首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Significance of symbiotic relations formed by associative symbiosis type for autochthonous and allochthonous microflora of natural water bodies is shown. Generality of symbiotic interaction mechanisms of symbionts in limnetic and halophilous communities provided by secreted factors of natural resistance from the side of the host, and by factors of persistence from the side of symbionts is proven based on a set of examples. Features of operation of lysozyme-antilysozyme, histon-antihiston, hydrogen peroxide-catalase functional systems in symbiotic interactions of autotrophic and heterotrophic components of hydrobiocenosis with dominant and associative microflora are presented. Associative microflora of allochthonous origin was shown to actively use the ecologically formed system of interaction between hydrobionts that facilitates survival of these microorganisms and preservation of their persistent potential, and as a result leads to biocenosis disorders. The knowledge obtained open new possibilities and perspectives of research of sanitary and ecological aspects of vital activity of aquatic biocenoses.  相似文献   

2.
The role of female reproductive tract microflora in the maintenance of biotope colonization resistance was described. The role of lactobacilli possessing antagonistic properties in the reproductive tract defense was assessed. Classification of bacterial mechanisms of colonization resistance including block of the adhesion, antagonistic action of normal microflora associated with the production of antibacterial substances and suppression of allochthonous bacteria persistence characteristics was presented. Colonization resistance was considered as a physiological phenomenon of microecological homeostasis being a result of symbiotic relations of a host organism and autochthonous microflora.  相似文献   

3.
Predominance of gram-negative bacteria belong ing to the class Gammaproteobacteria on the intestinal mucosa of pike was determined. The morphophysiological features of the isolated microorganisms suggest that they belong to symbiotic intestinal microflora. The morphological characteristics of the intestinal symbiotic microflora of pike include the formation of the capsule, pseudovacuoles, and spheroplastic forms of cells. The bacteria that were found can produce hydrolytic enzymes and possess persistence properties. The morphophysiological features that were found contribute to the adaptation of bacteria to environmental conditions and indicate that the intestinal microflora offish is autochthonous.  相似文献   

4.
A number of halotolerant and halophilic bacterial strains were isolated from the Romashkinskoe oil field (Tatarstan) stratal waters having a salinity of up to 100 g/l. The isolation of pure cultures involved biofilm reconstitution on M9 medium with paraffins. The associations obtained were dispersed and reinoculated onto solid media that contained either peptone and yeast extract (PY medium) or paraffins. It was shown that such associations included both oil-oxidizing bacteria and accompanying chemoheterotrophic bacteria incapable of oil oxidation. The pure cultures that were isolated were used for creating binary biofilms. In these biofilms, interactions between halophilic and nonhalophilic bacteria under hypo-and hyperosmotic shocks were investigated. We conducted a detailed study of a biofilm obtained from an oil-oxidizing halotolerant species (with an upper growth limit of 10–12% NaCl) identified as Dietzia sp. and an extremely halophilic gram-negative bacterium (growing within the 5–20% NaCl concentration range) of the genus Chromohalobacter that did not oxidize paraffins. If these microorganisms were grown in a mixed suspension (planktonic) culture that was not supplemented with an additional amount of NaCl, no viable cells of the halophilic microorganism were detected after reinoculation. In contrast, only halophilic cells were detected at a NaCl concentration of 15%. Thus, no mutual protective influence of the microorganisms manifested itself in suspension culture, either under hypoor under hyperosmotic shock. Neither could halophile cells be detected after reinoculating a biofilm obtained on a peptone medium without the addition of NaCl. However, biofilms produced at a NaCl concentration of 15% contained approximately equal numbers of cells of the halophilic and halotolerant organisms. Thus, the halophile in biofilms sustaining a hyperosmotic shock exerts a protective influence on the halotolerant microorganism. Preliminary data suggest that this effect is due to release by the halophile of osmoprotective substances (ectoine and glutamate), which are taken up by the halotolerant species. Such substances are diluted by a large medium volume in suspension cultures, whereas, in biofilms, their diffusion into the medium is apparently hampered by their interaction with the intercellular polymer matrix.  相似文献   

5.
Problems of microorganism's persistence in infectious pathology are discussed in this work. Persistence of bacteria as the form of procaryotic and eucaryotic cells symbiosis unlimitedly long coexistence is considered. Questions of the microbial evolution formed in constant collision of the infective agent with macroorganism defense mechanisms are discussed. The spectrum of known mechanisms bacterial survival in conditions of an infected organism is considered. For discussion the problem of microbial persistence it is offered to include as model alongside with an independent cell, a microbial population as complex self-organizing system--the original "superorganism" having universal chemical regulation, the determining density of a population and equation of some physiological functions. It is offered to consider the host colonization resistance as a phenomenon of general biology directed on maintenance of a microecological homeostasis as a result of symbiotic interactions of an organism and it autochthonous microflora with the "key" kinds of biotope protection. The use of persistence characteristics of microorganisms is proved as a target in conditions of intermicrobial interaction of its allochthonous and autochthonous microflorae. Practical value of such approach in infectious pathology is shown.  相似文献   

6.
The species structure and persistent properties (antilysozyme and antihistone activity) of bacteria forming associations with protozoa is revealed. Among them, 68.9% of the isolates were enterobacteria, the remaining organisms belonged to the families Aeromonas, Alcaligenes, Pseudomonas, Vibrio, etc. Within the family Enterobacteriaceae bacteria of the Escherichia group prevailed. 50.4% of the isolates were found to have antilysozyme activity and 97%--antihistone activity. The level of persistent properties in the representatives of allochthonous microflora was higher than that in the representatives of autochthonous microflora. In addition to antilysozyme activity antihistone activity was noted in protozoa-associated bacteria, which could be of importance for the formation of symbiotic links in natural associations. These data may be used in sanitary and hygienic practice for microecological monitoring of the environment.  相似文献   

7.
Organic carbon (C) in lakes originates from two distinct sources—primary production from within the lake itself (autochthonous supply) and importation of organic matter from the terrestrial watershed (allochthonous supply). By manipulating the 13C of dissolved inorganic C, thereby labeling within-lake primary production, we examined the relative importance of autochthonous and allochthonous C in supporting bacterial production. For 35 days, NaH13CO3 was added daily to two small, forested lakes. One of the lakes (Peter) was fertilized so that primary production exceeded total respiration in the epilimnion. The other lake (Tuesday), in contrast, was low in productivity and had high levels of colored dissolved organic C (DOC). To obtain bacterial C isotopes, bacteria were regrown in situ in particle-free lake water in dialysis tubes. The contribution of allochthonous C to bacterial biomass was calculated by applying a two-member mixing model. In the absence of a direct measurement, the isotopic signature of the autochthonous end-member was estimated indirectly by three different approaches. Although there was excess primary production in Peter Lake, bacterial biomass consisted of 43–46% allochthonous C. In Tuesday Lake more than 75% of bacterial growth was supported by allochthonous C. Although bacteria used autochthonous C preferentially over allochthonous C, DOC from the watershed contributed significantly to bacterial production. In combination with results from similar experiments in different lakes, our findings suggest that the contribution of allochthonous C to bacterial production can be predicted from ratios of chromophoric dissolved organic matter (a surrogate for allochthonous supply) and chlorophyll a (a surrogate for autochthonous supply).  相似文献   

8.
The survival of selected hygienically relevant bacterial species in activated carbon (AC) filters on a bench scale was investigated. The results revealed that after inoculation of the test strains the previously sterilized AC absorbed all bacteria (10(6) to 10(7)). After a period of 6 to 13 days without countable bacteria in the effluent, the numbers of Escherichia coli, Pseudomonas aeruginosa, and Pseudomonas putida increased up to 10(4) to 10(5) CFU/ml of effluent and 10(6) to 10(7) CFU/g of AC. When Klebsiella pneumoniae and Streptococcus faecalis were used, no growth in filters could be observed. The numbers of E. coli, P. aeruginosa, and P. putida, however, decreased immediately and showed no regrowth in nonsterile AC from a filter which had been continuously connected to running tap water for 2 months. Under these conditions an autochthonous microflora developed on the carbon surface which could be demonstrated by scanning electron microscopy and culturing methods (heterotrophic plate count). These bacteria reduced E. coli, P. aeruginosa, and P. putida densities in the effluent by a factor of more than 10(5) within 1 to 5 days. The hypothesis that antagonistic substances of the autochthonous microflora were responsible for the elimination of the artificial contamination could not be confirmed because less than 1% of the isolates of the autochthonous microflora were able to produce such substances as indicated by in vitro tests. Competition for limiting nutrients was thought to be the reason for the observed effects.  相似文献   

9.
Lobova  T. I.  Listova  L. V.  Popova  L. Yu. 《Microbiology》2004,73(1):89-93
A study of the horizontal and vertical distribution of heterotrophic bacteria in brackish Lake Shira in summer periods showed that mesophilic bacteria dominated in all areas of the lake, whereas psychrotolerant bacteria dominated in the metalimnion and hypolimnion of its central part. Nonhalophilic bacteria were mostly mesophilic and dominated in coastal waters. Most psychrotolerant bacteria were able to grow in the presence of 5–10% NaCl. Heterotrophic bacteria isolated in different regions of the lake were identified to a generic level. The isolates were classified into autochthonous and allochthonous microorganisms on the bases of their distribution pattern in the lake water, halotolerance, and ability to grow at low temperatures.  相似文献   

10.
The study of the horizontal and vertical distribution of heterotrophic bacteria in brackish Lake Shira in summer periods showed that mesophilic bacteria dominated in all areas of the lake, whereas psychrotolerant bacteria dominated in the metalimnion and hypolimnion of its central part. Nonhalophilic bacteria were mostly mesophilic and dominated in coastal waters. Most psychrotolerant bacteria were able to grow in the presence of 5-10% NaCl. Heterotrophic bacteria isolated in different regions of the lake were identified to a generic level. The isolates were classified into autochthonous and allochthonous microorganisms on the bases of their distribution pattern in the lake water, halotolerance, and ability to grow at low temperatures.  相似文献   

11.
The survival of selected hygienically relevant bacterial species in activated carbon (AC) filters on a bench scale was investigated. The results revealed that after inoculation of the test strains the previously sterilized AC absorbed all bacteria (10(6) to 10(7)). After a period of 6 to 13 days without countable bacteria in the effluent, the numbers of Escherichia coli, Pseudomonas aeruginosa, and Pseudomonas putida increased up to 10(4) to 10(5) CFU/ml of effluent and 10(6) to 10(7) CFU/g of AC. When Klebsiella pneumoniae and Streptococcus faecalis were used, no growth in filters could be observed. The numbers of E. coli, P. aeruginosa, and P. putida, however, decreased immediately and showed no regrowth in nonsterile AC from a filter which had been continuously connected to running tap water for 2 months. Under these conditions an autochthonous microflora developed on the carbon surface which could be demonstrated by scanning electron microscopy and culturing methods (heterotrophic plate count). These bacteria reduced E. coli, P. aeruginosa, and P. putida densities in the effluent by a factor of more than 10(5) within 1 to 5 days. The hypothesis that antagonistic substances of the autochthonous microflora were responsible for the elimination of the artificial contamination could not be confirmed because less than 1% of the isolates of the autochthonous microflora were able to produce such substances as indicated by in vitro tests. Competition for limiting nutrients was thought to be the reason for the observed effects.  相似文献   

12.
Degradation of polycyclic aromatic hydrocarbons (PAHs) and survival of bacteria in soil was investigated by applying different inoculation protocols. The soil was inoculated with Sphingomonas paucimobilis BA 2 and strain BP 9, which are able to degrade anthracene and pyrene, respectively. CFU of soil bacteria and of the introduced bacteria were monitored in native and sterilized soil at different pHs. Introduction with mineral medium inhibited PAH degradation by the autochthonous microflora and by the strains tested. After introduction with water (without increase of the pore water salinity), no inhibition of the autochthonous microflora was observed and both strains exhibited PAH degradation.  相似文献   

13.

Background  

The biotreatability of actual-site polychlorinated biphenyl (PCB)-contaminated soils is often limited by their poor content of autochthonous pollutant-degrading microorganisms. In such cases, inoculation might be the solution for a successful bioremediation. Some pure and mixed cultures of characterized PCB degrading bacteria have been tested to this purpose. However, several failures have been recorded mostly due to the inability of inoculated microbes to compete with autochthonous microflora and to face the toxicity and the scarcity of nutrients occurring in the contaminated biotope. Complex microbial systems, such as compost or sludge, normally consisting of a large variety of robust microorganisms and essential nutrients, would have better chances to succeed in colonizing degraded contaminated soils. However, such sources of microorganisms have been poorly applied in soil bioremediation and in particular in the biotreatment of soil with PCBs. Thus, in this study the effects of Enzyveba, i.e. a consortium of non-adapted microorganisms developed from composted material, on the slurry- and solid-phase aerobic bioremediation of an actual-site, aged PCB-contaminated soil were studied.  相似文献   

14.
In hypersaline environments bacteria are exposed to a high osmotic pressure caused by the surrounding high salt concentrations. Halophilic microorganisms have specific strategies for balancing the osmotic pressure and surviving in these extreme conditions. Halophilic fermentative bacteria form taxonomically and phylogenetically a coherent group mainly belonging to the order Halanaerobiales. In this review, halophilic anaerobic fermentative bacteria in terms of taxonomy and phylogeny, special characteristics, survival strategies, and potential for biotechnological applications in a wide variety of branches, such as production of hydrogen, are discussed.  相似文献   

15.
Resources structure ecological communities and potentially link biodiversity to energy flow. It is commonly believed that functional traits (generalists versus specialists) involved in the exploitation of resources depend on resource availability and environmental fluctuations. The longitudinal nature of stream ecosystems provides changing resources to stream biota with yet unknown effects on microbial functional traits and community structure. We investigated the impact of autochthonous (algal extract) and allochthonous (spruce extract) resources, as they change along alpine streams from above to below the treeline, on microbial diversity, community composition and functions of benthic biofilms. Combining bromodeoxyuridine labelling and 454 pyrosequencing, we showed that diversity was lower upstream than downstream of the treeline and that community composition changed along the altitudinal gradient. We also found that, especially for allochthonous resources, specialisation by biofilm bacteria increased along that same gradient. Our results suggest that in streams below the treeline biofilm diversity, specialisation and functioning are associated with increasing niche differentiation as potentially modulated by divers allochthonous and autochthonous constituents contributing to resources. These findings expand our current understanding on biofilm structure and function in alpine streams.  相似文献   

16.
Relative contributions of allochthonous inputs and autochthonous production vary depending on terrestrial land use and biome. Terrestrially derived organic matter and in-stream primary production were measured in 12 headwater streams along an agricultural land-use gradient. Streams were examined to see how carbon (C) supply shifts from forested streams receiving primarily terrestrially derived C to agricultural streams, which may rely primarily on C derived from algal productivity. We measured allochthonous input, chlorophyll a concentration, and periphyton biomass in each stream, and whole-stream metabolism in six streams. Our results suggest a threshold between moderate- and heavy-agriculture land uses in which terrestrially derived C is replaced by in-stream algal productivity as the primary C source for aquatic consumers. A shift from allochthonous to autochthonous production was not evident in all heavy-agriculture streams, and only occurred in heavy-agriculture streams not impacted by livestock grazing. We then compared our findings to rates of allochthonous input and GPP in streams with minimal human influences in multiple biomes to assess how land-use practices influence C sources to stream ecosystems. The proportion of C derived from allochthonous versus autochthonous sources to heavy-agriculture streams was most similar to grassland and desert streams, while C sources to forested, light-, and moderate-agriculture streams were more similar to deciduous and montane coniferous forest streams. We show that C source to streams is dependent on land use, terrestrial biome, and degradation of in-stream conditions. Further, we suggest that within a biome there seems to be a compensation such that total C input is nearly equal whether it is from allochthonous or autochthonous sources.  相似文献   

17.
近年来抗生素耐药性问题日趋严重,患癌人数也在逐年增加,亟需开发新型药物。嗜盐微生物作为一类特殊的极端环境微生物,具有代谢多样性丰富、营养需求较低和能适应恶劣条件等特点,是发现新型药物的希望。目前,国内外学者已从嗜盐微生物中分离出了多种代谢产物和酶,具有明显的抗菌和/或抗肿瘤等活性。文中综述了嗜盐微生物及其相关产物在抗菌、抗炎、抗肿瘤、抗氧化、生物医学材料以及药物载体等生物医学方面的作用,尤其对近年来在嗜盐微生物中发现的新型抗菌和抗肿瘤物质以及嗜盐微生物特有的代谢产物四氢嘧啶等进行了总结,并对其后续在生物医药领域的开发和产业化应用进行了展望。  相似文献   

18.
Microorganisms in aquatic systems are exposed to continuous modifications in their environmental conditions. In these systems, both autochthonous and allochthonous bacteria respond to adverse conditions by expressing viable but nonculturable phenotype. On the basis of this common response, the behaviour of a few species is extrapolated to others. We compared the survival strategies of Escherichia coli (allochthonous, mesophile bacterium) and Pseudomonas fluorescens CHA0 (ubiquitous, psychrotrophic bacteria) under nonoptimal temperature and nutrient deprivation. In the absence of nutrients, the effect of temperature on the loss of culturability did not show a common pattern. Whereas the survival of E. coli had an inverse relationship with temperature, whereas for P. fluorescens a direct relationship between temperature and T?? values was only established in the range 5-15°C, with an inverse relationship at higher temperatures. When the subproteome of the outer membrane of P. fluorescens was comparatively analysed, starvation was not the main source of change. The most relevant modifications were due to variations in temperature. OprF, the major surface protein of the genus Pseudomonas, showed a high expression in nonculturable as well as culturable populations under all the adverse situations analysed. We therefore propose OprF as a suitable marker for Pseudomonas detection in the environment.  相似文献   

19.
Grazing on allochthonous vs autochthonous bacteria in river water   总被引:1,自引:0,他引:1  
The disappearance of bacteria through grazing was studied. Five allochthonous and eight autochthonous bacterial strains, and the bacterioplankton of the Butrón River were tested. There were differences in the susceptibility of different strains. These differences seemed to be related to intrinsic characteristics of the bacteria rather than to their origin.  相似文献   

20.
Food webs in the rhithral zone rely mainly on allochthonous carbon from the riparian vegetation. However, autochthonous carbon might be more important in open canopy streams. In streams, most of the microbial activity occurs in biofilms, associated with the streambed. We followed the autochthonous carbon transfer toward bacteria and grazing protozoa within a stream biofilm food web. Biofilms that developed in a second-order stream (Thuringia, Germany) were incubated in flow channels under climate-controlled conditions. Six-week-old biofilms received either 13C- or 12C-labeled CO?, and uptake into phospholipid fatty acids was followed. The dissolved inorganic carbon of the flow channel water became immediately labeled. In biofilms grown under 8-h light/16-h dark conditions, more than 50% of the labeled carbon was incorporated in biofilm algae, mainly filamentous cyanobacteria, pennate diatoms, and nonfilamentous green algae. A mean of 29% of the labeled carbon reached protozoan grazer. The testate amoeba Pseudodifflugia horrida was highly abundant in biofilms and seemed to be the most important grazer on biofilm bacteria and algae. Hence, stream biofilms dominated by cyanobacteria and algae seem to play an important role in the uptake of CO? and transfer of autochthonous carbon through the microbial food web.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号