavers, although the likelihood of sporulation differed between microsites. Characteristics of the infection profile from infective cadavers were investigated by the sequential exposure of uninfected hosts to sporulating cadavers in field cages. This experiment revealed that cadavers remained infective for > 30 days, with the net infectivity changing through time. The most likely explanation for these changes is climatic influences on both the fungus and host. High humidity was not required for infection. A measurement of the transmission coefficient between healthy hosts and sporulating cadavers in the field was obtained at a realistic density of infectious cadavers. This revealed a figure of 0.45 m2 day–1. Overall, these experiments show that following host death, M. anisopliae var. acridum can be persistent in the environment, sporulate on host cadavers and reinfect new hosts at a realistically low field density, although at least in arid or semi-arid areas, rainfall may be critical to the horizontal transmission of this pathogen.  相似文献   

17.
Summary Seed inoculation with Rhizobium and soil inoculation withGlomus fasciculatum increased nodulation, nitrogen and phosphorus concentration in plants and yield of chickpea (Cicer arietinum) var. BG 212 in pots containing unsterilized soil especially with 50kgP2O5 ha−1 in the form of superphosphate. Inoculation with Rhizobium orG. fasciculatum separately or in combination significantly increased the N2 fixed in straw and grain than uninoculated controls as determined by15N atom percent excess of plants grown in soil amended with labelled ammonium sulphate (15NH4)2SO4) at the rate of 20kg N ha−1. These increases were most pronounced when P was applied at 50kgP2O5 ha−1.  相似文献   

18.
Maniania  N.K.  Ekesi  S.  Löhr  B.  Mwangi  F. 《Mycopathologia》2003,155(4):229-235
The potential of Metarhizium anisopliae (Metsch.) Sorok. for the control of Frankliniella occidentalis (Pergande) on chrysanthemum cuttings was evaluated in greenhouse experiments. The fungus significantly reduced both the adult and larval populations of F. occidentalis, although the level of control of larval populations was much lower than for adults. Combined application of M. anisopliae and Methomyl (Lannate®), however, resulted in a significant reduction of both the larval and adult stages. The use of both control agents might be helpful in reducing the selection pressure for resistance to chemical insecticides, thereby delaying or preventing the build-up of resistant populations in greenhouses.This revised version was published online in October 2005 with corrections to the Cover Date.  相似文献   

19.
The growing demand for organic products creates opportunities for farmers. Information on the consequences of management practices can help farmers transition to organic and take advantage of these prospects. We examined the interaction between soil disturbance and initial cover crop on naturally occurring entomopathogenic fungi (EPF) during the 3-year transition to organic production in a feed grain rotation in central Pennsylvania. Our experiment included four systems comprised of a factorial combination of two levels of primary tillage (full vs. reduced) and two types of initial cover crop (timothy/clover vs. rye/vetch). The cropping sequence consisted of an initial cover crop, followed by soybean, and finally, maize. The entire experiment was replicated in time, with the initiation lagged by 1 year. We detected four species of EPF (Metarhizium anisopliae, Beauveria bassiana, Isaria fumosorosea, and Isaria farinosa) by bioassay of soil samples collected four times during each field season. The latter three species were detected infrequently; therefore, we focused statistical analysis on M. anisopliae. Detection of M. anisopliae varied across sampling date, year in crop sequence, and experimental start, with no consistent trend across the 3-year transition period. M. anisopliae was isolated more frequently in the systems initiated with timothy/clover cover crops and utilizing full tillage; however, we only observed a tillage effect in one temporal replicate. M. anisopliae detection was negatively associated with soil moisture, organic matter, and zinc, sulfur, and copper concentrations in the soil. This study helps to inform farmers about management effects on soil function, specifically conservation biological control.  相似文献   

20.
Tobacco (Nicotiana tabacum L. var. xanthi) seedlings were treated with aqueous solutions of lead nitrate (Pb2+) at concentrations ranging from 0.4 mM to 2.4 mM for 24 h and from 25 μM to 200 μM for 7 days. The DNA damage measured by the comet assay was high in the root nuclei, but in the leaf nuclei a slight but significant increase in DNA damage could be demonstrated only after a 7-day treatment with 200 μM Pb2+. In tobacco plants growing for 6 weeks in soil polluted with Pb2+ severe toxic effects, expressed by the decrease in leaf area, and a slight but significant increase in DNA damage were observed. The tobacco plants with increased levels of DNA damage were severely injured and showed stunted growth, distorted leaves and brown root tips. The frequency of somatic mutations in tobacco plants growing in the Pb2+-polluted soil did not significantly increase. Analytical studies by inductively coupled plasma optical emission spectrometry demonstrate that after a 24-h treatment of tobacco with 2.4 mM Pb2+, the accumulation of the heavy metal is 40-fold higher in the roots than in the above-ground biomass. Low Pb2+ accumulation in the above-ground parts may explain the lower levels or the absence of Pb2+-induced DNA damage in leaves.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号